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Abstract. Solitary waves moving with nonconstant velocity are found in the
nonlinear integrable system described by the Kadomtsev-Petviashvili equation
with a self-consistent source. Explicit expressions are derived for the solutions
describing the interaction of an arbitrary number of these waves. It is shown
that in contrast with the decay and fusion of solitons, the decay and fusion of
the above solitary waves are not of the resonance nature and proceed in the
general case. The obtained results are relevant to some problems of hydrody-
namics, solid state physics, plasma physics, etc.

The goal of the present paper is the interaction of solitary waves in the system
described by the equations [1-4]

d Vdu d ( 2 d2u 1 2\Ί .dφ d2φ , .- 2 = o , z-£ = ̂  + -̂ -. ( 1 )"' "\ 7 Λ Λ I noy ox \_ot o.

This system arises in studying the interaction of long and short waves in different
physical processes; here, respectively, u is the long wave amplitude, φ is the
complex envelope of a short wave packet, and the parameter K satisfies the
condition κ2' = 1.

As is known, the system (1) has a one-soliton solution of the form

2μ2

cosh2

x — ί(μ2 — v2) y + iσt]

u =

φ a cosh[μ(x + 2vy-τt) + δ] '

where the real parameters μ, v, and τ and the complex quantity a satisfy the only
condition

4κ \a\ = [τ —4(μ — 3v )] μ , (3)

and the quantities δ and σ take any real values. It follows from this relation that for
the solitons (2) to exist the parameters μ, v, and τ should satisfy the inequality

-3v 2 )]/c^0. (4)
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The parameters δ and θ = arg a characterize the position of the solution (2) on the
x, y plane, and at μ2 + v2 > 0 by the change x -> x -f x0 and y -> y + yQ they can be
transformed into any a priori given quantities, for instance, equal to zero. By using
four real parameters μ, v, σ, and τ we form two complex quantities ω and ρ of the
form

+^ (μτ-M'σ) (5)

playing an important role in studying the interaction of solitons (2). Hereafter the
bar means complex conjugation.

It follows from relation (3) that at τ = 4 (μ2 — 3 v2) the soliton (2) degenerates
into the well known soliton [5]

u= v Ξθ (6)
cosh2 [μ (x + 2 v y) — 4μ (μ2 — 3 v2) t + S\'

of the Kadomtsev-Petviashvili equation [6]. According to (5) the parameter ρ3 can
take only pure imaginary values. Then, assuming σ = τ = 0, according to (5) we
find that ρ3 = -ω3. In this case the soliton (2) takes the form

u= 2 2μ2

fn ^Qxp[ivx-i(μ2-v2)y]

i.e., is the stationary solution of the system (1). Consequently, the soliton (7)
satisfies the system of equations

^ S 2 _ u _ _ d 2 _ ί 2 d2u
dy2 dx2 \ dx2

.dφ d φ
ι— = uφ + -z-j,
φy ox

Λ

following from the system (1) after neglecting the term -̂ - in the first equation.

Finally, note that N> 1 solitons (2) with equal quantities ωm but with different
quantities ρ^, m = 1,..., N, form a solitary wave of the form2"!

m =

e x / v * ~ / " ~ v ;

9

where the quantities / and A are independent of the coordinates x and y.
However, these quantities depend on the time t and satisfy the relation

2 M| 2 . (10)

It follows from this relation that -τ φ 0 if at this moment of time the inequality
d\A\2

-τ
2

j φ 0 holds. Thus, the change in the square of the ̂ -wave amplitude leads to a



Interaction of Solitary Waves 203

synchronous acceleration of the w-wave and vice versa, acceleration of the w-wave
leads to a synchronous change of the square of the #>-wave amplitude.

