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Abstract. We define chiral vertex operators and duality matrices and review the
fundamental identities they satisfy. In order to understand the meaning of these
equations, and therefore of conformal field theory, we define the classical limit
of a conformal field theory as a limit in which the conformal weights of all
primary fields vanish. The classical limit of the equations for the duality
matrices in rational field theory together with some results of category theory,
suggest that (quantum) conformal field theory should be regarded as a
generalization of group theory.

1. Introduction and Conclusion

Although the classification of conformal field theory is an extremely interesting
problem, of importance in mathematics, statistical mechanics, and string theory, it
should not be mistaken for a fundamental problem in string theory. Conformal
field theories are classical solutions of the string equations of motion. In string
theory the basic physical laws which lead to the string equations are far more
important than the classification of the solutions to those equations. However, the
meaning of these equations is far from being understood. It seems that our lack of a
full understanding of the meaning of conformal field theory prevents us from
finding natural generalizations. One might hope that a proper formulation of
conformal field theory will lead us to the principles underlying string theory and
will allow us to generalize the "on-shelΓ results. The classification of conformal
field theories should be viewed as a step in this direction - a concrete way of
thinking about the more important problem of the meaning of conformal field
theory.

The classification of all conformal field theories is an enormous problem. To
make it tractable, physicists have proceeded by solving the problem in stages. The
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case of c < 1 has been settled completely. It seems that imposing a finiteness
condition, defining what are known as rational conformal field theories, offers the
best prospects for further progress [1-19].

Consider a Riemann surface with punctures (more precisely, punctures
with coordinates). Every puncture has a label corresponding to a represen-
tation space of some chiral algebra (e.g. Virasoro or Kac-Moody). To every
such surface we assign a vector space. It is spanned by the different conformal
blocks [1]. One definition of a Rational Conformal Field Theory (RCFT) is that this
vector space has a finite dimension. (A different, but equivalent definition is given
in Sect. 2 below.) In the language of FS [5], these blocks are interpreted as the
holomorphic sections of a flat vector bundle over the moduli space of the surface.
This point of view stresses the modular properties of the blocks. In [11] we stressed
a more fundamental concept - that of duality. The Riemann surface can be formed
by sewing a number of three holed spheres (a.k.a. trinions). Corresponding to this
sewing, the conformal blocks are obtained by summing over the intermediate
states passing through the sewn holes. The same Riemann surface can be obtained
using different sewing procedures. For instance, the four point function on the
sphere can be obtained by sewing as in Fig. 1 or as in Fig. 2. Similarly, the one
point function on the torus can be obtained by sewing as in Figs. 3 or as in 4.
Different ways of sewing the same surface lead to different blocks. The assumption
of duality states that the vector space spanned by these blocks is independent of the
way that the surface was sewn. Different sewing procedures lead to different bases
of the same vector space. Hence, the conformal blocks obtained by one way of
sewing the surface can be expressed as linear combinations of the blocks found by
another way of sewing the surface. These linear transformations are the duality
matrices. In a RCFT these matrices are finite dimensional.

The duality matrices are not arbitrary matrices. They have to satisfy some
consistency conditions. These are obtained as follows. We construct a simplicial
complex whose sites correspond to the different ways of sewing a given surface.
Clearly, this complex has an infinite number of sites. Some simple duality matrices
are defined to be "simple moves." Other duality matrices are given by a product of

Fig. 1. One sewing of the four-point function on the sphere

Fig. 2. Another sewing of the four-point function on the sphere

Fig. 3. One sewing of the one-point function on the torus

Fig. 4. Another sewing of the one-point function on the torus
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the simple moves. We add edges to the complex connecting sites which are related
by the simple duality matrices, i.e. by the simple moves. If the resulting complex is
connected, every duality matrix can be represented as a product of the simple ones.
However, often this can be done in more than one way. In order to have an
unambiguous definition of all duality matrices, we have to make sure that all the
different ways of defining a given duality matrix lead to the same matrix. This leads
to consistency conditions on the matrices of the simple moves. Every closed loop of
simple moves leads to such a consistency condition. It is important to find all the
independent conditions. A convenient way of organizing the problem is the
following. We impose some simple consistency conditions corresponding to some
simple loops in the complex. Every such relation is the statement that a product of
some duality matrices equals to one. We define these loops as the fundamental
loops. Filling the faces of the fundamental loops we obtain a two complex. If the
relations of these loops are complete, the resulting two complex is simply
connected. In this case, every closed loop can be deformed to a product of
fundamental loops. Then, every consistency condition on the duality matrices is
satisfied by using the relations of the fundamental loops.

The set of transformations on the simplicial complex is a groupoid. We refer to
it as the duality groupoid. The simple moves are the generators of the groupoid and
the relations of the fundamental loops are its defining relations.

In [11] we argued that these equations for the duality matrices of rational
conformal field theories are the defining equations for some kind of moduli space
of rational conformal field theories. In this paper we attempt to understand the
meaning of these equations better. It is exactly this kind of investigation which we
hope will shed light on string theory. We will show that in a particular case, which
we call "classical conformal field theory," the meaning of our equations and,
therefore, of conformal field theory is well understood. Classical conformal field
theory is defined as a conformal field theory where the conformal weights of all
primary fields vanish. In this case, conformal field theory is nothing but group
theory.

Some recent exciting work of Witten [20] has shown that 2+1 dimensional
generally covariant theories lead to some conformal field theories. The Hubert
space of the 2 +1 dimensional theory is the vector space of the conformal blocks.
Some of our results have a simple and natural interpretation in that framework. It
would be nice to make the correspondence between these two approaches more
complete.

In Sects. 2-5 we review the formalism of references [11,18]. In Sect. 6 we define
classical conformal field theory and examine how it satisfies our equations.
Section 7 shows how every compact group (either continuous or discrete) leads to
a classical conformal field theory. The relation between the classical version of our
formalism and ordinary group theory should be viewed, at the very least, as
pedagogical. Also, it suggests that the more general case - that of quantum
conformal field theory - corresponds to a generalization of group theory. In Sect. 8
we examine the possibility of defining a conformal field theory by our equations.
We would like to know how to reconstruct the entire conformal field theory from a
solution of our polynomial equations. This reconstruction problem is completely
solved in the classical case. Using some results in category theory, the corre-
spondence between classical conformal field theory and group theory is made
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more complete. Not only does every group lead to a classical conformal field
theory but the converse of this statement is also true - every classical conformal
field theory corresponds to a group. More mathematically, our framework and
equations define a Tannakian category. Given some assumptions (mentioned in
Sect. 8) which are satisfied in a classical conformal field theory, it was shown that
such a category is the category of representation spaces of a group. Section 9 is
more speculative. It suggests a possible connection between conformal field theory
and quantum groups. Several appendices give some more technical details and
examples of our formalism.

2. Basic Definitions

In this section we follow [11] and review the definitions of a rational conformal
field theory and of chiral vertex operators. We begin with a review of the definition
of a conformal field theory. Many definitions have been proposed, the most
popular of these being the BPZ [1], FS [5], and Segal [21] definitions.

The BPZ definition of conformal field theory is that it is an inner product space
ffl which can be decomposed into a direct sum

(2.1)

of irreducible highest weight modules of Vιrc x Vιr-c such that
1. There is a unique SL2(R) x SL2(R) invariant states |0> with (ft, h) = (0, 0).
2. For each vector αeJf there is an operator φa(z) on J f, parametrized by
z e C. Also, for every operator φa there exists a conjugate operator φΛ- (partially)
characterized by the requirement that the operator product expansion φaφa*
contains a descendant of the unit operator. / 7
3. For α = i a highest weight state we have [LΠJ φΛz, z)]= ( zn + 1 — -

dz

4. The inner products <0| φjz^zj ... 0Jzίn,zίn)|0> exist for \ztl\> ... |zj>0
and admit an unambiguous real-analytic continuation, independent of ordering,
to Cn minus diagonals. This is called the assumption of duality.
5. The one-loop partition function and correlation functions, computed as
traces exist and are modular invariant.

In [5] Friedan and Shenker reformulated these axioms in terms of the
geometry of vector bundles over moduli spaces of curves. We assume the reader
has a nodding acquaintance with this formulation. An alternative definition has
been proposed by Segal (many elements of which have been described by a number
of physicists under the rubric of "the operator formulation" of conformal field
theory [22-25]) in which a conformal field theory is a functor between categories
satisfying certain "sewing axioms."1 In this paper we use, strictly speaking, the

1 In Segal's picture one defines a category whose objects are disjoint unions of (parametrized)
circles and whose morphisms are Riemann surfaces interpolating between these. A conformal field
theory is then a functor from this category to the category of Hubert spaces whose morphisms are
trace class operators. The functor is further required to satisfy certain axioms. The most important
of these is the sewing axiom: By sewing together two holes one obtains another morphism in the
category. Because we are working with Riemann surfaces the sewing is characterized by a modular
parameter q. The conformal field theory functor should take this morphism to the g-trace of the
previous morphism
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axioms of BPZ, but our constructions are motivated by a mixture of the points of
view of Friedan-Shenker and Segal. We discuss the geometry of compatible flat
vector bundles over moduli space ("modular geometry") but in terms of duality
and the consequence of the sewing axioms.

We now discuss the notion of chiral algebras, or vertex algebras [26]. The fields
in a conformal field theory form a closed operator product expansion. An
important subset of the fields are the holomorphic fields. Since the operator
product expansion of two holomorphic fields is holomorphic, these form a closed
subalgebra of the operator product algebra called the "chiral algebra," ^/, of the
theory.2 Every conformal field theory has at least two holomorphic fields given by
the unit operator and the stress tensor: 1, T(z) and thus every chiral algebra
contains the (enveloping algebra of the) Virasoro algebra. We can choose a basis
[&\z)} for j/ such that each field has a well-defined dimension A{. By the axiom of
duality, fields in a conformal field theory have no relative monodromy, in
particular, the weights A i are integers. Defining modings Θ\z) = £ &nz ~n ~ Δl we can
write the operator product algebra in two equivalent ways: "

/nίfrr\/njf<uλ — v 0'* /nfynΛ,,.,» .
(2.2)

(Aij^Ai + Aj — Afr). Using the moding one can define Verma modules and
irreducible quotients and, therefore, one can speak of the irreducible representa-
tions ̂  of stf.

Since our discussion is general and somewhat formal, it is useful to keep in
mind some simple examples. The simplest case is that where j/ is the enveloping
algebra of Virasoro. A somewhat more involved example is given by Kac-Moody
algebras. These two examples are particularly simple because j/ is the enveloping
algebra of a Lie algebra. This is not always the case. The super Virasoro algebra
has a (super) Lie algebra structure but its enveloping algebra is not a chiral algebra
by the above definition. We should project out of it all the half integral weight
operators. It is often the case that a complicated chiral algebra j/ can be expressed
more simply by adding operators of fractional dimensions to it. These operators
(together with some of the original operators in j/) form a Lie algebra like
structure, j/- they form a finite set of operators where the singular part of their
expansion is closed. Then we form the enveloping algebra of these operators and
j/ is found as a subalgebra. The super Virasoro case is a particular example of this
procedure. Here j/ consists of the unit operator, the stress tensor and the
supercharge. More complicated examples are given by coset constructions [27, 6]
and by parafermion theories [4]. Orbifolds [28] provide us with another example
of this phenomenon. In the simplest case of an orbifold of a torus, j/is given by
several factors of (7(1) Kac-Moody. Although typically none of these t/(l) currents

2 It can happen that a further subset of the holomorphic fields forms a closed subalgebra (common
examples are Virasoro or affine Kac-Moody subalgebras) and often people limit themselves to this
restricted subset. In this paper the chiral algebra always means the maximally extended chiral
algebra of the theory
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are in si, some bilinears of the currents are in si. Sometimes several different j/'s
lead to the same si. Examples of this phenomenon are discussed in [29].

Perhaps the simplest example of a non-trivial algebra si is the "rational torus."
This algebra is generated by dX and e

±l]/^x, where N is an integer. It can be
understood by the procedure above as a sub-algebra of the enveloping algebra of
various Kac-Moody algebras [e.g. oίSU(2N) level 1]. Its representations can easily
be found. Since it includes (7(1) KM as a subalgebra, its representations are also
representations of U(l) KM. These are labeled by a real number k - the
momentum. The presence of the operator e

±l}^x excludes most of the momenta.

Only k= . _ with m integer is local relative to e

±ιv^x. Furthermore, different

values of m which correspond to different KM representations are combined into
the same irreducible representations of this chiral algebra. There are only 2N
irreducible representations : m = — N + 1 , - N + 2, . . . - 1 , 0, 1 , . . . N. The represen-
tation m = 0 includes the identity operator and the whole chiral algebra. It is the
"basic representation."

Rational conformal field theories are those for which the chiral algebra of the
theory decomposes all the correlation functions into finite sums of holomorphic
times antiholomorphic functions. In more detail, a rational CFT is a CFT such
that the physical Hubert space of the theory, jjf, is given by a finite sum

JP= ® ΛΓ^Γ(g)Λj, (2.3)
r,F = 0

where ^fr is an irreducible representation of si and hγ^ is an integer counting the
number of times J-^(χ)^ occurs in ffl. The representation ̂  includes the identity
operator and therefore all the operators in si (mod nulls!). Hence, hr^ — δr>Q, h0t?

= (50 p. Many definitions of RCFT have been proposed. Some of these are discussed
in [7]. Another, based on finite factorization of the correlations and partition
functions was proposed in the appendix of [6] . In [1 8] it was argued that the above
definition is equivalent to that proposed in [6].

