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Abstract. We consider the 2-dimensional Ising model with ferromagnetic
nearest neighbour interaction at inverse temperature β. Let SN = ̂ σt be the
total magnetization inside an N x N square box Λ, μ^er be the Gibbs state in A
with periodic b.c., and m(β) be the spontaneous magnetization. We show the
existence of the limit

tp(ρ) = im - - \nμT(SN = [Nρ])

for |ρ| <m(β\ provided β is large enough. It turns out that the quantity ιp(ρ) is
closely related to the Wulf construction, and the dependence of the function
ψ(ρ) on ρ is singular.

I. Introduction and Statement of Results

1.1. Preliminaries

We consider the Ising model with nearest neighbour interaction on a
d-dimensional lattice Zd. The spin at each point ί e Zd takes the values σt = ± 1, and
the Hamiltonian of a spin configuration σ is given by:

H(σ)=- £ σsσt,
<s,f>

where the summation goes over nearest neighbours. Let A cTLd be any finite region,
and σ be some spin configuration on Zd. By μ* we denote the Gibbs state in Λ,
corresponding to inverse temperature β and boundary condition σ. It is given by
the formula

μ^Λ) = Z; U 5) exp {- βHA(σΛ\σ)},
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where σΛ e ΩΛ is a spin configuration in A,

HA{σA\σ)=-
>, seΛ

and

ZΛ(β,σ)= Σ exp {-/?#»)}.
σΛeΩΛ

We shall denote by the symbol 0 the case of free boundary conditions, which one
obtains by putting σ to be identically zero. For the special case when A is a
d-dimensional cube in Έd, we shall also use periodic boundary conditions, which
correspond to wrapping A into a discrete torus. The corresponding quantities then
will be indexed by the symbol per. Let μ + — lim μ\ be the limiting measure for the

boundary condition σ= -f 1. Let m(β)= $σodμ+. It is known that m(β)>0 for
β>βc(d) with βc(d)<oD, provided d^2.

In this paper we shall consider the question of calculating explicitly the large
deviation exponent for the total spin variable

SΛ = SΛ(σ)= Σ°t
teΛ

The magnetization per site will be denoted by MΛ = SΛ/\A\. The first natural
question is to look on the behaviour of the quantity

The following is known about it (see the paper [S] and the references therein):

-m(β)<a<b<m(β),

m{β)<a<\ or -ί<b<-m(β).

The main result of [S] was to show that for the case [α, &]n[ — rn(β\ m(β)] Φ0 the
actual decay of the quantity pΛ(a,b) is of the order of the exp{ — c|δΛ|}. Namely,
under some conditions, which hold for β large enough, it was shown in [S] that for
some positive Au A2, cu c2,

(1)

The result was then extended in [CCS] by showing that in the dimension d = 2 the
same behaviour of pΛ(a, b) is valid for all β > βc(2).

12. The Results

The subject of the present paper is to obtain the precise value of the constant
c = c t = c2 in (1). The setting is the following. Suppose that for any A the number JR^
is given, such that

(2)

RJ\Λ\-+Q when A->Zd. (3)

Consider the probability
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It turns out that the limit behaviour of the quantity q%RΛ) is very sensitive not only
to the value of ρ, but also to the shape of the box A as well as to the boundary
condition σ. We begin by considering the simplest case of a square box A = N x N
in the dimension d = 2, and with periodic boundary condition.

Theorem 1. The limit:

(4)

exists and is positive, provided the inverse temperature β is large enough and the
conditions (2), (3) are satisfied with \ρ\ < m(β). Moreover, the function φper(ρ) is given
by the following formula:

Ψpeτ(Qh
_jwγm(β)~\ρ\ for

]/m(β)-Qo f°r
(5)

The constants w, ρ0 can also be specified (see the Theorem 2 below). One sees
clearly that at the point ρ=±ρ0 the function ψper(ρ) is singular (see Fig. 1).