One can easily be convinced that relation (10) is a necessary and sufficient
condition for the functions u and φ determined by (9) to satisfy the system (1).
Moreover, as will be shown below, the class of the pairs of functions/, A satisfying
relation (10) is essentially wider than the one that can be obtained from the
TV-soliton solution of the system (1) under the above choice of the parameters ωm and
ρ^? m = 1,..., TV. Thus, waves of the form (9) are not always obtained from the
multi-soliton solution of the system (1). Nevertheless, the interaction of N> 1
waves of the form (9) is always described by the formulae very similar in structure
with those for the TV-soliton solution of the system (1). Below, we shall derive these
formulae for investigating the interaction of solitary waves (9). In particular, we
will show that under certain conditions two or more waves (9) can be in a bound
state, i.e., during a semi-infinite interval of time t < 0, these waves are at finite
distance from each other, then the bound state decays and for t > 0 these waves
move away from each other at an infinite distance. Then, if in these solutions one
changes t by — t and x by — x the new solutions of the system (1) will describe the
process of forming a bound state, i.e., the process in which two or more solitary
waves (9) for t < 0 are at infinite distance from each other and for all t > 0 will be at
finite distance from each other. It should be noted that in contrast with the decay
and fusion of solitons being as is known of the resonance nature, the decay and
formation of a bound state of the waves (9) proceed under the conditions given by
the inequalities, i.e., in the general case.

1. TV-Wave Solution of the System (1)

To derive formulae describing the interaction TV > 1 of the waves (9) we take a
vector-column λ with TV components λm of the form

Am = exp(ωwx-zω2j;), m = l , . . . , T V , (1.1)

where ωm are complex parameters. Then, we take the square matrix P of an order
of TV with elements Pmn of the form

w'w=1'-'* (1 2)

Let finally q be a vector-column with TV components #!,...,##, and Q be a
Hermitian matrix of an order of TV with elements Qm n, m, n = 1,..., TV, such that
the equality

^ + 4ω3 Q + 4Q ω3 + 4κ q q = 0 (1.3)

holds where
ω = diag(ω1,...5ω j v), (1.4)

and the sign "~" means transposition, i.e., in particular, transition from the
vector-column to the vector-row. Thus, the expression qq defines the Hermitian
matrix of an order of TV with the elements qm qn, m, n = 1,..., TV. Assume now that
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the components qm of the vector q and the elements Qm, n of the matrix Q are
independent of the coordinates x and y. We put

1 — Q
P 1

, Φ = det

0 0 #

0 1 -β (1.5)

(1.6)

satisfy the system (1), where D ή= 0.
Taking account of (1.6) we easily find that this assertion can be proved by

verifying the relations

where 1 is the unit matrix of the order N. Then, the functions

<92 Φ

82D d2D S4^ 3

dy2 dtdx dx4} \ \ dx2

.dΦ d2Φ
1 dy dx2

.dD
ι-jΓ-dy

(1.7)

(1.8)

The validity of these relations, as will be shown below, can be proved by the
following algebraic lemma.

Algebraic Lemma. Let B be the square matrix of an order ofr + 2, r > 0. Let then
Bμv be the square matrix of an order ofr+l obtained from the matrix B after
cancelling the elements of the μth row and vth column, and βltv = detBμv,
μ,v = l,...,r + 2. Let finally B0 be a minor of the r'h order in the right lower angle of
the matrix B. Then, the equality

2,1 (1.9)

is valid.
The proof of this lemma is trivial, and therefore, we omit it (see, for instance,

paper [3]).
Let us show now how the relations (1.7) and (1.8) follow from equality (1.9).

For this purpose we use the square matrices Fmn,Gm, U and V of the form

F —-*• m «

0 λ

0
ωmλ

m

0

0
ωm

*ώ
1
P

λ

n

0

1
P

0

-Q ,
t

q
-Q ,

1

m ̂  0, n ̂  0, (1.10)

(1.11)



Interaction of Solitary Waves 205

U =

v=

0 0 λ*ω
0 0 A*
0 0 1

ωλ λ P

0
0

-Q
1

0 0 0 #
0 0 /I* 0
o o i -ρ

ωλ λ P 1

(1.12)

(1.13)