We now describe chiral vertex operators. In [11] we gave a constructive
definition, which was, unfortunately tied to specific properties of known chiral
algebras. Here we attempt a more intrinsic definition.

To motivate the definition, let us consider what properties we expect the
"holomorphic part" Φβ(z) of a vertex operator to have. First, its z-dependence

should be governed by the Virasoro algebra, thus — Φβ(z) = ΦL_ lβ(z) for all states

β. Furthermore, contour integrals of operators in the chiral algebra cannot simply
deform through Φ. Consider an insertion of Φβ at a point z. Thus we think of the
vacuum propagating out from the origin and hitting a disturbance at z. If we act on
the resulting state with &n from the chiral algebra we take a contour integral with
β(z) which can be deformed in the standard way to a contour integral about z and
about 0 (see Fig. 5). The contour integral about z can be expressed in terms of the
modes &n(z) of the local representation and Hubert space at z. Finally, note that Φβ

is a linear operator, but it is also linear in β, and thus Φ should be thought of as a
linear map of the tensor product of two representation spaces of the chiral algebra
to a third. Therefore, we expect chiral vertex operators to take products of
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nΘ

(y
Fig. 5. Deformation of contours used to obtain- a "tensor product" of representations

representations to a third representation. Hence, to begin with the general
definition, one would like to make sense of J ̂  ® J^k as a representation space of stf.
One cannot take the standard tensor product representation because of the central
terms in j/. Rather, one uses contour deformation to write a deformed tensor
product representation parametrized by zΦθ, oo in the complex plane

f. To do this define:

k = 0

(2.4)

In particular, for the Virasoro algebra we have

n^-1

+ ...)®l, n<- l . (2.5)

We could also define J0 z from the above by permutation of the factors on the
right-hand side. If ρj9 ρk are two representations of <$/, QJ : ̂ -^End^ ) etc., then we
can use Az 0 to define3 a representation of j/ on jΊfj (x) J«ffe. Specifically, Θn is
represented by ρ,-® ρ,( J,t M). z> °

We can now define chiral vertex operators [30, 31, 11] as intertwining
operators (see Sect. 7) for the above representations, with an appropriate

3 We thank E. Witten for pointing out subtleties in this definition which are related to the fact that
representation of j/ obtained this way is not always a highest weight representation
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dependence on z. That is, given three representations /, 7, k a chiral vertex operator

of type I I, can be thought of as a linear transformation

>C. (2.6)

(3?i is the dual of J^). Or, equivalently, as a linear transformation ̂ -(x) J^k^(J^ v)v.
Since 3?k is infinite dimensional, the double-dual is in fact much larger than the
representation, but we will ignore this subtlety in this paper. The chiral vertex
operators are defined to be operators satisfying:

. (β ®y)=
ικ ) ~ ~J / Z \J / Z ,f^ rj\

The first of these conditions is the statement that the chiral vertex operator is an
intertwining operator. This point will be discuss in detail in Sect. 7. Simply stated,

the transformation laws of the state I ) (β®y) are determined by deforming the
\7Vz

contour to the state γ at the origin and the operator β at z. The connection to the
previous description of chiral vertex operators is given by

(2 8)

We define V k to be the vector space of chiral vertex operators of type ί ), and
\7V

define the fusion rules to be Nl

jk = dim V k. Picking a basis for V k, we denote the

basis vectors by ί 1 , where a = 1,..., Nl

jk. Notice that from (2.7) we see that for a
\}kj z,a

Virasoro primary we have [LM5 Φβ(z)~] = ί z"+1 —- + (π + l)znAβ j Φβ(z). We assume
\ αz J

that Nl

jk is always finite. This assumption is trivially satisfied if every J ̂  contains a
finite number of Virasoro or KM representations.

In the operator formalism chiral vertex operators are the conformal blocks
associated to the three-holed sphere. In particular, the first equation of (2.7), which
we have presented as an intertwining property is known in the operator formalism
as the Ward identity defining the state (or vector space of states) created by the
three-holed sphere.

The chiral vertex operators can be given a more constructive definition as
follows. Consider first the case where jtf is the Virasoro algebra. We can compute
<α|Φ^(z)|y> for any states α, 7, and β primary by the following standard
construction. The properties (2.7) allow us to commute creation operators
L_n(n>0) to the left and annihilation operators Ln(n>0) to the right. In this way
the matrix element reduces to a differential operator acting on

«y | | z-^, (2.9)
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where all the states uβγ are primary. If fi=L_nβ, then

<α| Φ~β(z) |y> EE j (C-z)-«+ \α| T(0Φ,(z) |y> , (2.10)

and the contour integral can be deformed onto contours surrounding 0 and oo. In
this way the entire chiral vertex operator is determined from the single number
\\Φ°βγ\\. Strictly speaking we have only defined the operators on Verma modules so
far. Requiring that they pass to the irreducible quotient forces some \\ΦΛ

βy\\ to be
zero, thus defining the fusion rules in the more usual way [1].

Suppose now the algebra jtf is an extension of the Virasoro algebra. If β is
primary we must know how to compute the singular terms corresponding to the
states Θ^j. + ̂ β, ...,@oβ in the operator product expansion of &(ζjε jtf with Φβ(z).
These are partly determined by the chiral algebra, leaving behind a finite-
dimensional space of chiral vertex operators. For example, in the case of Kac-
Moody algebras we can reduce the computation of the matrix element to the case
where β is a lowest L0-weight state so the chiral vertex operators (before passing to
the irreducible quotient) are determined by group invariant tensors

Again, the operators Φβ when β is not an L0 lowest weight state are defined by
contour integration. However, it is not in general true that the computation of a
chiral vertex operator can always be reduced to its action on states with minimal
LO [17]. Rather, it can happen that Φ vanishes on such states but is a nontrivial
operator.

We give here three examples of chiral vertex operators
1. The rational torus. Above we discussed the representations of the chiral

algebra of the rational torus. The algebra is labeled by the integer N and the
representations are labeled by an integer m between — N + 1 and N. The fusion
rules are N1£i\m2 = \ when m1+m2=m3mod2N and zero otherwise. These
fusion rules will be discussed in detail in Appendix E.

2. Dn modular invariants of SU(2) current algebra of level k = 4n. This chiral
algebra has been discussed in [16-18]. The chiral algebra sέ is obtained by adding

k
to the algebra of the SU(2) currents the holomorphic SU(2) primary fields of spin— .

k ^
Labeling SU(2) representations by half-integer spin 0 ̂  j ^ - the representations of

jtf are given by 34?j@J4fk_ _ ., for 0 ̂ 7 < n together with two different representations

J^n and Jtf^,. Thus, the chiral vertex operators of the new theory can be made out of
chiral vertex operators of the SU(2) theory provided the relative normalizations of
the operators are correct. For example, consider a spin j with 2j ̂  n and a spin / < n.
There will be 6 SU(2) couplings of type:

>k A2"
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We should express these in terms of couplings of representations of the large

algebra. Viewed this way, all these couplings are of type ί ]. New Ward identities

k k
associated with the new chiral fields of spin - and weight — cut down the six-

dimensional space spanned by the above vertex operators down to a two-
dimensional space, determined by, say, the normalization of the first two vertex
operators in the above list. Hence, Njt = 2. The first of these does not vanish on the
states of lowest L0 but the second does. Both lead to nonvanishing chiral vertex
operators.

3. As a final example consider Zamolodchikov's W-algebra which is realized in
the exceptional modular invariant of the m = 5 (c — 4/5) term in the discrete series.
The algebra is obtained by adding to the stress tensor the field φ = φp,q = 04, i of
weight A = 3. The Virasoro representations [φ(3t υ] and [ψ(3 5)] are now linked by

φ to form a single representation Jίfψ. The chiral vertex operators of type I
/ (3 5) \\Ψ

are formed from the Virasoro chiral vertex operators of type I ' 1 and of

. In this case the Ward identity with φ shows that there is only a

one-dimensional space of chiral vertex operators. Similarly, all spaces of chiral
vertex operators for the W-algebra are finite dimensional.

In Examples 2 and 3 every representation of the chiral algebra contains a finite
number of Virasoro or KM representations. Hence, it is obvious that the fusion
rules are finite. In example 1 every representation of the chiral algebra contains an
infinite number of 17(1) KM representations. Nevertheless, the fusion rules are
finite.

As in the physical conformal field theory there is an isomorphism between
states and chiral vertex operators obtained by |α> = Φα,fe(0) |0>, where k stands for
the natural choice of coupling

7, \

(2.11)

given by the evaluation map and 0 stands for the identity operator (we have
ignored the last factor J-f0 in the chiral vertex operator, taking instead the
canonical vector 1). Furthermore, by (BPZ's) axiom 2, for every conformal field
there is a conjugate field so that the operator product with the conjugate field
contains the unit operator. More mathematically, (J^)v = ̂  for an appropriate
representation j which we denote by j = Γ. Selfdual representations have Γ = i.
Since there is no natural choice of basis for the one-dimensional space of couplings

° ' T®^-

we choose a metric Jf. For L0 eigenstates we have
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k is the unique coupling of type I ) which enables us to relate "bras" to
\k kjJ

operators by choosing a basis α£ for each ̂ , defining Jf* (α^® α£) = J^7J and setting

<αί|= lim Σ^^^^XO)^,^)- (2 12)

This metric arises when the states have non-trivial quantum numbers as in the case
of KM. More importantly, it also arises in the coupling of descendants. The proof
that the metric involves only states with the same weight relies on the Ll Ward
identity. Hence, it applies only to primary fields of SL(2, C). Descendants of
SL(2,C) obtained by the action of L _ t on the primary have complicated

transformation laws under z-> -- and have non-zero two-point functions with

other states which are not degenerate with them. This can be seen explicitly by
differentiating a two-point function of SL(2, C) primaries. Clearly, the metric Jf
is not always symmetric.

The metric we thus obtain4 allows us to define several permutation operations
on three point couplings. Define σ2 3: ̂ a®^b®3?c^3fa®3fc®3fb by
σ2^(a®b®c} = a®c®b, σ123(α®ί)(x)c)^c®α(χ)fo so that cr123 = σ13σ12. For a
chiral vertex operator ί denote σ(t) = t°σ~1. Thus we have

Notice that σ2 = 1, so when σ maps a space to itself the eigenvalues of σ are always
plus or minus one. It is convenient to denote f' = σ123(ί).

Physical vertex operators are obtained by combining left and right chiral
vertex operators for left and right chiral algebras j/, stf and are obtained by
introducing "operator product coefficients." These will be discussed in Sect. 5.

3. Duality and Conformal Blocks: Basic Data

In this section we introduce the basic data defining the certain equivalence classes
of conformal field theories, defined by equivalent Friedan-Shenker vector bundles.
These data are certain duality matrices for conformal blocks [11].

One of the main reasons for introducing chiral vertex operators is that their
correlation functions are conformal blocks for the physical correlation functions.
Chiral vertex operators Φ(z) and Φ(w) may be multiplied to form Φ(z)Φ(w) which
makes sense for |z| > |w|, and the composition can be analytically continued outside
that region once a choice of cuts has been made. We pick the cut in the w plane to
start at z and to run parallel to the positive real axis. We must also choose a cut in
the z, w planes from the origin since matrix elements of Φ(z) involve fractional
powers of z. We choose this cut to run along the negative real axis. Thus, if we
denote by R^ the nonpositive real numbers, then Φ(z1)Φ(z2) is defined for z1? z2,
zί2φR_. Physical correlation functions decompose into sums over analytic times
anti-analytic functions - known as conformal blocks - which may be computed as

(β«® ) \ k , y > . ( 3 Λ )
n/zn,an

[ As we mentioned above we ignore the fact that (J^kY is bigger than
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We define the axiom of duality, provisionally,5 to be the property of Axiom 4 in the
BPZ definition of conformal field theory. Geometrically, the composition of chiral
vertex operators corresponds to the sewing of three-holed spheres. We must,
therefore, expect that we could also form conformal blocks composing chiral
vertex operators of type:

This is indeed the case, and will play a role in the statement of the full axiom of
duality.

To derive some consequences of duality we remind the reader of an elementary
N M _

mathematical fact.6 If Σ /ΐft = Σ /Zjfcj and each set of the analytic functions {/},
i = l ί = l

{g}, {h}, and {/c} is separately linearly independent, then JV = M, /f = Σ A^hj and

gf = Σ A^j 1 *kj. The statement is easily proved by completing each of the collections

/, g, /z, k to a full basis of analytic functions {fi9 Fj} etc. We may certainly express

(3.2)

from which we learn that AtτD = 1M x M while AtτC = BirC = BtrD = 0. From the first
equation we learn that the rank of A9 D is equal to M, and hence N^M. We could
have expanded the other way, so N = M. Thus, A9 D are invertible, from which it
follows that B = C = 0.

We may apply the axiom of duality (that the correlation function is
independent of the order of φ) together with the above remark to obtain our first
piece of data: the braiding matrix. Either way, we see that conformal blocks
computed with

/
i

/iPΛi.β

must be linear combinations of blocks computed with

By using contour integration and the intertwining property we can transform a
highest weight state into any descendant state, hence the linear transformation is
independent of βί9 β2 Choosing a basis for the space of chiral vertex operators
which we label by a9b9...9 we therefore have:

5 At the end of this section we give the full axiom of duality
6 This fact, which is well-known, was worked out in this context with C. Vafa and T. Banks
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Fig. 6. A geometric picture of braiding
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I

k J

P q

Fig. 7. Braiding matrix between blocks

Γ J kl

' L i U

I i

Fig. 8. Pictorial proof of a simple identity

The above equation holds for z1—z2 = z12EHε, where Hε=+ is the upper/lower
half plane. As we said above, we have chosen cuts so that the composition of chiral
vertex operators on the left-hand side of the equation makes sense as long as
z12φR_, while for the right-hand side to be well defined we must have z21 φ R-, in
other words, zί2φR + . In each connected region of the common domain of
definition the transformation B is independent of z. Since there are two regions
there are two transformations B( ± ). Each is an invertible linear transformation

(3.4)

It is very useful to work with the pictorial notation for the β-matrices shown in
Figs. 6, 7. From Fig. 8 it is, e.g. obvious that B(ε)B( — ε)=ί.