The qualitative picture behind formula (5) is the following. The typical
configuration σΛ of the system under the constraint SΛ(σΛ) = RΛ > 0 has the
following structure: it contains one "large" droplet of (— )-phase of the size of order
N, immersed in the sea of (+ )-phase (see Fig. 2). For the values ρ, which are near
m(β\ the shape of the droplet is somewhat "round." This shape grows in size when
ρ decreases down to certain value ρ0, where the optimal shape of the droplet

L
-m(β) - P o

Fig. 1. The graph of the function ψper(ρ)

Ψ P Θ Γ ( P )

m(β)

α pQ<p<m(β) b - p o < p < p Q

Fig. 2 a, b. The shape of the droplet in two-dimensional torical volume for different densities ,
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becomes that of a strip between two meridians of the torus A. Further decay of ρ
results in an increase of the volume of the droplet while the length of the boundary
remains the same, and that explains the flat part of the function φper(ρ), see Fig. 2.

1.3. The Wulf Construction

To state the above results more explicitly and to obtain the values of the constants
ρ0 and w, entering in (5), we shall use the technique and the results of the paper
[DKS], where the famous Wulf construction [Wu] is put on a rigorous basis.
Namely, it is shown there that the asymptotic shape of the droplet of one phase,
floating in the opposite phase, is indeed given by this construction. To remind the
reader of this construction we shall give the necessary definitions. In order to
simplify the notations we shall restrict ourselves to the case d = 2.

The Surface Tension. Let DNcΈ2 be the square box centred at the origin with the
size IN x IN and n = (cosθ,sinθ)eR2 be the unit vector. Consider the boundary
condition σw, which is given by:

The surface tension in the direction orthogonal to the vector n, is given by the
formula

. cosfl ZDN(β,σn)
p jv-oo 2Nβ ZDN(β,σ+)

where σ+ = +1, and we suppose that |0| ̂  —. In [DKS] one can find the detailed
study of the quantity τβ(n).

Let now yClR2 be a piecewise smooth curve. Then we can define the Wulf
functional iΓτ(y) by

where ns is a normal vector to y at the point s. The Wulf shape W= W^τ^ClR2 is
defined as

where the constant λ is chosen in such a way that \W\ = 1.

Theorem [DKS]. Suppose that y is some closed curve in R2, and the area enclosed by
y is equal to one. Then

and the equality holds only in case γ is a shift of dW. Moreover, the curve dW is a
stable extremal point of the functional Wτ in the following sense: if

then for some vector xelR2
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Here C = C(τβ) < oo and ρH(,) is the Hausdorff distance: for A, B eIR2,

ρH(A, B) = max ίsup dist (x, B\ sup dist(y, A)\.
\xeA yeB J

Partial results of that kind were obtained earlier in [T].

Now we can complete the statement of Theorem 1 by the following

Theorem 2. The coefficient w in Theorem 1 is given by

The singularity point ρ0 of the function φ p e r satisfies the equality

(6)

where ( 1 , 0 ) G R 2 is the unit vector.

The right-hand side of (6) is just the value of the functional ΊV on the curve γ in
the (flat) two-dimensional torus of unit size, which is the union of two meridians.
(The functional ΊV extends to the functional on the torus in an obvious way.)

ί.4. Generalizations

Now we state the results for the large deviation exponents for other boundary
conditions. First we consider the case of empty boundary conditions.

Theorem 3. The limit ψφ(ρ) defined as in (4), with q®Λ instead of q*fT, exists and is
positive under the same conditions as is Theorem 1. The following formula holds:

,n*M=
w)/m(β)-ρ1

where w is the same as in Theorem 2, and ρ1 satisfies the equation

The typical configurations of the canonical ensemble with empty boundary
conditions and for different values of ρ are shown in Fig. 3. The statement that the
droplet with |ρ| g: ρ1 has the form of one fourth of the Wulf shape W follows from
the fact that the surface tension along the boundary with empty boundary
conditions is zero.

The case of (-f )-boundary conditions is more delicate. Qualitatively the picture
is the following. As long as the difference m(β) — ρ is small enough - namely, the
Wulf shape [|(1 -ρ/m{β))~]1/2W can be placed inside the unit square without

Fig. 3. The shape of the droplet in
two-dimensional square volume with
empty b.c. for different densities ρ

P 1 < p < m ( β ) P 1 <P<P 1
-m(β)<p<-p1
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Fig. 4. The shape of the droplet in two-dimensional square volume with
( + ) b.c. and with high density of (—)-phase

Fig. 5. The graph of the
function ψ+(ρ)