Hereafter the asterisk will mean the Hermitian conjugation, i. e., transposition and
complex conjugation performed simultaneously. One can easily see that the
matrices Fm > n and Gm are of the order 27V+ 1 and the matrices C/and Fare of the
order 27V + 2. By simple calculations based on equalities (1.1), (1 .2), and (1.5) one
can verify the relations

d3D

= -detF0 s l-detF1 > 0,

(1.14)

^gr = -detF0 > 3-3detF1 > 2-3

δΦ , „ d2Φ

-detF3>0 + 2dett/,

(1.15)

|̂  = detF0>3 - det F l j 2 - det F2>1 + det F3,0 - 2 det 17, (1.16)

dΦ
V-=-ιdetG 2 - ide tF.
δy

Hence it follows that

d2D

.δΦ δ2Φ _ „
z -- - ^ 2 det F.

(1.17)

Let us use the algebraic lemma. Assume B = V. Then, according to (1.10), (1.11),
and (1.13) we have

•#1,1 = FO,O> ^ι,2 = ^ι,o> ^2,1 = G0, B2 2 = 0^.

Then, based on (1.13) we get the equality

-β
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By virtue of (1.5) it follows that

Thus, in this case equality (1.9) takes the form

DdetF=det det/Ό.o detG0

detF1>0

(1.18)

According to equalities (1.5), (1.11), (1.14), (1.15), and (1.17) we get that relation
(1.18) coincides with (1.8). Consequently, the validity of relation (1.8) is proved.

Now we calculate the quantity -^—. For this purpose we use the diagonal
matrix T of the form

30, (1-19)

(1.20)

where the matrix ω is determined by equality (1.4), and assume

Based on (1.3) the matrix Q satisfies the condition

dQ
dt

(1.21)

On the other hand, by virtue of (1.5) we have

fl-det J ~\

Taking account of (1.1), (1.2), (1.10), and (1.19)-(1.21) we get the equality

- = 4
0 > 2 - 4 detF1? i + 4 detF2>0 - 4κ detR,

where

R =

0 0 q

q t -Q
OP 1

(1.22)

(1.23)

Then, the equality

= 4 detF0s3 + 4 detF3)0 + 4det U + 4κ det W (1.24)

is valid where
0 0 0
0 0 1 *

q 0 1
0 λ P

q
0

-Q
H

(1.25)
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Thus, according to (1.14), (1.16), (1.22), and (1.24) we get the equality

d2D d2D d4D
dy2 dtdx dx4 = -12det i7-4/cdetW,

— + 4^r^-= -12detF! i-4/cdet^,
dt dx3 l f l (1.26)

Let us use the algebraic lemma again. Let B=U. Then, according to equalities
(1.10) and (1.12) we get that

^1,1 = ̂ 0,0 > -#1,2 = ̂ 1,0> ^2,1 = ^0,1> ^2,2=^1,1

Then, based on (1.5) and (1.12) we have the equality det B0 = D. Thus, in the case
considered relation (1.9) becomes

det [7= det ),o 0,1 (1.27)

Let then B = W. Taking account of (1.5), (1.10), (1.23) and (1.25) we get that

Then, based on the matrices P and g being Hermitian we can verify the equality

0 A* 0
= det q 1 -!

0 P

i.e., by virtue of (1.25) we have det^1>2 = Φ. Consequently, relation (1.9) now
becomes

D det PF-det detF0,o Φ
Φ dεtR

(1.28)

According to equalities (1.26) validity of relation (1.7) is proved by relations (1.27)
and (1.28). Thus, the validity of relations (1.7) and (1.8) is proved.