It is crucial for our approach that the transformations B depend only on the
couplings which are involved (and therefore on the representations which are
coupled) and not on the particular states in the representation. Let us examine a
simple consequence of this fact. Consider the two point function

i i
(3.5)
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Since the couplings with the identity operators are unique, there is no need to
perform the sum in Eq. (3.3) and we find

-4«
[where we use B( + ) or B(-) depending on the sign of Im(z —w)]. Therefore

«»(o

The left-hand side of this equation is independent of/ and J. As / and J are varied,
the exponential factor on the right-hand side of this equation can change at most

by a sign. Therefore, the sign of —^ changes accordingly (notice that tfu can be

antisymmetric in / and J). This result can be checked explicitly. As we said above,
we should only examine the situation when / (and J) change within a representa-
tion of SL(2, C). In this case, the change in / is easily computed by differentiating

the two-point function. This trivially leads to the necessary change in sign of——.

From the three-point function we deduce, for t of type '

Remember that k is the unique coupling of type I I and k' is the unique
/ o \ Ί ^ '

coupling of type ί v J. Where we introduce Ω(±) = Ωl

ίk(±)\V k^Vkj and

Θ(±): Vjk^V]f defined by Ω(±)(t) = e±ίπAtσ23(t) and Θ(±)(ί) = σ1 3(e± ί π J tf) Note
that Ω( + )Ω( — ) = 1, but the analogous statement is not true for Θ. We see that Ω
and Θ are special cases of B they are the B's of the simple couplings associated
with the unit operator.

Our second piece of data is the fusing matrix, which can also be deduced from
the assumption of duality, from sewing, or from the operator product expansion.
In terms of sewing of three-holed spheres we are comparing the two sewing
procedures of Figs. 1, 2. We give the derivation of the fusing matrix using the
operator product expansion. Consider the operator product expansion:

ϊr „ ,- T7 ' . J ,- 17 k
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(a e Vip, b e VP, c e V^ deV^ label the couplings). We define F and hence normalize
ξ by requiring that the leading nonvanishing ξ be one. This expansion is an
asymptotic expansion which is believed to have a finite radius of convergence. It is
valid for z1~z2~z3. By translation and scaling invariance we can rewrite the
right-hand side as

Σ
^

feed [_l ΓJflb #e^k Z23

We can evaluate the coefficients ξ as follows. Consider first the case r = 0, p=j,
l = k. Taking the inner product between <X| and |0>, then taking z3->0 and using
the isomorphism of states and vertex operators we get

(3.11)

To obtain the general expression we consider the product

ΦMΦβMΦM (3-12)

We can compare the definition (3.9) with the result of braiding first β, y then α, 7,
then applying (3.1 1) and then braiding once more to obtain the general expression

(3.13)

The expansion (3.9) holds for all α, β so we may rewrite it as a statement about
intertwiners. Taking z3->z2 we find the relation:

p w'
which is the statement of si-duality. As for the 5's it is important that F depends
only on representations, and is independent of zx and z2. The left-hand side of (3.14)
is defined forz 1,z 2,z 1 2^_.Onthe right-hand side we have z12,z2φR_, and since
zί~z2 we see that the domain of definition of both sides is the same. Thus there is
only one fusing matrix.

Similar to the case with B, we can regard F as a linear transformation

F h hλ:®ηιr®VJ2k^®V^®V^h. (3.15)

If we specify the initial and final term in the direct sums in (3.4) and (3.15), then we
denote by

Γ h J2

F^

'• JJ2 : VhP® VJP2k-*VJ2q® Vhk ,ί k]
Bn1 ί Ir I J1F ~ J i* J21 — J 1 » V '

(3.16)

j k
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Fig. 9. A geometric picture of fusing

Γ J kl
l L i i J

= ΣF P
q P q L i

Fig. 10. Fusing matrix between blocks

the corresponding linear transformations. Pictorially, fusion F can be represented
as in Fig. 9 or as in Fig. 10. Using this representation, it is easy to keep track of the
many indices which are involved.

The third piece of data is obtained from the conformal blocks for the one-point
functions on the torus. These blocks may be expressed in terms of the modular
parameter τ together with the chiral vertex operators of type

(3.17)
I

by taking a trace on the first and third spaces:

' i

(3.18)

These are the conformal blocks for one-point functions on a torus obtained by
dividing the complex plane by z ~ qz. If we puty = 0 and evaluate the characters on
the unit operator, we obtain the familiar vacuum characters χt (g).

Two remarks are in order regarding the definition of χ:
1. If βl9β2ε<tf?j are both primaries for the Yirasoro algebra, then they will be
related by contour integrals with Virasoro-primary fields in the chiral algebra:

These contour integrals may be deformed off of z, thus expressing χί(q,z)(βί) in
terms oϊχKq, z) (β2) times a (q, z)-independent coefficient (which might vanish or be
infinite). A related problem is that the character χ{(β) might vanish for primary
fields β. For example, in SU(2) current algebra (fe> 1) the one-point function of the
primary field in the spin one representation must vanish, even when the fusion rule
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is not zero. However, if the operator χ{(q, z): J?J—>C is not zero, then there must be
some field β for which χ{(q, z) (β) is not zero. Furthermore, since matrix elements of
Virasoro descendants are related to Virasoro primaries by differential operators,
we can find such a β which is a Virasoro primary. This fact will be used below. In
SU(2) example the character does not vanish for the state |j8>= Σ7-ιlα)> where

α

|α) are the three states at the lowest L0 grading of the spin one representation.
2. It sometimeshappens that different couplings or representations lead to the
same vacuum character. For example in SU(3) current algebra the vacuum
characters for the 3 and 3* are the same. More generally, a representation r and its
conjugate rv will have the same vacuum character. This follows from CPT.
However, we will assume that for two different couplings r 1 Φr 2 the operator
χj

rι(q, z): ^-->C is different from the operator χ/2(g, z): «^ ->C, although they might
have the same value on, say, a primary state in j^. Returning to the SU(3) example,
although the one point function of the identity operator in 3 and 3* are the same,
there are SU(3) descendants of the identity which are Virasoro primaries /e.g.
Σ dabc:j

ajbjc:\ for which the one point functions are different. ^
abc )

The net result of the above remarks is that the vector space of conformal
blocks for the one-point function on the torus of representation; may be identified
with 0 Vji. In general, if we evaluate χ for a conformal field β then we may apply

ί
the axiom of duality or, equivalently, the sewing axiom for the two sewing
procedures in Figs. 3, 4 to obtain a linear transformation

S(/):θ^-+Θ^. (3.19)
i i

Choosing a basis f 1 we thus have, for every Virasoro primary in Jtfp for
\Jl/z,a

τ'=-l/τ, logz' = logz/τ,

*Uβ';*')=Σ Σ S(j)abχitb(q,z). (3.20)
r &eF;r

The assumption that for two different couplings ^ Φr2 the operators χj

n(q,z)
and χί2(q, z) are different guarantees that S(j) is defined unambiguously.

As we explained above, when the fusion rule is not zero there exists a Virasoro
primary β e Jζ (not necessarily in the lowest L0 grading) for which χ is non-zero. It
is important that β be a Virasoro primary since under the modular transformation
logz' = logz/τ, an external state β which is a Virasoro descendant mixes with other
descendants in J^ . However, Virasoro primaries transform like tensors and do not
mix with other fields. The differential form in (3.18) is necessary for χ to transform

linearly as in (3.20). Since I —— I = -̂  I — 1 , without this differential form χ

transforms like a modular form.
The final piece of data is given by T, which we will consider as a scalar

transformation Vβ^ Vji acting as multiplication by e

2πl(Δi~ci24\
The above data is a complete set of data for describing the moduli space of

Friedan-Shenker vector bundles. The reason is that we may form duality
transformations for all other conformal blocks in the theory out of the above
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Fig. 11. Disjoint regions of Teichmuller space defined by the four-point function with fixed
operators at zero, one, and infinity

transformations. This follows from the construction of conformal blocks by
sewing, or,operatorially, by composing chiral vertex operators. (The traces used to
form loops can be considered as composing a chiral vertex operator with itself.)
Different bases of blocks can always be related by the transformations F, Ω. The FS
bundles are described by representations of the modular group (if the surface has
punctures we must use the modular group of the surface with holes [32]) and the
representation of any Dehn twist can be computed by considering the appropriate
asymptotic region of moduli space and using the appropriate basis of conformal
blocks. More precisely, consider a φ3 diagram Q). We can thicken 3) to obtain a
partition of the rc-holed surface into pants together with a Fenchel-Nielsen
coordinate system (lb 0f), where θ is normalized to lie between 0 and 2π. For small
enough lb and θt restricted to intervals of length π, the different diagrams define
disjoint regions in moduli space which may be lifted to Teichmuller space 7J thus
providing disjoint regions in T which we will denote by v. An example of such
regions is shown in Fig. 11. To each region v associate a basis of sections ^(τ)
= ̂ v(z^ ..., zn) by associating an operator Φ to each trinion (a three holed sphere),
composing operators according to the partition of the surface. The sections ̂ υ

may be analytically continued from the region v to all of T.
We are now ready to state the full axiom of duality: The physical correlation

functions obtained by combining the left movers and the right movers are independent
of the sewing procedure. Hence, for any pair v, v' there is a duality matrix A(v, v'}
with 2Fυ — A(v, v')^V' throughout T[in this expression the matrix A(v, v') multiplies
the vector 3Fυ, and there is no summation over t/]. The duality matrices we have
discussed are particular examples, and, by suitable decomposition of the Riemann
surface one sees that all other duality matrices can be expressed in terms of these.
Further consequences of duality are described in Sect. 5.

4. Duality Identities

We would like to find the minimal number of equations on our basic data which
guarantee that the axiom of duality is satisfied. We do this as follows. We consider
a complex # defined by taking a vertex for each of the regions veT described
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Fig. 12. A simple loop of transformations for the four-point function

above, that is, vertices are pairs (2,y) with Q) an ordered </>3-diagram (see
Appendix B) and y e Γ, the modular group. We define the edges of the complex by
joining verticles related by "simple moves" associated to F, Ω, S, Γ(for more details
see Appendix B). The edge-path groupoid of Ή - the set of transformations
generated by these simple moves - defines the duality groupoid D. Notice that Γ
acts on ^ so Γ is a subgroup of D. In this section we will describe the defining
relations of D.

In Appendix A we describe in more detail one way of sewing trinions to obtain
high genus characters in the "multiperipheral basis."

We begin by writing explicitly the conformal blocks for the three-point
function and imposing duality. In this way we may evaluate B, F explicitly and
obtain:

(4.1)

Next, we consider the four and five point functions and derive some
consistency conditions on the above data by performing "closed loops" of
transformations on the complex ̂ . These may be regarded as consistency relations
for the operator algebra of the Φ's, as consistency conditions for sewing of
amplitudes, or as relations in the duality groupoid. Beginning with the four-point
function we see that we can accomplish the braiding of two chiral vertex operators
in two different ways illustrated in Fig. 12. These must give the same answer, so we
have:7

~ ε ) ) F . (4.2)

7 Note that this allows us to deduce the eigenvalues of B as half-monodromies. For fields which
have only two fields on the right-hand side of the fusion rules, like the N representation of SU(N)
level k current algebra. B is a 2 x 2 matrix. In this example its eigenvalues are

N-l

and

for q =

The minus sign in λ2 arises from the anti-symmetry of the coupling. This is an example where the
eigenvalue of the permutation σ discussed after Eq. (2.1 3) is — 1 . It follows that the B matrices obey
a Hecke-algebra: (B-λί)(B-λ2) = Q
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Fig. 13. A geometric version of the braiding/fusing identity

j k
B

Fig. 14. Braiding/fusing in terms of moves on the complex

We see that B can be expressed in terms of F and Ω and therefore it should not be
viewed as independent data. Similarly, Θ is a particular case of B.

