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Abstract. A simple martingale argument is presented which proves that directed
polymers in random environments satisfy a central limit theorem for d^ 3 and if
the disorder is small enough. This simplifies and extends an approach by J.
Imbrie and T. Spencer.

1. Introduction

In a recent paper, Imbrie and Spencer [1] considered the following model of a
random walk in a random environment. Let ξ(t), ί e N o = Nu{0} be an ordinary
symmetric random walk on Zd starting in 0 and let h{t,x), / e N , xeZd, be i.i.d.
random variables which are + or — 1 with probability 1/2 and also independent of
ξ. We denote by < > the expectation with respect to ξ and by E(.) the expectation
with respect to the /z-variables. Let 0 < ε < 1 be fixed and for Γ e N ,

κ(T)=U V+eh(j,ξ(j))) .

Imbrie and Spencer proved the following result by a rather elaborate expansion
technique:

Theorem 1. If ε>0 is small enough and d ^ 3 , then

lim (\ξ(T)\2κ(T)}/T(κ(T)) = l almost surely
Γ->oo

(here \ \ is the Euclidean norm).

We give here a very simple proof based on martingale limit theorems. The result
in [1 ] is somewhat stronger and includes also a convergence rate. Such rates can also
be obtained by the method presented here. An inspection of the proof reveals that
the convergence rate is O(T~δ) almost surely for δ < (d—2)/4. Theorem 1 is a special
case of a more general result which includes the central limit theorem which seems to
be new. Let ξ1(T),..., ξd(T) be the components of the random walk.
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Theorem 2. If ε>0 is small enough and d^3, then for all ni,...,ndeNo,

lim ( Π f ^D-Y κ(T)) /<κ:(Γ)>= Π yin^d'^12 almost surely ,
Γ-oo \ j = 1 V ]/T J I I 7 = 1

where y(n) = 0 if n is odd, y(0) = 1, β/tί/ y(2fc) = 1 3 ... -(2k~ 1).

This implies a central limit theorem. For a given realisation of the /z variables, we
define the probability measure μl on R d by

Theorem 2 implies the

Corollary. For almost all h, μl converges to the centered normal law with covariance
matrix \jd times the identity matrix.

2. Proof

Let Fr be the σ-field generated by the variables h(s,x), s^t, xeZd.

Lemma 1. <κ;(0) is a nonnegative (F^-martingale satisfying E((jc(t)y) = \.

Proof. E((κ(t)y) = \ is obvious and

H=«

ω:0-> j = l
| ω | = ί - l

The summation is over nearest neighbor paths, ω = (ω(0),ω(\),...,ω(s)). ω:0->
stands for ω(0) = 0, and \ω\ is the length s.

Lemma 2. (κ(t)} converges a.s. to a random variable ζ satisfying

E(ζ) = l and P(ζ = 0) = 0 .

Proof <κ(0> converges a.s. by the martingale limit theorem (see e.g. [2, Theo-
rem Π-2-9]), say to ζ.

We consider two independent copies of the random walk ξa\ ξ{2) with
corresponding quantities

The h variables remain independent of ξ{1) and ξ{2\ Then

εh<j, ξ(2)ΰ)))



Directed Polynomials in Random Environment 531

where

The law of n^ is the same as the number of visits of a single random walk to 0 (of
course, not a single nearest neighbor random walk but nevertheless, one with
symmetric jump distribution). A random walk in dimension d^3 has after every
visit to 0 a positive probability of never returning to 0. Therefore, n^ has an
exponential moment. So it follows that for small enough ε > 0,

suP ί£«κ;(0> 2)<<x) .

We can conclude that <κ(ί)> converges to ζ in L2 and L1 (see [2, Proposition IV-
2-7]). Therefore, E(ζ) = l and from this, we see that P(ζ = 0)Φ 1. It is easy to see
that the event {ζ = 0} belongs to the tail field

t

(although ζ is certainly not tail measurable!). To see this, we write for T>t,

Σ Σ Π (l+εh(s9ω(s)))(2d)-τ + t

x ω:0->x s = l
| ω | = ί

\ω\ = T-t

where the sum over x extends to those reachable from 0 in t steps. This converges to
0 for T-+ oo if and only if the second part converges to 0 for any x reachable from 0 in
/ steps. Therefore, {ζ = 0} is a tail event and by Kolmogoroffs 0— 1-law and from

= 0)4=1 it follows that P(ζ = 0) = 0, proving the lemma.