It should be mentioned that the Hermitian matrix P determined by (1.1) and
(1.2) will be non-negative if the quantities ωm satisfy the condition

Reω m >0, m = l,...,tf. (1.29)

On the contrary, the matrix P will be nonpositive if the condition

Reω m <0, w = !,...,#, (1.30)

is fulfilled. Thus, choosing the Hermitian matrix Q non-negative under the
condition (1.29) or nonpositive if the condition (1.30) holds, in both the cases
taking account of (1.5) we are convinced in the validity of the inequality D ̂  1.
This means that the solution of the system (1) determined by (1.6) has no
singularities in this case. Moreover, from the matrices P and Q being Hermitian it
follows that the function u determined by (1.5) and (1.6) takes only real values at
any real values of x, y and t.
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Let now

-4(ω3+ρ3)ί], m=ί,...,N,

where am φ 0, ωm and ρ^ are the complex parameters. By simple calculations we get
that in this case the vector q and Hermitian matrix Q satisfy equality (1.3).
According to (5) we assume

where μw , vm , σm and τm are the real parameters. One can easily be convinced that
the matrix Q will be non-negative if the condition (1.29) is fulfilled, and the
parameters μm , vm and τm satisfy an analogous to (4) inequality

[τw-4θ4-3v£)]κ>0, m = l , . . . ,7V. (1.32)

On the contrary, the matrix g will be nonpositive if the conditions (1.30) and
(1.32) are fulfilled simultaneously. Consequently, choosing the quantities ωm and
QW either according to conditions (1.29) and (1.32) or to (1.30) and (1.32), we get
the solution of the system (1) having no singularities at any real values of x, y and /.
The solution of the system (1) thus obtained is the known 7V-soliton solution [3]. It
describes the interaction of N solitons of the form (2). If in this solution at some
values of the index m we put τw = 4 (/4 - 3 v*) + κ\am\2 cm, where cm > 0, and pass
to the limit as αm->0, then the obtained N-soliton solution of the system (1) will
contain a number of solitons of the form (6). Then, assuming ρ^ = —ώ^ at some
values of the index m we succeed in that our N-soliton solution of the system (1)
will contain also a number of solitons of the form (7). Finally, putting in the initial
solution QW = —ώn at all values of the index m = 1 , . . . , N we get TV-soli ton solution
of the system (8).

Now in equalities (1 .31) we put ωΐ = . . . = ωN = μ + ί v , where μ and v are the
real parameters. By simple calculations we can verify the equalities

D = 1 + K exp [2μ (x + 2 vy)] ,

Φ = L exp [μ(x + 2vy)] exp[ivx — i(μ2 — v2)jμ],

where

κ=κ Y gmgπ L=-Yqm. (1.33)
^m,n=lQm + Qn m=l

If all the quantities ρ^ are taken different, then it follows from inequality (1.32)
that the square form JΠs positive definite. This means that K > 0 at any real value
of the time t. Thus, by virtue of (1.6) our solution of the system (1) really has the
form of (9) if one puts

-- , 12. (1.34)
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Taking account of (1.31) we get that the quantities K and L determined above
satisfy the relation

Hence it follows that the quantities / and A determined by (1.33) and (1.34) satisfy
relation (10). Then, the equality

δ2/ __ K i d
W~^n?\^~dt

is valid. According to (1.33) it follows from this equality that if among the

quantities ρ^ there are at least two different ones, then the inequality -j4 φ 0 is

valid, i.e., the phase velocity of the wave (9) in this case is not constant in time.
The considered solitary wave does not exhaust all possible cases. To verify this

we put

00
v^>

*ίm /_^ m,r

m'

where βm > r, Cm>n, ωm and ρm r are the complex parameters. One can easily see that
the vector q and matrix Q thus defined satisfy relation (1.3). Moreover, the matrix
Q will obviously be Hermitian if the quantities Cm>n form the Hermitian matrix.
Then, one can easily be convinced that if Cm n = 0 at w, n = l,...,N and among the
quantities amr there is only a finite number of nonzero quantities, then the solution
of the system (1) obtained by (1.35) describes the interaction of N solitary waves of
the form of (9), each of these waves can be obtained from the multi-soliton
solution of the system (1) in the way described above, and consequently, the
solution itself can be obtained from the multi-soliton solution of the system (1).
However, in the case when among the quantities αm>r there is an infinite number of
nonzero quantities, the solution of the system (1) obtained by (1.35) cannot be
obtained from the multi-soliton solution of this system. There are other possible
ways of choosing the vector q and matrix Q which satisfy relation (1.3) and allow
one to get other types of solitary waves of the form of (9) differing from the multi-
soliton ones. Especially, we should like to mention solitary waves of the form of (9)

with limited functions fm at all / e ( — oo , oo ) such that —^ φ 0 . Solitary waves of

that type make finite motions, i.e., each moves all the time in the finite limits. In
the case when the parameters vm of all the waves of the form of (9) participating in
the interaction coincide, m = 1 , . . . , TV, these waves form one solitary wave that can
decay into several solitary waves of the form (9). In the next paragraph we shall
discuss this phenomenon in more detail.
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2. Formation and Decay of a Bound State in the System (1)