Now consider the five point function. We begin with the fundamental
observation, discussed above, that the braiding matrices for descendant fields are
the same as for the primaries. Therefore, if in the product of three fields we first take
an operator product expansion and then braid the resultant field, we should obtain
the same answer by first braiding two fields and then taking the operator product
expansion. Combining Fig. 6 and Fig. 9 this remark is illustrated in Fig. 13.
Alternatively, we can use Fig. 7 and Fig. 10 to obtain Fig. 14. In equations we have
the braiding/fusing identity:

= F B (ε)B (ε) (4 3)

When there are three or more vector spaces we denote,
etc. by B12: j/®3-> J/®3 etc. Pμv is the permutation operator on vector spaces μ, v.
Evaluating (4.3) on the coupling t1 ®t2®k (Fig. 15) we find that B and F are related
by diagonal matrices of phases:

This equation expresses the fact that there is essentially only one duality matrix.
The "sw-duality" matrix B differs from the "si-duality" matrix F only by a phase.
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_J k k I j
I o Ω®1 I I o

i j k

i k j k i j

t I I I 0 B I I I I 0

Fig. 15. A special case of the braiding/fusing identity

Ω®1 - I I ,
i i ^ i k

1® Ω

Fig. 16. A hexagon diagram

j I

Ω® 1

k I J

I Ω(e)®1 i I I k

j k
I

Hi
ι ® Ω ( e )

j I

Fig. 17. Two other hexagon diagrams

From this relation we obtain the three fundamental g = 0 relations on Ω and F.
First, from the evident relation B(ε)B( — ε) = l we obtain8

F(β(ε)®ί2(ε))F(ί2(-ε)®ί2(-ε)) = F(σ23(8)(723)F(σ23(8)σ23) = l, (4.5)

which is illustrated in Fig. 16. Substituting (4.4) back into (4.2) we obtain

F(Ω(ε)® 1)F - (1 ® Ω(ε))F(l ® Ω(ε)), (4.6)

illustrated in Fig. 17. The physical interpretation of this equation is similar to the
interpretation of the braiding/fusing identity (4.3): Fused intermediate lines are
transformed by the same transformation Ω as the external legs. The external states

8 Equivalently, we can use (4.4) to find B(ε)(ί2(β)2(χ)l)β(ε)(l(χ)Ω(-ε)2)-l. This relation was
noticed in [30] and was used in [30] and [10]
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j ' J

Fig. 18. The pentagon identity

k j k i j

I I B M I

B\

j i k j k

B
Fig.19. The loop giving the Yang-Baxter identity

and the intermediate states in all possible channels are of the same nature. In fact,
(4.5) and (4.6) are not independent equations. Considering (4.6) as two equations
for ε = ± we have three hexagon configurations. Any one of these can be "tiled" by
the other two. We will take (4.6) as the fundamental equations. Finally, using (4.4)
in (4.3) we find the pentagon identity:

^23^13^12=^23^12^23, (4-7)

which can be deduced diagrammatically as in Fig. 18.
Many authors have noticed that braid groups and the Yang-Baxter equation

play a role in conformal field theory. Certainly, from Fig. 19 or. alternatively, from
considering the product of three chiral vertex operators, one can deduce that the
braiding matrices satisfy the Yang-Baxter equation:

B^2(ε)B23(ε)Bi2(ε) = B23(ε)B,2(ε)B23(ε). (4.8)

As with (4.5) this is in fact not a new equation, but already follows from Eqs. (4.6)
and (4.7). To see this bring all the factors of B to one side, rewrite in terms of F, Ω
and use the above equations to reduce the number of factors of F. Note that

evaluating (4.8) on ί 1®ί 2®fc k is the unique coupling of type ί j yields (4.6).
L \fco/J
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Fig. 20. A symmetry of F related to the Mobius transformation z-»l/z

As a consequence of the above equations the transformations F satisfy several
useful symmetry properties:

k / Ί
!Jσ13®σ13P,

Π
(4.9)

These can easily be understood in pictures. For example, see Fig. 20. These
identities reflect the Mobius invariance on the plane. In the four point function this
invariance is fixed by putting three of the states at 0, 1 and oo and the fourth at z.
The freedom to put different states at these points is equivalent to (4.9).

In Appendix B we show that there are no further independent identities on F
and Ω arising from considerations at genus zero.

There are three further equations involving the data S and T. The first two may
be deduced from the requirement that χί(q,z) represent the modular group of the
one-holed torus when evaluated on conformal states β. If we iterate the
transformation S we obtain the transformation τ-»τ, logz-> — logz, which is a 180°
rotation of the local parameter logz at the insertion of the state β, or, equivalently
z-»l/z on the complex plane. We may compute the representation of this
transformation on the characters as follows. By the assumption of duality it
suffices to calculate the behavior of a particular matrix element. Choose a basis
{yα} for the space of Virasoro-primary fields of lowest weight which contribute to
the trace. From conformal invariance we have, for βeJ^a Virasoro-primary and

(β®ya)

Thus we have
(S(/))2=Θ6>J,(-).

(4.10)

(4.11)

For 7 = 0 this reduces to S2 = C, where C is the charge conjugation matrix. The
transformation T:τ-»τ + l 5 logz^logz is a diagonal transformation on the
characters T:® P£->® F£ with value e

2πί(zlϊ~c/24) on Vjt. [The only new information
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Fig. 21. Two sewing procedures giving two-point functions on the torus

in T is the central extension c, since Ω~ί(Θ(—))2Ω: Vβ-^Vji is multiplication by
relation of the modular group then forces (ST)3 = S2, that is:

S(j)TS(j)=T-1S(j)T- (4.12)

There are no other relations from the modular group or the duality groupoid for
the one-point function. See Appendix B.

The final equation is obtained from the two-point function on the torus. The
conformal blocks for the two-point function of β{ εJΊ?jί9 /?2e Jf)2 are given by

( β i ® ' ) [ . . ] (β2® }\(dzιY^(dz2y^. (4.13)
/ΊPΛi WA2 J

As before we can regard the two-point function as an operator 3?h®2ίfh-+C and
as before, the space of conformal blocks can, therefore, be thought of as
®Vj\p® Vf2i. The transformation of the blocks under τ-> — 1/τ logzt ->logzf/τ may

be obtained in terms of (3.19) by first fusing the two vertex operators to obtain a
one-point function. (In terms of sewing we have Fig. 21.) Thus we may rewrite
(4.13) for basis couplings α, b as

p',c,d

J i

ab
.

lJ2/z12,d
(4.14)

In the above equation we compose the operators χf' and ( . . ) by
VJL/2

' summing over

the intermediate descendants. The composition makes sense for z12 small. Under a
modular transformation z12-^>z12 + ®(z\2/τ\ so Zi2 remains small if it began small,
so, again by the assumption of duality we see that S is represented by

S(J1J2)

denoting 0S(p)(g)l by S®1 we may write simply, S(j1J2) =

(4.15)

In

addition to T there are two other generators of the modular group namely
α:z2->e~2πιz2, which on the block of Fig. 22 is simply the diagonal matrix with

J 1 J2

Fig. 22. A basis of characters for the two-point function on the torus
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e2πi(Δi-Ap)^ an(j jn terms Of our basic transformations can be written as

Finally fo, corresponding to z -> q ~ 1 z is simply PB( + ). The transformations a and b
and S satisfy the relation in the modular group SaS'1 = b. Expressing S of the two
point function in terms of S of the one point function and B( + ) in terms of F and Ω,
this equation becomes

(S®l)F(l(g)θ(-)0( + ))F-1(S"1(8)l) = FPF-1(l(8)Ω(-)). (4.16)

The set of equations we have discussed so far is complete. Obviously, one can
find infinitely many equations which are satisfied by the duality matrices. One of
the main results of [11] is that all these equations can be derived from the
equations above. The proof of this statement, which we call the completeness
theorem is given in Appendix B. The above equations are, therefore, the defining
relations of the duality groupoid. As we have seen, the modular group is a
subgroup of the duality groupoid. Therefore, the generators of the modular group
can be expressed in terms of the generators of the groupoid. The generators of the
modular group are subject to an infinite number of defining relations (new
relations arise whenever the genus of the surface or the number of punctures or
holes is increased). Since the modular group is embedded in the duality groupoid,
all the defining relations of the modular group are automatically satisfied.
Therefore, by the completeness theorem the moduli space of Friedan-Shenker
vector bundles for RCFT's can be characterized by the following data and
conditions:

Data:
1. A finite index set / and a one to one map of / to itself written I'I-H'V.
2. Vector spaces: Vjki, j, /ce/, with dimVjk = Nl

jk<co.
3. Isomorphisms:

FJl :®^V®^2=ΘFS1'2®^2, (4.17)

Conditions:

1. (Ov = i
2. Ko' SδyC, V^δίfC, V^V$,(V$^V$K.

3. Ω2( + ) = Ωl

jk( + )Ωl

kj( + ) is multiplication by a phase. Similarly, the action of
T on Vji is a diagonal matrix of phases independent of the external index ;'.

4. The identities:
(4.1 8a)

3F12F23 = P23F13F12, (4.18b)

S2(, )=e<9j,(-), (4.18c)
i

(4.1 8d)

)). (4.1 8e)
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These equations are equivalent to the equations in [11]. A few remarks are in
order. From Ω one can recover the data e2πiAj, and, as a consequence of (4.18a) one
finds that the eigenvalues of Ω are square roots of mutual locality factors.
[Remember that Ω(±)(t) = e±iπAtσ23(t) and Θ(±)(t) = σ13(e±ίπA't).'] One can then
obtain Θ from F, by (4.1). Finally, one defines T in terms oϊe2πίΔl and the new data

e-2πίc/24 as muitipHcation by e

2πί(Ai-c/24\ Furthermore, notice that the isomor-
phisms Ω and Θ imply that N/k = NjhΓ have to be totally symmetric inj, fc, and Γ. The
isomorphism F implies that the fusion rules Nl

jk form a commutative and
associative algebra [9]. In practice, when one solves these equations, it is easier to
replace one of the equations in (4.18a) which is cubic in F by Eq. (4.5) which is
quadratic in F. In (4.18e) recall that S(g)l means 0 S(p)(χ)l. As explained in [11,

P

18], (4.18e) and (4.18b) together imply that the modular transformation law of
vacuum characters diagonalizes the fusion rules, as was conjectured by Verlinde
[9]. One may use this observation to express S in terms of F, Ω [11, 18].

5. Physical Considerations

In the previous sections we studied the geometrical constraints on the conformal
blocks. We made sure that they transform properly under the duality groupoid
and therefore also under the modular group. In this section we will discuss some
physical constraints on the blocks and we will use them to construct a consistent
conformal field theory.

We can view our formalism from two different points of view. Each
corresponds to different ways of finding the conformal blocks. We can start with
some chiral algebra and its chiral vertex operators and use them to compute the
conformal blocks. Alternatively, we can start with some fusion rules (without
specifying the chiral algebra), set up Eqs. (4.18) and solve for the duality
matrices. Then we can look for sections of the FS vector bundle transforming
under the duality groupoid as the representation we found. It is not obvious that
every solution leads to a conformal field theory. That is, the above equations
characterize the bundles occurring in conformal field theory, and therefore, the
sections should satisfy further physical requirements. Such sections might or might
not exist. We must demand, for example that the asymptotic behavior of the
sections near the boundaries of moduli space has to be consistent with
factorization - the order of the poles in different channels should be consistent.
This is determined by the integral parts of the weights Δ{ and by the integer part of
c/8. Another condition (which we will discuss later) is that there exists a Hubert
space interpretation. In particular, it is not clear why the equations guarantee that
the coefficients of the q expansion of the characters on the torus are integral.

Another physical requirement is CPT invariance in unitary theories. In
Lagrangian conformal field theories, it follows from the hermiticity of the
Lagrangian in Minkowski space (reflection positivity). As explained in [18], this
leads to several consequences. In particular, to some reality constraints on the
conformal blocks. Labeling the conformal block by the external legs i\,...,in and
the kind of couplings s l 5 . . ., sm (on the plane n = m and s t and sn are simple because
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they involve the identity operator) we find

where we have used the following notation. If s is a coupling of type ( ), 5* is a

coupling of type ( I obtained by an antilinear isomorphism between V k and
\J k /

V-ftf. (To define it we must make a choice of basis in J^ and then define the complex
conjugate intertwiner having complex conjugated matrix elements.) In (5.1) τ
stands for all the moduli including the locations of the punctures. Because of the
two complex conjugations in (5.1), we effectively treat τ as a real parameter - CPT
does not change τ to τ*. Considering (5.1) for the four point function and using the
fusion transformation we find

Πcd ί Πv ΓΎ"\*/ = rwL J

r\ ) . (5.2)
lΔab \ L^ l Jα*bV

Similarly, by considering the implication of CPT for the one point function on the
torus, we learn that

-1)*:, (5.3)

where a and b label a basis of 0 Vβ and are related by conjugation to α* and έ>*

which label a basis of 0 V~Γ.
r

Another consequence of CPT [which follows from (5.1)] is that j/ is a real
algebra. That is, there exists a basis for its operators Θl in which they are self
conjugate and all the operator product coefficients cijk in (2.2) are real. Therefore,
for every representation r of j/, there exists a conjugate representation rv. Using
this observation, it is easy to derive Eqs. (5.2) and (5.3) directly.

The considerations above ensure that the conformal blocks satisfy all the
necessary geometrical and some of the physical constraints to be consistent
sections of the FS vector bundle. However, a conformal field theory is not just a set
of conformal blocks. The important objects in a conformal field theory are the
physical correlation functions. These are the correlation functions of the physical
vertex operators which should be distinguished from the chiral vertex operators.
The conformal blocks contain all the information about the symmetries of the
theory. Therefore, using the Wigner-Eckart theorem every physical correlation
function / which is a function of the moduli τ and τ* can be written as /(τ, τ*)
= Σdm^m(τ)^m(τ*)5 where ^m(τ) are the conformal blocks. They depend only on

m

the quantum numbers of the external states. The rfm's are "reduced matrix
elements." Notice that since the symmetries of the theory control the dependence
on the moduli, the dm's are constants independent of the moduli.