-m(β) m(β)

touching its boundary - the corresponding exponent ψ+(ρ) = wγm(β) — ρ and the
droplet of ( —)-phase [of relative volume (1/2)(1 — ρ/m(β)y] in a typical configur-
ation with (+) b.c. does not touch the boundary. In other words, the (+ )-boundary
repels the ( —)-droplet. The easiest way to see it is to apply the correlation
inequalities obtained recently by Pfϊster [P], To formulate exactly the statement
about repulsion, we shall consider the surface tension along the boundary τj}(n). It
is defined to be the limit

(compare with [FP]), where the volume DN(Θ) is obtained by shifting the square DN

upward by the vector (0, N) and applying a rotation of angle θ. Now it can be
shown that τb

β(ri) ̂  τβ(ή)9 which is the reason why the droplet does not touch the
boundary (if this is permitted by the volume constraint).

When the volume of the droplet becomes so large that the Wulf shape
[i(l —Q/m(β))Y/2W cannot be placed inside a unit square, the shape of the droplet
is given by the modified Wulf construction, which was given in [W], see also
[ZAT]. In our case the result looks as follows: one has to cut off four equal pieces
from W and then to magnify the resulting shape in such a way that it touches all
four sides of our square volume by its flat pieces of the boundary, see Fig. 4.

The function ψ+(ρ) looks as it is indicated in Fig. 5. The point ρ2 corresponds
to the situation when the droplet touches the boundary of the square volume. For
ρ e [ρ2, m(β)]9ψ

+(ρ) = w]/m(/?) — ρ, while for ρ<ρ 2 the formula is more complex,
and we shall not give it.

II. Proofs

The main ingredient of the proofs is the technique of the paper [DKS]. Actually,
the present paper has to be considered mainly as advertisement for [DKS]. We
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have to study the limit

σeΩN

where the subscript N indicates the square box A = N xN with periodic b.c, and
the numbers RN satisfy the conditions (2), (3). The denominator in (7) is the
partition function Zψ(β) of the grand canonical ensemble; we denote by
Zjyer(β, RN) the numerator of (7). This is the partition function of the canonical
ensemble in A with total spin RN. The corresponding set of all configurations in A
with total spin RN will be denoted by ΩN(RN). In the usual way we define contours
of the configuration σ as the collection of links of the dual lattice which separate
n.n. points s,teΛ, for which σsσt = — 1. The set of all contours of the configuration
σ will be denoted by G(σ). The contour Γ e G(σ) is called large, if its diameter d(Γ)
^N1/2(lnN)2. The subset of large contours of G(σ) will be denoted by G (̂σ). For
any configuration σeΩN with G (̂σ) Φ 0, we define the configuration oe e ΩN by the
following conditions:

2. For any teA such that dist(ί,Γ) = l/2 for some ΓeG^σ), σ(t) = σ/t).

We denote by Λ±(σ), the subsets of Λ9 where σe= ± 1.
We will make several reductions of the ratio (7). Let

Zffτ(β,RN,ί)= X exp{-jS#fter(σ)}. (8)

σeΩN(RN): G(f(σ)Φ0

Then

, -i

Zψ{β) Zψ{β) \ ZΪT(β,RN)

It is an easy corollary of the large deviation estimate for the variable SΛ(σΛ)
conditioned by the requirement that G^(σΛ) = 0 that

as N-+O0 (see [DKS, Sect. 3]). Hence

zψ{β) zψ{β)

The same estimate, applied to subvolumes of A9 which one obtains by taking
the complement A\{teA, dist(ί,Γ)=l/2 for some ΓeG^(σ)} for some σeΩN

actually tells us that



S. B. Shlosman

1/2 2
N In N

Fig. 6. The construction of the skeleton

where the partition function Zψ(β, RN, /, vol) is obtained from Zψ(β, RN, i) by
restricting the range of summation in (8) to those σeΩN(RN) for which G^σ) + 0
and

|(M+(σ)| - \A Λσ)\)m(β) - RN\ ^ N^2+* (9)

for any ε>0, provided NtN(ε) [DKS, Sect. 3].
In other words, the partition function Z^er(β, RN, /, vol) is obtained by

summation over all configurations σ e ΩN(RN), which have the large contours with
"right" areas.