Now we use the components qm of the vector q and the elements Qmn of the matrix
Q in the following form:

(2.1)

where αm φ 0, 6m Φ 0, ωm and ρ^ are the complex parameters and γm are the real
parameters. It is easy to verify that the vector q and matrix Q thus determined
satisfy relation (1.3). Then, assume

, w= !,...,#, (2.2)

where μm, σw,τm and v are the real parameters satisfying the inequalities

κμm<0, μ m τ m <0,(/4_3v 2 )μ m >0, w = l,...,tf. (2.3)

In this case, the elements Qmn of the matrix Q determined by equalities (2.1) admit
the representation

x ?«(O?.(O
— oo

Hence, it follows that the Hermitian matrix KQ will be nonpositive. Then, it
follows from the condition K μm < 0, m = 1 , . . . , JV, that the Hermitian matrix Λ: P
determined by (1.1) and (1 .2) will be nonpositive as well. Consequently, by virtue
of (1 .5) at any real x, y and t the inequality D ̂  1 is valid. Thus, the solution of the
system (1) determined by expressions (2.1) according to (1.6) has no singularities
at any real values of x9 y and /.

Let us now analyse the dynamics of this solution. For this purpose we use the
matrix G with the elements Gm>n of the form

exp[-4/(ym-yJί], m,n = 1, . . . ,N.

If the quantities ώ^ = ω^ + ί γm are all different, m = 1,..., N, then the Hermitian
matrix G on the basis of (2.2) and (2.3) will be positive definite. Further, taking
account of (2.1)-(2.3) we have βm,n + κGm j Π-»0 as f-> —oo, m,n = l,...,N.
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Hence, it follows that there exist such a constant c0 > 0 and moment of time t0 that
at all t ̂  t0 the inequality ( — κ)N det Q ̂  c0 holds. Finally, if the quantities μm are
all different, ra = l , . . . ,Λf , then according to (1.1) and (1.2) we have detPφO.
Assume now z = (x + 2 v y) K. Then, as z -> oo according to (1.1), (1 .2) and (2.3) we
get that £)->! and Φ->0 uniformly in /e(— oo, f0], i.e., w->0 and #?-»0 as z-»oo
uniformly in f e ( — oo,f0]. On the other hand, using (2.3) we can verify that
uniformly in te(— oo, tQ] as z-> — oo, the following relations are valid:

where

Hence, it follows that as z -> — oo we have « -> 0 and 9? -> 0 uniformly in
te(— oo, /0]. Thus, at ίe(— oo, ί0] our solution of the system (1) really describes
the solitary wave executing a finite motion, i. e., for al l/ e( — oo , ί0] it is in a certain
band of the form \x + 2v j| rg C0 , where C0 > 0.

Now let us see what will happen to our solution as t -> oo . For this purpose we
assume the quantities τm entering into (2.2) to be all different, m = 1, . . . , N, and
their numeration is such that at any m Φ n the inequality

(τm-Oμw>0 if m<n

holds. Further, we take the diagonal matrix M of the form

M=exp(-μτ/),

(2.4)

(2.5)

where τ is the real parameter, and μ is the diagonal matrix with the elements μm on
the principal diagonal, m = 1, . . . , TV, i.e.,

By virtue of (1.5) the equalities

1 -Q
P 1

= det

are valid where

0 0 \
-ύ

= M~1q.