In typical quantum mechanics problems, the reduced matrix elements cannot
be determined by symmetry considerations. They contain the non-trivial informa-
tion about the dynamics of the system. This is not the case in a conformal field
theory. First, the requirement of physical factorization of the correlation functions
determines all dm in terms of the dm's of all three-point functions. Furthermore, as
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we said above, Eqs. (4.18) are the defining relations of the duality groupoid. They
guarantee that the conformal blocks ^m(τ) transform covariantly under this
groupoid. We should also impose the condition that the physical correlation
functions / are invariant under the duality groupoid - i.e. they are local (modular
invariant) and dual. Clearly, it is enough to check invariance under the generators
of the groupoid. This leads to some conditions on the "operator product
coefficients" which were discussed in detail in [18]. The transformations of the
generators of the groupoid can be realized at the four-point function on the sphere
and the one-point function on the torus. Hence, it is enough to check the
consistency of these correlation functions. This leads to the consistency of all other
correlation functions, e.g. higher rc-point functions on the plane and on the torus or
correlation functions at high genus [11, 18]. A similar result (from a somewhat
different point of view) has been established independently in [33].

In a RCFT the constraints of invariance under the generators of the groupoid
are powerful enough to determine all the dm's. Since we have discussed these
extensively elsewhere [18], here we will simply summarize the main results of that
paper for the sake of completeness.

In [18] (see also [17, 34]) it was shown that although ja/ and j/need not be the
same, the requirements of duality force the fusion rule algebras of j/ and j/to be
the same.

Let us recall that the physical Hubert space ^fphys is given as a direct sum over
representations oϊjtf®j/~. Hence, every state in J^phys transforms as (r, r) for some
representations of the two chiral algebras. We take j^(g)ja/~ to be the maximal
chiral algebra in the spectrum - it includes all the holomorphic and the
antiholomorphic fields in J^hys. It was shown in [18] that in a rational conformal
field theory every representation r and every representation r occurs exactly once.
Therefore, the Hubert space decomposes as

•ji/̂  /τ\ i/ft t\/\ i/fl ( ̂  A \
t)hvS ^ 3^ tyLγ. \A/ t/C<jp — rr(v\ V /

r

Moreover, the pairing of representations in (5.4) r = σ(r) must define an automor-
phism r->r of the fusion rule algebra [17, 18]. Denoting by V= 0 Vjk the vector
space of chiral vertex operators for ja/ and by V = 0 V k the space of chiral vertex
operators for ja/, we define, for each triplet i, j, k of representations of ja/ an
"operator product coefficient" to be a bilinear form

A1 - F v x FV->Γ (*> 5Ϊujk' Y Λ v ^^ \y ~v

d]k can only be non-zero on V k x V£$σ(k). Denoting by {ta} a basis for V, the physical
vertex operator for the state |n>(g)|n>6e^ ®^Pσ(/) is

9

j,n,n=Σ Σ
z,a

9 Without the results that every r occurs exactly once and that the pairing of the left moving and
the right moving representations is so simple, a more complicated notation is necessary [18].
However, after this result has been established, this notation suffices
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where ί ) (n® •) is an intertwiner for the right movers and where the sum on ία,
_ _

ta runs over a basis for V jk®V°$σ(k) and {fa} is a basis dual to {ta}. It can be shown
[18] from the requirements of duality that di

jk = 0 if and only if the fusion rules
Nl

jk = 0. We refer to this result as the naturality theorem.
Physical correlation functions can be calculated using Eq. (5.6) for the physical

vetex operators. The equations for invariance under the duality groupoid

(5.7)

(where Ώ, Θ, F, and S act on the F's) then guarantee that the physical correlation
functions are dual and modular invariant on any genus.

Even if the duality matrices satisfy all our equations and the sections have all
the desired physical properties, it is still not obvious that the overdetermined
equations (5.7) have a consistent solution. If there is no solution for the d's, a
consistent conformal field theory cannot be constructed. However, in the simple
case where Nl

jk < 2 and all the fields are self-conjugate it can be shown [18] that the
diagonal solution (σ(r) = r) satisfies the equations on the plane and the 5(0)
equation on the torus.

It is often the case that the diagonal theory (σ(r) = rv) exists and the operator
product coefficients satisfy d(fa, Q = λaδaja* and all λa are real and positive. In this
case, it is possible to pick the gauge (pick bases for the F's) λa = 1. In this gauge all
the duality matrices are unitary.

6. The Classical Limit

We would like to have a better understanding and a more elegant characterization
of the mathematical object described by the axioms (4.17), (4.18). A good answer to
this question should deepen our understanding of conformal field theory, and, we
hope, string theory.

A natural way to approach this problem is to study the equations in a
simplifying limiting case. The Yang-Baxter is well known to have an interesting
limit in which B = P(\ + εr) for small ε where r satisfies what is known as the
"classical Yang-Baxter equation." Unfortunately, the pentagon identity has no
such limit: Although F = 1 and F = P solve the pentagon, substitution of F = 1 + r,
or F = P(1 +r) shows that r = 0. Thus we must expand around other nontrivial
solutions which might be far away.

A more interesting limit is the following. We define a classical conformal field
theory as a conformal field theory in which the weights of all primary fields Ai

vanish. As we will show below, in this limit some of our equations are simplified
and their interpretation is understood.
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We are also interested in theories which are "approximately classical." For that
we define the classical limit of a sequence of conformal field theories. Suppose we
have a sequence of conformal field theories CFTfc with the property that the set of
primary fields Pk of CFTfc forms a sequence of nested sets ...CPkCPk+iCPk + 2C...

such that, for any field z, lim zJ t (/c)->0 and for fc large enough the fusion rules of any
fe^oo

z x j stabilizes. In such a limit some of the duality matrices are well-defined, for
example, Ωl

jk^>σ23 and (4.18a, b) stabilize for fc->oo. We may then refer to Ω, F as
duality matrices in the classical limit. An example of such a limit is provided by
the WZW models of current algebra at level fc where

J k + h

(where Cy is the Casimir in the j representation and W is the dual Coxeter number)
since for fixed j, C7 is finite. It is well-known that this is the classical limit of the
conformal field theory since in the WZW model the coupling constant is g2 = 8π/fc
[35]. Another well known example is the Gaussian model - a boson on a circle of
radius .R. This theory is "quasirational" [18] and most of our formalism can still be
used (quasirational theories will be defined and discussed below). Its classical limit
is obtained when the radius of the boson is taken to infinity. A related example is
that of the rational torus. Its algebra, representations and fusion rules were
discussed above. It is labeled by an integer JV. Taking N to infinity (in the diagonal
modular invariant) we find a classical conformal field theory. Some rational
conformal field theories do not have a classical limit. For instance, the c-> 1 limit of
the c < 1 discrete series has an infinite number of zero weight states, but there are
also primary fields with non-zero weight which cannot be excluded, by the fusion
rules. Therefore, the c—>l limit of the discrete series is not a classical conformal field
theory (according to our definition).

Let us now study the classical limit of (4.18). The first thing to notice is that the
isomorphism Ώ->σ 2 3 =±l so that Ω( + ) = Ω( — ) and Ω2 = l. Thus the two
equations in (4.18a) are no longer independent and we are left with two basic
equations at g = 0.

Since the conformal weights vanish, there is a null vector in any representation
generated by the action of L_ ί on the primary field. These null vectors guarantee
that the correlation functions are independent of z. Therefore, it is not surprising
that the conformal blocks do not have monodromies (Ω2 = l).

The situation with the torus equations is more delicate. It is clear that they
cannot all be satisfied as finite matrix equations, for if T-+e~2πic/24l, then the first
two equations force S(0)=±l, c^0mod4 and this cannot satisfy the third
equation. The bad behavior of the torus equations in the classical limit should
come as no surprise, since this is exactly the limit in which stringy effects should go
away. (Nevertheless, we will show below that some of the torus relations remain.)
This argument assumes that the classical theory has a finite number of
representations. This assumption is not satisfied in the classical limit of the WZW
model. There, the classical theory is consistent on the torus because all the
equations are satisfied for every finite /c, and therefore, it is also consistent for
infinite k. However, the fc-»oo limit on the torus is not smooth and the argument
leading to an inconsistency which was given above is not valid.
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Quasirational conformal field theories [18] are defined to be those conformal
field theories where the number of representations might be infinite, but the right-
hand side of every fusion rule is finite, i.e. £ Nl

jk is finite for every j and fe. For such
i

theories, the formalism on the plane [and in particular Eqs. (4.18a) and (4.18b)] is
applicable. Since most of what we say about the classical theory is independent of
the equations on the torus (which have a subtle classical limit even in the rational
case), it applies also to all quasirational classical conformal field theories.

We could have used a weaker definition for a classical conformal field theory.
Rather than saying that all primary fields are of zero weight, it is enough to require
this for a subset of them. Such a subset is trivially closed under the operator
product expansion, i.e. for every i and j in this set and t not in this set, Λ/jy = 0. This
follows from the null vector created by acting with L _ x on the zero weight field.
Often we are also interested in the vicinity of the classical conformal field theory -
the semi-classical theory - in which the weights are very small (but not exactly
zero). Then, the state generated by L_ j on an almost zero weight field is not null
and the fusion rule N\j is typically non-zero. When ΛΓ j φ O the decoupling of the
null vector at the classical limit is not obtained by a vanishing fusion rule. Instead,
as we approach the classical limit the relevant operator product coefficient
approaches zero. An example of this phenomenon occurs in the c<\ discrete
series. There, the operator product coefficients of two states which approach zero
weight and a state whose weight does not approach zero asymptotes to zero as
c -»1. Another example is provided by the conformal field theory of a sigma model
on a Calabi-Yau manifold. As the radius of the manifold becomes large, the theory
becomes more and more "classical" in the standard sense. Although the infinite
radius theory is classical (according to our definition), the large (but not infinite)
radius theory is not "approximately classical."

Since in the classical theory all fields are of zero weight, our definition of the
chiral algebra has to be slightly more precise. We cannot define the chiral algebra
as the set of holomorphic (or anti-holomorphic) fields in the spectrum because
there are such fields in every representation. In this case we define the chiral
algebra to be the set of all fields which couple like the identity in the right (left)
movers. This definition is equivalent to the standard one when the identity is the
only A=0 representation.

7. Group Theory as Classical Conformal Field Theory

Consider a collection C of representations of a group G which satisfies the property
that for all X, Ye C, X® Y is isomorphic to a finite sum of representations in C.
For example we may consider the finite dimensional representations of any group.
For an appropriate class of groups we can always build such a collection starting
with the collection of irreducible representations {Kj. These satisfy

(7.1)

where the vector spaces V k will be n-dimensional, if a representation appears n
times. These vector spaces can be identified with a space of intertwining operators.
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Recall that if ρ1: G-^End(W1\ ρ2: G^>End(W2) are two representations of a group,
an intertwining operator T: W1 -> W2 is a vector space homomorphism such that

Wί -^ W2β>(i H (v 2)

wl -̂  w2

commutes for all geG. The vector spaces Vfk above can be identified10 with the

space of intertwining operators I ): RJ®Rk-+Ri. Moreover the natural isomor-
\7V

phisms between representations

) , (w(8>ι;)®wι->w<8)(ι;®w),

imply the existence of isomorphism

Ω F.^FΛ,
7fe " (7.4)

Note that Ω2 = 1, the sign of Ώ measuring the symmetry or antisymmetry of the
coupling. Furthermore, considering the pentagon commutative diagram:

1®F F®1 (7.5)

for representations R^ ...,R4 yields the pentagon relation on F while the hexagon
diagram:

ι®fl F (7.6)

yields a relation similar to (4.6).
Thus we learn that any group defines a solution to the classical limit of our

equations. In the case of S 17(2) the mapping F is in fact well-known in physics and
the matrix elements are nothing other than Racah coefficients (or 6j symbols). For
example, in the case of 5(7(2), the pentagon identity is known as the "Biedenharn
sum rule" [36], In more detail, one usually chooses a basis for the representation
space by diagonalizing J3 in the Cartan subalgebra: {[/',m>}, m=—j,...J and
defines the Clebsch-Gordan coefficients <ΛM|71m1 j2m2> which are related to
intertwiners via

/. ) = Σ |ΛM><J,M|j>J2m2><ΛmJ2m2 | . (7.7)
2/ M,mι,m 2

1 More precisely, we are discussing the dual to the space of intertwiners
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(Note that in this case the space of intertwiners is always zero or one-dimensional.)
Racah coefficients are more traditionally defined by relating products of Clebsch-
Gordan coefficients, or equivalently, by writing:

J \ / J \ Γ / / 1 / 7 \ / /' \
° I } = Σ F j j > \ 1 1 (7-8)vv/i jv r Uo j'2J \J'J2j\hh) l ;

Clearly, a similar equation exists for any group.
Although, as we have seen, the torus equations are not well-behaved in the

classical limit, many aspects of group-theoretic characters parallel the quantum
situation.11 We may define "one-point functions" by

,U3® ) | . (7.9)
,Jly

Similarly the "two-point function"

trJg( ' V0i®-)LM(02®-)| (7 1Q)
L \JιP

(where g is any group element) has a "6"-monodromy relating characters at (j8l5 /J2)
to those at (/J l 5 gβ2). Considering χ* (g) as a linear operator J^ -»C we can transform

( P \to the basis of characters χf(g)l . . )(^ι®^2) As in the quantum case, the
V/ι72/

pentagon shows that the fc-monodromy for the subspace of characters with p = 0
(and hence jί=k, J2 = k") is proportional to the fusion rules:

n / 0 \ . n / 0 \
X?(g)( , , v }(βι®gβ2)=ΣFkNlA}\ , , v }(βι®β2)> (7.H)

where we defined
Γfc fevΊ

Fk = (Ωk

0k®Ω^)F00\ . (7.12)

Taking g^l we get:

1 , Λ^— dimΛ— ΣdιmRpN?k, (7.13)
Fk P

so we must identity
1

dimR f c=—, (7.14)

a formula which will prove interesting later. Thus, one may take as a classical
version of S the unitary matrix which diagonalizes the fusion rule algebra (which,
classically, is just the representation ring). For finite groups one may enumerate
representations by conjugacy classes {Cj of order |C7|, in which case we have12

(7.15)

1 x The reader should compare the following discussion with that of Verlinde [9]
12 This expression for S was pointed out to us by I. Frenkel and P. Ginsparg
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(\G\ is the order of the group.) It is clear that this matrix is a unitary matrix and it
diagonalizes the fusion rules. This equation, appropriately interpreted, can be used
also for continuous groups. For instance, for SU(2) we can label the conjugacy
classes by the continuous parameter 0 and the representations by the discrete

1C I 1
parameter j. The volume of the conjugacy class is —^ = —- (1 — cos#)

SJ.θ=-^sin((2/+1)0/2), (7.16)

2π

which is unitary in the following sense: j dθSjθSJ,Q = δjr and Σ S j θ S f θ , = δ(θ — θ').
o j

Also, it is easy to check that it diagonalizes the fusion rules. If we discretize θ in this

expression as θt = ——— 2π (and normalize S appropriately) we recover the
K~τ~ z,

standard SU(2) level k modular transformation law, now with a slightly novel
interpretation.
' The different eigenvalues of the fusion rule matrices form the different one

dimensional representations of the fusion rule algebra. These are given at the
classical level by

λ(J) = χ.(Cj). (7.17)

These can be thought of as related to the classical version of the α-monodromy
which is given by λ^/Fj. Notice that since at the classical level the string becomes
effectively a point, the έ-monodromy is well defined and makes sense (see above)
but the α-monodromy (as well as S) which depend on the "stringy" nature of the
quantum theory are not straightforward.