We create now a whole family of new martingales. If λ = (λli...,λd)eΊRd, let

Q{λ)J- Σ COSh(A,) .

a j=1

It is well-known (and obvious) that
/ d

e xP Σ λjξj(t)-tlogρ(λ)
V/=i

is a martingale with respect to the filtration of the random walk (no /z-variables are
involved). This remains true when ξ(t) is replaced by a more general d-dimensional

t

random walk Σ ^T/)> where X(J) are i.i.d. with ρ(λ) = <exp (λ X)} < oo for λ in a

neighborhood of 0 in IRA
If n = (n1,..., nd) e NQ , the polynomial Wn(/, x) is defined by

dλϊ1...dλ2<
exp



532 E. Bolthausen

where \n\=ni+n2 +...+nd. We write

The coefficients A depend on the derivatives of log ρ in 0.

Lemma 3. For a general random walk with ρ(λ) < oo for λ in a neighborhood of 0 and
<X(/)> = 0, we have
a) ifiι+...+id + 2j>\n\, thenAn(il9...9idJ) = 0.
b) The coefficients with ii + ... + id + 2j=\n\ depend on the second derivatives of
logρ at 0.

c) / A + . - W ^ H , then An(iu...,idiΰ) = δiιnιδiin2...δidnd.

Proof, a) and c) are obvious and b) follows from the fact that dρ/dλj at λ = 0
equals 0.

Wn(t, ζ(t)) is a martingale for the filtration of the random walk, i.e.

Here < \ξ(s),s^t —1> denotes conditional expectation given the path up to
time t — \. Coming back to our special symmetric random walk, it follows that

Yn(t) = (Wn(t,ξ(t))κ(φ
is a (Fr)-martingale.

Lemma 4. If\n\^l then

lim Γ|n|/2 Yn(t) = 0 almost surely .
ί-» OO

Proof We show that the martingale

remains L2-bounded. From this, it follows that it converges almost surely and from
the Kronecker-lemma Lemma 4 follows:

= E(ε2{W(t,ξa))κ{1\t-l)h(t,ξ{2\t))W(t,ξi2))κ{2\t-l)h(t,ξ{2)(t))y) ,

where ξ{i\ κ{i) are as in the proof of Lemma 2 and we drop the index n for
convenience. The above expression equals

(t) = ξW(t))3IA- is of order ( r d / 2 ) 3 / 4 ^ r 9 / 8 and

<(l+ε 2) 8 ί I«>

is finite for small enough ε > 0.
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Therefore, in order to show that

s~^2(Yn(s)-Yn(s-1)))2 = supt Σ s-^E((Yn(s)-Yn(s-l))2)<^ ,
l / 5=1

it suffices to prove

This is obvious from Lemma 3a).

Proof of Theorem 2

The theorem is a consequence of Lemma 2-4. By induction, it follows from

Lemma 3 a), 3 c), and 4 that

/ d ί£-(t)Yj \
sup, ( Π ^7=^ κ(t))<oo almost surely . (2.1)

Y/=i V yt ) I

We introduce the polynomial Un(t,x) by deleting from Wn all summands

A(il9...,id,j)x[*...xittj

with /1 + ... + zd + 2/<|w|. We conclude from (2.1) and Lemma 4 that for | « | ^ 1 ,

lim t-Wl2(Un(t,ξ(t))κ(φ = O almost surely ,

almost surely , (2.2)

where the sum extends over those iί9..., ίd with \n\ — ί1 — ...— ίd ̂  0 and even. Using
Lemma 2, the theorem follows by induction. This can be seen by looking at

l

where X1,...,Xda.rQ i.i.d. normally distributed random variables with mean 0 and

variance \\d. Because of Lemma 3 b) this gives

Comparing this with (2.2), the theorem follows.
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