(2.6)

(2.7)

(2.8)

Based on (1.1), (1 .2), (2.5) and (2.8) the elements Pm>n of the matrix Phave the form

where Ci , , CN are the components of the vector-column ζ = Mλ. According to
(1.1), (2.2), (2.5), and (2.6) the equality

/(^-v2)7], m = l , . . . ,7V, (2.10)
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is valid, where z = x + 2vy — τt. Finally, taking account of (2.1), (2.2), (2.5), (2.6),
and (2.8) we get that the components ηί,..., ηN of the vector-column η = M~l q
and the elements Qm n of the matrix Q can be written as follows:

ηm = exp [μm (τ - τm) t] [am exp (i σm i)

+ bm exp[(μwτw + 4/ym)ί]}, w = l, ...,#,

βm,« = exp [μm (τ-τm)t + μn (τ - τj t]

ί(σM-σ l l)ί] (2.11)

-K 3 \m exp [μmτmt + i(σn-4γJ t]
GC/M. (J1Λ I V 1ΛΛ^^m «ί n i m

~κ ft>3 + ωa ̂  Λ _ ) exp[(μm^ + ̂ τj f - 4/(ym-y n) f]J,

m,n = 1 , . . . , T V .

Now assume that the parameter τ e (— oo, oo) entering into (2.5) and (2.11) is
chosen so that at any m = 1,..., TV the inequality

(τ-τm)μm<0, m = \,...,N, (2.12)

is fulfilled. Then, according to (2.3) and (2.11) we get that as t-+co the relations

γj _^Π m — \ N 0 ->0 m n — 1 ATVm^ u ? //< — 1, . . . , Λ V , ^m,n^u? m,/7 — I, .. ., J V ,

are valid. Hence, by virtue of (2.7), (2.9) and (2.10) it follows that at any fixed
z = * + 2v j; — τ ί and f -> oo we have D -> 1, Φ -* 0, i.e., based on (1.6) at any fixed
z and as t -»oo we get that M -> 0 and ^ -> 0. This means that as ί -> oo our solution
has no moving waves with the phase velocity τ satisfying the condition (2.12). On
the other hand, assume that the parameter τ e (— 00,00) is chosen so that at any
m = 1,..., TV the inequality

is valid. With (2.3) and (2.11) we get that in this case as ί-*oo the following
asymptotics hold:

ηmexp[μm(τm-τ)t]~amexp(ίσmt), m = l , . . . , T V ,

Qm,n e x p [ μ m ( τ m - τ ) t + μn(τn-τ)t]~κ f"%
tίm ~r Un
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According to (2.7), (2.9), and (2.10) it follows that at any fixed z and ί->oo the
relations

D expΓ-2 £ μm(τ-τj /U(detP) (detΛ),
L m = l J

Φ e x p Γ - 2 Σ
L m=l

are fulfilled, where 7? is the square matrix of an order of TV with the elements Rm,n of
the form

When the quantities ρ^ are all different, m = 1 , . . . , N , it is obvious that det R φ 0.
In this case, by using (1.6) one can easily get that at any fixed z and as t -> oo the
asymptotics u -> 0 and ^ ->• 0 hold, i.e., our solution of the system (1) as t -> oo also
does not contain moving waves with the phase velocity τ satisfying the condition
(2.13).

Consider then the case when the parameter τ e (— 00,00) is chosen so that at a
certain integer r satisfying the condition 1 ̂  r < N the inequality

(τ-τ r ) Λ <0, (τ-τ r + 1)^+ 1>0 (2.14)

is valid. Hence, according to (2.4) the inequalities

(τ-τ m )μ m <0 if ra = l , . . . , r ,

(τ-τ j// m >0 if /H = r+l, . . . , t f

are valid. By virtue of (2.3), (2.11), and (2.15) we find that as /-» oo the following
asymptotics hold:

?/m->0 if w = l , . . . , r ,

^mexp[//m(τm-τ)/]-αmexp(zσmί) if m = r+ 1, ..., ΛΓ,

βm>π->0 if m,π- l , . . . , r ,

βm,.exp[//n(τn-τ)ί]-^0 if m = l, . . . ,r and n = r + 1, ..., TV,

2m,M exp[μm(τm-τ)/]->0 if m = r + l,...,N and w = l , . . . , r ,

βm, « exp [//m (τm - τ) t + //„ (τΛ - τ) ί ]

/((7m-σj/] if /w,/ι = r + l , . . . , J V .