It is interesting that the classical S depends on two different kinds of indices. J
labels conjugacy classes and j labels the representations of the group. Although the
number of conjugacy classes is the same as the number of representations (S is a
square matrix), there is no natural map between them. Therefore, formulae like
SfS = 1, SSf = 1 and (S"fNkS)IJ = λ(

k

j}δu which do not depend on the contractions of
the two different kinds of indices make sense. On the other hand, the relations of
the modular group involve terms like S2 which need a correspondence between the
two different kinds of indices, and therefore do not in general make sense. There are
some cases where such a natural correspendence (related to "self-dual groups")
does exist and these should be investigated more thoroughly.

Finally, let us consider the relation of the algebra of intertwiners to the algebra
of functions Fun(G) on the group manifold G, at least for the case of compact
groups. From the Peter-Weyl theorem we know that L2(G)^ 0 DR®DR, where

R

the sum runs over the irreducible representations of the group. This means that the
matrix elements Df v form a basis for the algebra of functions on G. This algebra
can be written explicitly as:

R ' - ' " ' (v,®v2)



Classical and Quantum Conformal Field Theory 211

where we sum over a basis of intertwiners and αv is a basis dual to a. Given the
Peter- Weyl theorem we may easily prove this statement as follows. Consider the

Σ D%Vί(g)D%V2(g) (μιμ2 \Ry,ya <V l V 2 1 Ry2\ .

This must be given by <T|fl>(8)|&>I>£y2(g), where T is a tensor on V x Fv. Recall
that the space of intertwiners is itself a representation space. By the transformation
properties of the above quantities we find that Tis an invariant tensor, from which
we deduce the above. Each function / e Fun(G) defines a linear operator U(f) on
the vector space L2(G) corresponding to the operation of multiplying by that
function and we have

= Σ Σ ® ^ ® ' ^ ' (7 18)

Comparing this with (5.6) we see that U(DR) is similar to the conformal field in the
(R, Kv) representation of stf x stf. Hence, in this case we naturally find the "diagonal

/ nv \ / /? \*

theory." From this expression it is clear that in the gauge I nvlL ) = I 1 ) we
\R R2J \RR2J

have dκκ2(C Q = ̂ taJa As remarked at the end of Sect. 5, in this case the duality
matrices are all unitary.

This fact can be easily understood as follows. In the classical theory the tensor
product R1®R2 space is isomorphic to the sum of representations φ V{2®Rj.

j
Therefore, some normalizations of the Clebsch-Gordan coefficients are more
natural than others. In particular, it is standard to impose

Σ

for 517(2) and a similar expression for other groups. With such a normalization
(gauge choice) the Clebsch-Gordan coefficients are unitary. They represent unitary
transformations between different bases of Rl(S)R2- In this gauge the Racah
coefficients are also unitary transformations between different bases of the space of
tensors coupling four representations. Since the Fs are unitary transformations
the solution ^jR2(Cζ) = ̂ ίβ,r* solves Eq. (5.7).

The correspondence /<-» U(f) is the classical version of the isomorphism of
states and vertex operators. In the limik fc->oo of current algebra the corre-
spondence can be made much more explicit [35]. Wavefunctions are functions on
the loop group [37, 38] LG and the wavefunction corresponding to an operator φ
is computed by the path integral on the disk:

ngW] = I [dg] Φ(0) e -feSwzw (7.19)
0l0D = 0(σ)

as fc-> oo the path integral is concentrated on constant loops, so the wavefunctions
become functions on the group manifold.

This result is more general and applies also to discrete groups. At the classical
level the conformal fields φt are independent of z. We can think of them as forming
a basis for the functions on the group with the correspondence, <£,•<-> ./j(g). The
operator product expansion is simply the product of two functions on the group

(7 2°)
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The calculation of correlation functions is reduced to a sum over the group

where for continuous groups the sum is replaced by an integral. This result is
simple to understand in the WZW model. There it arises from performing the
functional integral at the classical limit.

It is not obvious that compact Lie groups give the only examples of classical
theories which can be extended to full quantum conformal field theories.
Therefore, it might be of use to learn how to do semi-classical perturbation theory.
As an example of how this works, consider SU(2). Classically we have

"1 Γ

2 2

1 1

_2 2 _

1

~2

1/3

ί̂ î\~2~/

1

(2λ) 2

where the parameter λ depends on the gauge. Expanding the equations around this
solution one finds that

_3

'A1-2Δί/2

which can be checked in the exact theory.
To summarize, we have shown that every compact group (discrete or

continuous) leads to a classical conformal field theory on the plane. The
correspondence between familiar concepts in group theory and conformal field
theory is the following:

Group Chiral algebra
Representations Representations
Clebsch-Gordan coefficients/intertwiners Chiral vertex operators
Invariant tensors Conformal blocks
Symmetry of couplings Ω
Racah coefficients (6j symbols) Fusion matrix
Functions on the group Physical fields
Product of functions on the group Operator product expansion
Average over the group Physical correlation function

of a product of functions

8. Classical and Quantum Reconstruction

We have seen that a classical conformal field theory is a realization in terms of
collections of vector spaces Rt satisfying (7.1) and the Axioms 1, 2, 3 (with Ω2 = 1
and I/I possibly infinite) and (4.18a, b) of Sect. 4. In the previous section we showed
that the collection of representations of a group always provide such a realization,
and hence define a classical conformal field theory. It is natural to ask if the
converse is true: is every classical conformal field theory defined by the
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representations of a group? This question should be viewed as the classical version
of the reconstruction problem, which asks for a minimal set of data and conditions
on that data from which one can reconstruct a conformal field theory (or an
equivalence class of conformal field theories). The classical reconstruction problem
has been solved in the context of the Tannaka-Krein approach to group theory
[39-42].

The basic philosophy of the Tannaka-Krein approach is that the knowledge of a
group is equivalent to the knowledge of its representations. Roughly speaking,
given vector spaces Rh Vjk and isomorphisms F, Ω subject to (7.1), (4.18a, b) etc., the
theorems of Tannaka and Krein show how to reconstruct a group, whose finite
dimensional representations are constructed from the Rt in terms of direct sums,
tensor products, duals, and quotients.

The Tannaka-Krein viewpoint can be considerably deepened using some
concepts from category theory, namely those of tensor and Tannakian
categories13. Roughly speaking, the axioms of a tensor category can be interpreted
as the axioms we have stated for classical conformal field theory, namely, the
axioms of Sect. 4 for V, F, Ω with Ω2 = l. The axioms of a Tannakian category
include those of a tensor category but include an additional axiom which amounts
to the assumption of the existence of finite-dimensional vector spaces Rt obeying
(7.1). Hence the theorems of Tannaka-Krein essentially state that a Tannakian
category is the category of representations of a group, and the classical
reconstruction problem is the problem of passing from a tensor category to a
Tannakian category. Since there are examples of tensor categories which are not
Tannakian [41], it is clear that the reconstruction problem is nontrivial.

A recent result of Deligne [42] provides a criterion for deciding when a tensor
category is Tannakian. In Appendix C we describe Deligne's condition and show
that in terms of the data V, F, Ω, it is simply the condition that Ff~ * is a nonnegative
integer. [Recall that when we are given a group we may deduce (7.14).] It follows
that if we supplement the axioms of Sect. 4 by the axiom F f~

1 e Z + , then we can use
Deligne's result to conclude that every classical conformal field theory is
associated with a group. That is, we can identify classical conformal field theory as
group representation theory, and the classification of classical conformal field
theory is, therefore, the classification of groups with finite dimensional represen-
tations. This is a paradigm which should be emulated in the quantum case.

Unfortunately very little is known about quantum reconstruction, so we can
only make a few remarks and speculations. As we have seen, if we start with a chiral
algebra s# and its representations $Ck we con construct a conformal field theory
using the chiral vertex operators. Then, the duality matrices can be computed and
must satisfy the identities of Sect. 4. Alternatively, one can consider the reverse
process. Namely, one begins with a fusion rule algebra JV}k, sets up the equations
for the duality matrices and looks for solutions. In Appendices D, E we illustrate
how one can do this for some simple fusion rule algebras. As we discussed above, it
is not obvious that every solution to our equations leads to a conformal field
theory. One should make sure that conformal blocks with the right asymptotic

13 This section is only meant to be a very rough sketch of the relevant category-theoretic results. A
more precise account can be found in Appendix C, and the real thing appears in [41-43]
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behavior exist. Furthermore there must be a sensible Hubert space interpretation
of the results implying, for example, that the one-loop vacuum characters have
integral coefficients in the ^-expansion. One might want to impose further physical
requirements of CPT, etc. Nevertheless, given the success of the Tannaka-Krein
approach to group theory we may speculate that the axioms of Sect. 4, or some
extension of these might define rational conformal field theories.

Inspired by the group-theory example we can offer the following speculation on
what the appropriate extension of the axioms of Sect. 4 will look like. Deligne's
extra condition is simply an integrality condition on \/Fi. In the quantum case the
same quantity \/Fi appears to be of fundamental importance. An interpretation of
ί/Fk as a dimension in the quantum case appears in [17], where it was noticed that
for unitary theories

Now J^Q is both an operator algebra and a Hubert space, and it acts on another
Hubert space J .̂ Instead of decomposing into an integral number of copies of Jf0,
we instead find some real number. This situation is very reminiscent of that of
subfactors of finite index [44] and F^1 seems to play the role of an index. Jones
found that only for special values of the index is it possible to construct
appropriate subfactors. It might be that here, too, only for special values of jF f~

1

can the ^ exist (guaranteeing integer coefficients in the ^-expansion of
characters). Some further evidence for this speculation is provided by noting
that for SU(2) level k we find

k + 2

q-q

which coincides with the definition of [45, 46] of the "q dimension" of quantum

S U(2) for q =
This example suggests that the quantum analog of the integrality condition is

that Ff~
 l is a g-integer, where q is some root of unity, perhaps related to the

value of c.
From the JfJ we might hope to reconstruct the chiral algebra and hence the

entire conformal field theory as in the classical case. Nevertheless, since very
different chiral algebras can have the same fusion rules, and since there are
holomorphic conformal field theories with no monodromy, the quantum version
of reconstruction is likely to be subtle.

One could have defined a classical conformal field theory as a theory where all
the Δ{ are integers. In such a theory the equations simplify precisely as for /d f = 0.
However, such a theory is not a classical field theory. Although the sections do not
have monodromies, they have poles reflecting the quantum nature of the problem.
Also, even if there is a finite number of blocks in any process, an infinite number of
states propagate at intermediate channels. Therefore, there is no description of the
theory in terms of finite vector spaces. Hence, Deligne's theorem does not apply.
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9. Quantum Groups and the Meaning of z

This section is a very speculative attempt to understand chiral algebras as
generalizations of quantum groups. The chief obstacle to progress is a good
understanding of the abstract meaning of the parameter z on the complex plane.