To make the third reduction we have to introduce the notion of the skeleton of
a large contour. To do this we consider the sublattice LN of ΛN with spacing
N1/2(\nN)2. For each contour Γ we fix somehow its orientation and its initial point
po(Γ) (belonging to some bond of LN), and define inductively the sequence po(Π>
Pi{Γ),... of points on bonds of LN: ifp£_ X(Γ) belongs to the bond ( e LN, then p^Γ) is
the first hitting point of Γ in the set E{ί) C LN, which is the union of 10 bonds of LN,
see Fig. 6. The sequence terminates at the point pn(Γ), such that the diameter of
the segment of Γ between pn{Γ) and po(Γ) is between 2iV1/2(lniV)2 and
^iV1/2(lnJV)2. The polygon Π(Γ) with sites po(Γ)>Pi(Π>— is called the skeleton of
Γ.

Now consider the Wulf shape W magnified j / ^ N 2 — RN/m(β)) times, and let
W= W(RmN) be the resulting shape. We define the polygon Πw to be:

the skeleton of dW(RN, N)iϊρo<.ρ< m{β)

the skeleton of dW(N2 -JR^, N) if - m ( β ) < ρ ^ - ρ 0 ;

the skeleton of the union of two parallel meridians, separated by
the distance %(N-RN/(Nm{β))), if -ρo<ρ<ρo .

For 77 to be a union of several polygons with sites on the bonds of LN we introduce
the partition function

which is obtained by summation over all configurations σ e ΩN(RN), such that the
set of skeletons of their large contours is exactly the family 77. We define as above
the subvolumes Λ±(Π)cΛ, and we denote by ^(77) the volume difference

υd(Π) = \(\Λ \A _ - RN
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[compare with (9)]. It is easy to see now that

Zψ{β, RN, Πw) ^ Zf\β, RN, ί, vol)

g Σ Zl"(β,RN,Π). (10)
Π: vd(Π)^N3/2 + ε

Hence, it is enough to show that

lim - ^ l n [ Z Γ ( / U * , ^ ) / Z Π / ^ ^ Ψ » * T ( Q ) , (11)
βN

N-+00

ln Γ
lΠ:v

^(β)] ^Ψper(Q) (12)

J
To show (11) one can use the statement from [DSK, Sect. 5], that

where C>0 is some constant. To show (12) one first can use the obvious fact that

where the last partition function is calculated over the set of configurations such
that the skeleton of their large contours is 77. Now, if Π satisfies the volume
restriction

| - \A -(Π)\)m(β) - RN\ g

then

^ n rrxseτί D\ Γ OAT.oer/Λ) = ^ 1/ - ^ J

which follows from the upper bound in [DKS, Sect. 5], and the extremal
properties of the Wulf functional. The last piece of information from [DKS], which
is needed, is the statement that the contribution to the right-hand side of (10) of the
skeletons Π which are too long or are disconnected, can be neglected. Namely, let
us denote by K the set of those skeletons 77, which have two properties:

π)

Then

77

as iV-κx)

is connected.

π

. That means

lim — TΓJΓ I1 1

= lim — -

Σ
Π: vd(Π)^N3

that

\Π:υd(Π)^N3

A

ε, ΠφK

-\β,RN

*(β,R*

+ ε, ΠeK

,π)/zr(βίj

Z%'(β,RN,Π)/ZΓ(β)\.
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It remains only to estimate the number of terms in the last sum. To do this we
observe first that there is ^ N2 possibilities for the first point of 77. Then, for any
subsequent point there is, by definition, less than llj//VlniV2 possibilities, see
Fig. 6. Because iT(Π)<^Nψper(ρ) + j/iV/lnAΓ, the length of Π is less than CN for
some constant C. So the number of different skeletons Π is less than

In N lnN2

From that and the estimate (13) the inequality (12) follows.
Actually, in [DKS] only the case |ρ| > ρ0 was considered, but the general case is

studied exactly in the same way.
The proofs for the cases of free or (+) b.c. as well as other boundary conditions

go again in the same way as given above, modulo some additional technical points
concerning the interaction of the droplet with the boundary of the volume.
Because the additional details are rather lengthy, the proofs will appear elsewhere.

There is no doubt that the same kind of results hold true in higher dimensions.
However the proof of the fact that the Wulf construction gives the right asymptotic
shape of droplet in dimensions d^3 does not yet exist. This is because, in
particular, the structure of the low temperature Gibbs states in dimensions d ̂  3 is
not completely known. Nevertheless, there are some partial results in this direction
[DPS].
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