Based on (2.7), (2.9) and (2.10) it follows that at any fixed z and as /->oo the
relations

Γ N Ί
Dexp -2 X Anίτ-τjί U(detP r)(detΛΓ),

L m = r + l J

r- N -,

Φexp -2 X μm(τ-τm)t ->0
L m = r + l J

(2.16)
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hold, where Pr and Rr are the square matrices of an order of TV — r, respectively,
with the elements P r>mίΠ and Rr,m,n of the form

<Γ Γ
p = W + m l r + ι» mn=\ N—Γ (211}L r,m,n , - •> ''*? " — ι , . . . , i v A , ^.λ/j

ωr + m ~r ωr + n

*w = K -3r+mΛ+3" exp [-i(σr+m - σ r + H ) t] . m,n = \,...,N-r.
Qr + m "Γ (?r + n

Using equalities (1.6) and relations (2.16) we easily find that at any fixed z and as
t-+ao the asymptotics w->0 and φ->0 hold, i.e., our solution as /->oo has no
moving waves with the phase velocity τ satisfying the condition (2.14). Thus, from
the afore-said we get that by virtue of (2.12)-(2.14) our solution of the system (1)
as t -> oo has no moving waves with the phase velocity τ φ τ w , r a = l , . . . , T V .

Finally, consider the case when τ = τr, r = 1, . . . , TV. According to (2.3), (2.4),
(2.11) and equality τ = τr we get that in this case as f-»oo the following
asymptotics hold:

*7m->0 if m = l , . . . ,r-l,

τn-τ r)/]^0 if m = 1, ...,r- 1 and n = r, ...,7V,

2m,«exp[μm(τm-τ r)ί]->0 if m - r, ...,7V and n = 1, ...,r- 1 ,

Qm,n ̂ P L"m Om ~ O / + μn (τΛ - TΓ) /]

According to (2.7), (2.9), and (2.10) it follows that at any fixed z = x + 2v j; - τr t
and f -> oo the relations

D expΓ-2 X //m(τ,-τm)/Ί -> (detPr_
L m = r J

(det^.J + (detPΓ)

(2.18)

are valid. Here, the matrices Pr and Rr at r = 0, 1 , . . . , TV— 1 are the square matrices
of an order of TV— r with the elements Pr,mtn and ̂ >m,n determined by expressions
(2.17) and at r = TV we assume by definition det PN = det RN = 1. Further, the
matrix Pr is obtained from the matrix Pr by substituting the elements of the first
column of this matrix by the quantities ζr+l,...,ζN, r = 0, 1 , . . . , TV — 1 , and the
matrix Rr is obtained from the matrix Rr by substituting the first row of this matrix
by the quantities ar+1 exp(/σ r + 1 /),...,<% exp (iσNt), r = 0 5 l , . . . , T V — 1. Taking
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account of (2.9), (2.10) and (2.17) it follows from relation (2.18) that as t-* oo our
solution contains N solitary waves of the form

e\p[ivx-i(μ2-v2)y]

where fr and Ar are the limited functions 1 e (— oo, oo). Thus, our solution really
describes the decay of one solitary wave into N solitary waves of the form (2.19).

It should be noted that the solution considered above conserves its dynamics
under the change of the vector q with the components qm of the form (2.1) by the
vector q' with the components q'm = qm + εgm , where ε is the small parameter and
gm are arbitrary limited functions 1 e (—00,00). In this case, the elements Qmn

determined by (2.1) of the matrix Q should necessarily be substituted by the
quantities Q'mn of the form

In conclusion, it should be emphasized that the above-described process of
decaying one solitary wave into an arbitrary number of solitary waves does not
exhaust all possibilities of the obtained class of solutions of the system (1).
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