Let us begin by recalling some well-known facts about quantum groups [47],
Quantum groups are defined by their algebra of functions, which is a Hopf algebra
[47]. One of the distinguishing characteristics of a Hopf algebra is the existence of
a comultiplication A : J/->J/®Λ/ satisfyiitg:

/ \

^®j/®j/, (9.1)

\ /

where the top route is (1®Λ)Δ and the bottom is (Δ®\}Δ. The existence of the
comultiplication allows us to take tensor products of representations, for if Q^ 2 > ̂
->End(yi52X are representations then Ql®Q2°Δ :j/->End(F1(χ)F2) is a tensor
product representation. In general Vl®V2 and V2®V± are not isomorphic
representations, but if there exists an invertible R<ES$®S$ such that

σ°A(a) = RA(a)R-i (9.2)

[where σ(a®b) = b®ά] then we may define the isomorphism Ω: Vί ® V2-> V2® V1

by x®y\-^PQ! ®ρ2(R) (x®y), where P is the permutation operator. The associativ-
ity isomorphism is still the usual one x®(y®z)H->(χ®)/)®z. From the hexagon
diagram one then deduces A®id(R) = Rί3R23, from which one may deduce the
Yang-Baxter equation. The existence of R implies that there is an isomorphism
between spaces of intertwiners: Ω'.V ̂ -^V^ defined by

(9 3)

Let us now consider the case of conformal field theory. One of the
distinguishing features of conformal field theory is contour deformation which
allows us to define a map A0>z: j/-»j/®j/, which satisfies

\
s$®sέ®s$, (9.4)

/

where the top route is (l(χ)zJ0 Z 2_ 2 l)zl 0 Zl and the bottom is (z!0 2 l(χ)l)zl0 Z2. The
existence of A allows us to take tensor products of representations, as explained in
Sect. 2. Once again there is an isomorphism Ω between spaces of intertwiners
V>j-+V]ϊ. If we wish to emphasize the z-dependence of the intertwiners we may
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denote V^(z\ Then we can define Ω: V^(z)-^V^( — z) by

fe\ ίk\ k

i/Λ \(/Λ° QjXQl e Jl

where R = e~zL~i®e~zL~i.
This formula must be treated with care. In verifying the properties of the chiral

vertex operators one easily checks that the derivative with respect to z is correct.
However in checking the intertwining condition [Eq. (2.7)] one finds the
composition of the chiral vertex operator with RΔQ>_z(-)R~l = ΔZ^( ) which is in
close analogy with (9.2). For the case of conformal field theory the formula can be
demonstrated formally because L_1 is the translation operator, but in fact,

fk\
without the composition with ( 1 the equation is only true for half the modes of

the vertex operators. Related to this is the consideration that R matrices of the
form A®A are usually considered to be trivial solutions of the Yang-Baxter
equation (corresponding to noninteracting particles in factorizable S-matrix
theory). Nevertheless, (9.5) is one way of stating the existence of Ω and has
nontrivial consequences.

We should also note that many people have noticed that in particular
conformal field theories the braiding matrix is closely related to the R matrix of
certain quantum groups. Most notably, in SU(N) level k current algebra the
braiding matrix r π

B P'1 h 1

seems to be the same as Qj1®Qj2(R)pi\qr> where R is the ^-matrix for sl(N)q with

q = eN+k, and we have used the ^-deformed intertwiners to pass from the "vertex-
representation" to the "IRF" representation in which R depends only on
representations [45, 46]. Note also that the analogs of our g —0 equations for
quantum groups have been discussed in [48]. It would be very interesting if one
could connect these observations with the above proposals.

Appendix A. Characters at High Genus

In this appendix we describe an ansatz for high genus characters which is
motivated by sewing constructions in string field theory. It is very important to
note that the validity of this ansatz does not affect the correctness of the
representation of the high-genus modular group given in Appendix B. The latter
can be deduced from the constancy of the monodromy matrices and the
factorization properties of the characters.

We first describe the basic strategy for deriving the ansatz. We coordinatize
moduli space using the Schottky parametrization. In this parametrization the
Riemann surface is represented as the quotient of C by a Schottky group
<7ι? • • >y/ι>CPS'L(2, C). We may write the generators in the form Uaιtbτ(γ(z))
= qΓlUa.ίb.(z)9 where Uatb(z) = (z — a)/(z — b). The Riemann surface is obtained by
identifying the g pairs of isometric circles associated with each of the generators.
[Isometric circles associated to y are the circles Cr C on which \y(z)'\ = 1 and
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\y ~ l(z)'\ = 1 respectively.] Next, following the methods of [50] we define a 2g-string
vertex (V\ by identifying each of the 2g-isometric icrcles Cγ., Cy. with the unit circle
via mappings hyι, Kyι. That is, defining h[Φ] = U(h)Φ(0)U(h)~\ where U(h) is the
operator representative of the Mobius transformation h, we have

where R is the transformation R(z) = — 1/z. We may then sew the circles together to
get the blocks by contracting with the identity operator, that is, the blocks are
given by cF = <F|l 1 2>... | l 20-ι, 20> where |l> = £|/> |/>, the sum running over an
orthonormal basis of nonnull descendants. The main problem is to find an
appropriate set of mappings hr

We will demand that the characters satisfy the folio wing, set of reasonableness
criteria:
1. The characters must only depend on 3g — 3 moduli. In particular, an overall
conjugation y^Ny^'1 changes (ai,bi,qί)-+(άhbi,qi) where

Az + B „ B-atD ~ B-btD

so the characters must be invariant under this transformation.
2. The characters χ must be holomorphic in the moduli. (They will typically be
power series which only converge in some region of moduli space and hence will
have monodromy and not be globally well-defined.)
3. The characters must reduce to known expressions in obvious limits. Espe-
cially, if we ignore all pairs of circles but one, then <F|11 2> must correspond
to gluing a pair of concentric circles related by z^qz, hence computing a torus
amplitude.
4. Finally, the hy must satisfy the (admittedly nebulous) criterion of being
naturally constructed out of the transformation y.

In deciding how to identify two isometric circles with a standard copy of S1 we
may use the following

Lemma. Given two nonintersecting circles C1? C2 there is a Mobius transformation h
and a unique radius R<\ such that

Moreover, h is unique up to right multiplication by a rotation. Thus if we specify
basepoints (Q,p{) and specify h(\} = p2 there is a unique complex number q, \q\<\
such that h(q) = p1.

The proof is straightforward and will be omitted. Using the lemma, let hy be the
map determined by choosing C1? C2 to be the two isometric circles of y. This map
may be written as hγ= U~^hq9 where hq depends only on q and maps

Γl-

^

L
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Using the maps /^, U and the dilation by q, Dq :z-+qz, one can identify a pair of unit
circles with Cγ9 Cγ in many ways. However, since hq is not holomorphic in q the
criteria (1), (2) above put strong constraints on the possible choices. We have only
found the choice

C, Sl-^C, (A.3)

to give a good answer, < Vyι,..., yj. Since hq is not holomorphic the characters are not
manifestly holomorphic, but after some algebra we find that they can be expressed

PV = Σ .Π $Λ~c/24 ( .Π V-ϊbRlΦfil/-χ[Φίj]^ . (A.4)

The factors of gfc / 2 4 were put in by hand to assure a correct limit at the boundary
of moduli space. Furthermore, the same basis of characters can be written in the
form of a sewn chain of traces for two-point functions on the torus as follows. Let
I/I be the weight of the descendant /, and define Jf* as a metric on descendants by
<Φlί(z)Φf(w)> = JΓ/7j1(z-w)~(l/l + l / l ). [Remember, jf can be antisymmetric. It is
necessary for the coupling of SL(2, C) descendants.] We may formally prove that
the projection operator on the representation J^ is given by

n>= Σ *'o(0) |0>JΓ/?<0| Φ^l), (A.5)

where the sum is only over descendants in representation i. From this we find that
(A.4) can also be written as

3?= ΣΠ^pk-ιPk-ιTr(4fe°~c/24^^ (A.6)

The first and the last operators in this expression should be set to the identity
operators - the first and last handles have only one external leg. The representation
of the generators of the modular group provided by these characters is that given in
Appendix B, although this representation can be deduced by more general
reasoning.

It is an easy matter to generalize the above discussion to the case of rc-point
function characters at genus g. We also remark that, as a consequence of Verlinde's
conjecture one can count the number of independent characters [9]. The π = 0
formula of [9] is easily generalized to14

dimF(g, il9..., in) = Σ gllP'"^ (~)2* 2, (A.7)

where il9...,in are the representations on the external lines and S is the
transformation law on vacuum characters. Note that the implications of sewing for
the number of characters follow from this equation because S2 = C.

Appendix B. The Completeness Theorem

In this appendix we give the proof that the set of equations given in Sect. 4 give a
complete set of relations for the duality groupoid. We divide the problem into three
steps considering genus zero, one and larger than one in turn.

14 This formula was worked out together with T. Banks. The g = 0, n = 3 formula is equivalent to
Verlinde's conjecture, and was also noted in [17]
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/. Genus Zero: The Quantum Coherence Theorem

This is a generalization of the MacLane [51] coherence theorem in category
theory. MacLane's result applies to the equations of a classical conformal field
theory. Hence, we will refer to our result as "the quantum coherence theorem."
(The completeness of these equations for the 6j symbols of SU(2) was first proven
by Racah [36].) We will first show that the only identity involving F only, and not
Ω, is the pentagon (4.7). This part of our proof is similar (but not identical) to the
corresponding part in MacLane's proof. Then we will show that the only other
identities at genus zero are the two hexagons (4.6).

We start with the situation at genus zero. We construct a simplical complex
#(/!,...,/„) whose vertices are the different tree-level φ3 diagrams where the
external legs are ordered as ι l 5 . . . , in. It is convenient (but not essential) to add two
more auxiliary external legs z'0 and in + ί of the identity operators. This does not
change the relevant conformal blocks. For example, #(/l5 z'2, h, i*) consists of the
two vertices corresponding to the diagrams of Fig. 23 but the diagram of Fig. 24 is
not in ^(z1? z'2, z'3, z'4) because of the different order of the external legs. Thus we work
not with φ3 diagrams but with diagrams together with an ordering of the external

'2

'3

Fig. 23. A simple complex for the four-point function

Fig. 24. A diagram with a different ordering

lines. We connect two vertices by an edge if the corresponding diagrams can be
connected by a fusing "simple move" F. Since at this point we limited ourselves to
ordered tree-level φ3 diagrams of a given order, the other transformations of the
duality groupoid (like Ω and S) do not act on ^(ίl3..., in). It is clear that with these
edges ^( i j , . . . , ί n ) is connected. However, it is not simply connected. Every closed
loop on the resulting one-complex corresponds to a consistency condition on F.
For example, Fig. 18 is a closed loop in the complex of the five point function and it
leads to the pentagon equation (4.7),

P2iFl3F12 = F23Fl2F23. (B.I)

We will now show that filling every face corresponding to the pentagon makes the
two-complex simply connected. Consequently there are no new independent
equations involving only F.

We prove this statement by induction on n. Two particularly important
configurations are the "multi-pheripheral" diagram (Fig. 25) and the "staircase"

Fig. 25. Multiperipheral basis for genus zero characters
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h

-dr.'
i

'2
'3

Fig. 26. The staircase configuration

Fig. 27. The last operation in which in + x participates must be of this form

diagram (Fig. 26). We have to show that every closed loop is homotopically trivial.
To begin, we borrow a trick from MacLane which allows us to consider only paths
which go through the stair-case configuration and in which every move involves F
and not F~1. MacLane's trick is the following: consider an arbitrary closed path of
diagrams ^15 ...,®p, ...,&1. Let us denote the application of F by an arrow (an
application of F~1 is denoted by the reverse arrow). From any diagram it is always
possible to find a path to the stair-case using F only, and not F~l. Denoting by Q)s

the staircase diagram we can therefore decompose any loop in ̂  as follows:

0 1->0 2->...0 k^0 k + 1 ...̂

i i . - . I I ... I . (B.2)
3)s = @s = ... @s = @s ...0s

If any two paths with the same endpoints involving only F and not F"1 can be
deformed into one another then each of the subloops in (B.2) is trivial, hence the
entire loop is trivial. Therefore, assume (B.I) is enough for diagrams with up to n
lines and consider a diagram 2)§ with n + ί external lines, and fix some path y0 from
^o to @s. We would like to show that any other such path γ can be deformed to y0.
Define the component of an external line ik to be the collection of lines connected to
ik with only a single line joining to the base of the diagram. We say that an external
line ik "participates" in a move if that move changes the collection of external lines
in the component of ik. The last operation in y 0, y in which in + x participates must be
of the form of Fig. 27 (every blob stands for an arbitrary configuration) and
without loss of generality we can take the blob B for the path y0 to have zero
external lines. Let k be the number of external lines in the blob B for y. If fc = 0 (the
blob B is trivial), our proof ends by the induction hypothesis. The reason is that two
paths with k = 0 must look as in Fig. 28. Consider the top loop in Fig. 28. Since the
paths do not involve F~1 the loop cannot have in + ί participating, and is therefore
null homotopic, by the induction hypothesis. Furthermore, after the last
participation of zw + 1 any two paths from B to the stair-case must be homotopic,
again by the induction hypothesis. The middle loop is null homotopic because the
moves act on separate lines and do not "interfere." (In category theory the
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Fig. 28. A deformation of paths in a special case

statement that this loop is trivial is part of the statement of functoriality.)
Therefore, it is enough to show that our curve is homotopic to another curve for
which the number of external legs in B is smaller than fe. To see this, we should look
at the last two operations which change the number of lines in the first step in the
staircase. The end of the path must be of the form of Fig. 29 (a prime on a letter
means that some transformations were performed inside the blob). In asserting this
we have used once more the property that the path involves only F and not F~1.
We can now deform the curve as in Fig. 29. The closed loop (1) is simply connected
by the induction hypothesis. Loop (2) is simply connected since we have performed
two operations on two disjoint sets of lines. Finally loop (3) is simply connected by
the pentagon identity. Therefore, we succeeded to deform the curve to a curve with
a smaller k (since D is non-trivial). Finally, we must consider special cases that arise
because the initial point of y0, y is so close to the staircase that in+1 participates
fewer than two times. In this case the paths must look like those in Fig. 30, and by
adding the dashed line in that figure we see that the loop is homotopically trivial by
the induction hypothesis. This completes the proof that there are no new identities
involving only F.

Now that we have established that there are no new equations involving only F,
we should find all the equations satisfied by F and Ω. These can be found by
enlarging the previous complex. Let Γ0 „ be the modular group of the rc-holed
sphere. It is sometimes convenient to regard it as the modular group for the space
of n punctures on the sphere with a choice of coordinate at the puncture [32]. We
consider an infinite complex (6n and organize it by finite "layers." Every layer is
isomorphic to the previously discussed finite complex ^(il5 ...,ϊ'w) for some
permutation of z l 5 . . . , in. The different layers differ by the action of Γ0 n. Notice that
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©

Fig. 29. The last two operations in which in + ί participates must be of the form given in the top right
part of this diagram

Y

Fig. 30. An exceptional case

we do not move the two auxiliary external legs ί0 and in+1. Every layer has exactly
one multi-peripheral diagram and one staircase diagram. Since Γ0 n is an infinite
group, there is an infinite number of layers. However, since the symmetric group of
n objects is finite, there are only n\ different orderings, and hence φ3 diagrams in
different layers might look the same. They differ by 2π rotations of one vertex
around another. The transformations in Γ0>Π which permute the holes change the
form of the φ3 diagram. The edges of ̂  correspond to the simple moves F and Ω.
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We use Ω( ± ) according to whether the move corresponds to ω( + ) [ω( + )is defined
below] in the modular group. Clearly, this complex is connected. We would like to
show that if we fill the faces corresponding to the pentagon (B.I) and the two
hexagons (4.6)

F(β(e)®l)F = (l(g)Ω(e))F(l(g)β(ε)) (B.3)

with ε = ± 1, the resulting two complex is simply connected. Using the previous
result, every layer of the complex is simply connected. We should only examine the
closed loops which go between the layers. It is convenient to define the two
braiding moves of Eq. (4.2),

ε))F (B.4)

and to view them as basic moves,15 i.e. to add the corresponding edges to <%„. The
braiding/fusing identity (4.3) [which follows from (B.I) and (B.3)]

P23B13(ε)F12 = F2,B12(ε)B23(ε) (B.5)

expresses the fact that braiding of fused lines is performed by the same B as for
external lines. Therefore, by using this equation, every closed loop of F's and Ω's
can be deformed to a closed loop of the following form. Every link between two
different layers is a B move and it starts and ends at a multi-peripheral diagram
(even though the braiding of the first two external lines z\ and 12 is represented by Ω
we can equivalently represent it by B). Using the fact that every layer is simply
connected, we can use the pentagon to shrink that part of the loop which starts and
ends at the multi-peripheral diagram and stays within the layer. Thus, we have
deformed every closed loop in C6n to a closed loop involving only fΓs between
multiperipheral diagrams. Every such loop corresponds to a relation in the
modular group of the π-holed sphere, Γ0 „. Therefore, it is enough to check that our
equations guarantee that this group is properly represented. Thus, the next task is
to describe the generators and relations of Γ0tn.

To begin, order the points so that z 1 |>|z2 |> ... >\zn . We may then take
generators to be Dehn twists J^ around each of the holes, or, rotations of the local
parameters zi by 2π, together with interchanges ωf(ε) of holes i, i + 1 defined as
follows. Cut out a disk containing zb zί+1 and no other points and choose a
diffeomorphism which is one outside this disk and rotates the points by π. Finally,
undo any rotation of the local parameter that may have occurred in the process
(this is well-defined for small disks). The sign ε = ± 1 determines the orientation of
the interchange, clearly, ωi = ωί( + ) = ωi( — )-1. The relations satisfied by these
generators are16

(A) ωίωj = ωjωί,

(B)
(C)

(D)

15 We could have alternatively defined the braiding moves by Eq. (4.4): B(ε) = (Ω(
(χ)l)F(l(χ)Ω(ε)). Because of the two hexagons (B.3), these two definitions are equivalent
16 Relation (C) was incorrectly stated in [11]
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We may derive these relations as follows. Relations (A) are obvious. To make
further progress we relate Γ0 „ to the modular group Γ0

n of n punctures on the
sphere by the exact sequence: [52]:

where the right arrow corresponds to shrinking the holes to points. We then lift the
relations of Γ0" to Γ0 „. The relations of Γ0" may be found in [53] and are closely
related to the braid group of the sphere, defined as π1 of the space (S2 x ... x S2

— diag)/Zn, where Σn is the permutation group. The correspondence is given by
associating to ωt the rotation of points /, i -f 1 induced by a homotopy of the
diffeomorphism to one through diffeomorphisms which do not preserve the set of
points z1? ...,zπ. The relations (B) are the famous braid relations. Relation (C)
corresponds to the braiding shown in Fig. 31. On the sphere the element of π1 is
given by a circuit of z t around all the other points and is therefore homotopically
trivial since it can be deformed off the back of the sphere. Thus, in Γ0" the right-hand
side of (C) is 1. When lifting this relation to Γ0 „ we must be careful since the
punctures now have tangent vectors attached and the tangent bundle on the
sphere is nontrivial. Changing z->w= 1/z with w = 0 at infinity shows that for a
loop around oo the tangent vector d/dz — — w2δ/3w rotates by 4π proving relation
(C). Similarly, relation (D), which corresponds to the "barber-pole" braidings in
Fig. 32 has 1 on the right-hand side as a relation in Γ0" and so must be given by
factors of R in Γ0 > f l. Following the behaviour of local parameters we arrive at (D).

Before proceeding we remark that if we discuss the modular group of labeled
holes we obtain the analog of the pure braid group - defined as the group of
braidings that does not permute the strings. This modular group is the subgroup
Γ0 „ of Γ0 n such that Σn = ΓQ tJΓQ > n is the symmetric group. In a classical conformal

Fig. 31. A pictorial version of relation C on the sphere

( VV&
n = 3

Fig. 32. A pictorial version of relation D on the sphere



Classical and Quantum Conformal Field Theory 225

field theory Γ0tnis realized trivially. Hence, Σn is the classical version of Γ0 n. For the
completeness of the classical equations, it is enough to check that the closed loops
realize correctly the defining relations of the symmetric group Σn. This was done by
MacLane [51].

We now return to our proof. The advantages of deforming every closed loop to
the multi-peripheral diagrams are that there every B transformation is in Γ0 n and
every generator of Γ0 „ has a simple realization. In the multiperipheral basis we
identify the space of characters with

®Vt;p2®...®V&. (B.6)

The representation of the generators is then given by:

(B7)
~2πί^®...(8)l,

where the indices indicate which subspace of (B.6) the transformation acts on.
Relation (A) is trivially satisfied. Relation (B) follows from the Yang-Baxter
equation (4.8) applied to three successive lines,

(ε)β23(ε). (B.8)

Recall that (B.8) follows from (B.I) and (B.3). Relation (C) may be easily proved by
iterating the identity

B(ε)(Ω2(ε)®\)B(ε)(l®Ω2(~ε)) = l. (B.9)

A better proof uses (B.5) repeatedly to express the sequence of braidings

'"' /2](ε)Bp' ''3](ε)...βpV ^(ε) (B.10)

in terms of a single braiding, that is, as

k

as in Fig. 33.

' l ' 2 ' 3 " * ' k ' 2 ' l ' 3 ' " ' k ' 2 ' 3 ' V " ' k '2 ' k Ί

M i l ^ I I I I B, I I I I . , I-I I

1
'2

i'M'

Fig. 33. Expressing a product of braidings in terms of a single braiding
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Thus we have

= £Γ4«*Ί = ρ(R?). (B.I 2)

Thus proving relation (C). Intuitively we may represent the proof as in Fig. 34.
We now prove (D) by induction. For n = 2 it is the same as (C). For n = 3 we may

also easily compute that on V^®V k®V^ the representation of (ωlω2f is (define

Aj + Ak)

For simplicity, we consider in this appendix the case where the eigenvalues of the
permutations σ are all ξ= f 1, and hence Ωl

jk — elπAjkl. The generalization to
arbitrary ξ = ± 1 is straightforward. To proceed we may use the same trick as for
(C) by fusing the last two strings and using (B.5) repeatedly to obtain Fig. 35. From

Fig. 34. A proof of relation C on the sphere

= Σ

VLU

Fig. 35. An inductive proof of relation D on the sphere



Classical and Quantum Conformal Field Theory 227

In In

Fig. 36. A relation used in the proof of D on the sphere

Fig. 37. A four holed sphere for the lantern identity

the relation of B to F and (4.6) we obtain Fig. 36. Therefore, the induction
hypothesis and Fig. 35 gives:

= e-2πiε(Aiί + ... + Aln + Aln^.1)f (β j 4)

This completes the proof of the modular relations at g = 0.
One of the relations of Γ0 4, known as the Chinese lantern identity, will be

useful in verifying one of the modular relations at high genus, so we describe this
one in detail. The relation states that for the Dehn twists C l 5 C2, C3 in Fig. 37 we
have

This can be derived from (A-D) for n = 4 since we have

hence
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but we have Cl=R2

lR^lω2

2, C2 = R^R2

lω\ and C3 = #1~
1#3~

1ω1~
1ω2ω1. In

fact, (B.16) is easily checked directly since on ®V£p®V£i^ we have

*3 *2

Ui ij

But we may replace (Ω2( + )(χ)Ω2( + )) by e^(^ + ̂ 2 + ̂ -^ in (β.17), giving (B.16).

//. Genus One

The strategy here will be similar to that at genus zero. We will define a simplicial
complex and then show that we can deform any loop to a loop in the
multiperipheral basis. Loops in the multiperipheral basis correspond to relations
in the modular group Γ l j W . Therefore, we begin by checking the relations of Γ1>π in
the multiperipheral basis.

If (τ, z) are coordinates on the Teichmuller space of the one-holed torus (where z
lies in the complex plane identified by z ~ qz) then ΓIΛ is generated by

S : τ-> — 1/τ , logz-»logz/τ ,
. (B.18)

Γ:τ->τ + l, R:z-^e2πιz.

The relations are S4 = R~ 1 and (ST)3 = S2. We have described the representation
of these generators in Sect. 4, and the relations are guaranteed by (4.18a, b).

For ft Ξ^2 we choose and ordering of points so that 1 >|zx >\z2\> ... >\zn >\q\.
Then Γ1>n is generated by:

S : τ-> - 1/τ , logz^logz^/τ ,

q-lzj9

As on the plane, the relations of Γ1>π are obtained from the case with punctures Γ"
[54] by lifting the relations using the exact sequence 1-»Z"->Γ1>IJ->Γ1'

I->>1.
For n = 2 the relations are (set a2 = a and b2 = b, since a1=bl = \):

(B.20)

As explained in Sect. 4 we may choose to represent these generators in the
multiperipheral basis:
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Fig. 38. Cuts used for the torus conformal blocks. The cuts inside the hatched region are
complicated but irrelevant

where we choose cuts as in Fig. 38. Thus we think of the space of characters as
© VJ[P® Vjp

2i. In the notation used for the calculations of this appendix we have the
representation Γ. . -,

ρ(a) = D2D~2, ρ(b~1) = Bp\ * 2 ( — )Pip9

(B.22)

where Dt = einAl and Pip is a permutation operator on the indicated indices. The
relations are easily checked from (4.18a, b) once one notices that for the two-point
function we have the simple expression:

. (B.23)

For example one can compute S4 and compare this with b~laba~ 1 which gives a
monodromy oϊzί around z2, just as on the plane. Similarly, the other relations are
straightforwardly checked.

For the case n ̂  3 we have the relations SatS ~1 = bi,SbίS~ί = b^ 1 a^ 1 bt, etc. In
addition we have the relations

= [bi9 Njk] = 1 , ί^i^j<k^n, (B.24)

where [,] denotes the commutator: [gι,g2]
=:gιg2^Γ1gί 1- We check the above

relations in the multiperipheral basis, identifying the space of characters with

(see Fig. 39). In this basis we represent ρ(al) = DfD~l

2^l9 we represent S by fusing all
strings, using the S of the one-point function and then defusing. For bl we fuse lines
1 to /— 1 and / to n separately and then use the representation of b from the two-
point function. With this representation we can check the first two relations in
(B.24) by fusing lines to obtain three-point functions on the torus, where they may
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Fig. 39. The multiperipheral basis for the torus

be explicitly checked. Each of the Njk has a representation purely in terms of
operations on the plane-namely, of braiding the group of lines j to k — 1 around k to
n. From this we may conclude that the right-hand side of the last equation in (B.24)
is the planar representation of a 2π Dehn twist at "infinity" as is consistent with the
value of S4 from the one-point function and the definition of S for the n-point
function.

We now proceed to the full duality complex (^1>/l. The vertices of <^1 > f l are pairs
(β, y\ where 2 is an ordered one-loop φ* diagram and y e Γ l j Π. ^1>Λ is connected if
we add to F, Ω(s) four new simple moves (three suffice for connectivity). We say a
diagram 2 is of tyke k if k lines join directly onto the loop. The first two moves are
defined for diagrams of type 1 and connect (β, y) to (2, y S) or (2, y - T), where S, T
are the standard generators of ̂  0. Furthermore, choosing a marking for the torus
as above we can define a and b simple moves for diagrams of type 2 which
correspond to the modular transformations defined above. Next we connect (β^ y)
to (β^ y - a) and (2, y) to (β\ y - b),'where 3)' is obtained by cycling an external line
around the loop. By fusing or braiding we can always deform a loop in ̂  n to a
loop in the multiperipheral basis without using the cydicity move. There is no
ambiguity in this deformation since - by avoiding the cyclicity move all such
manipulations can be performed on the plane, where we have demonstrated the
lack of ambiguity. Thus all loops can be deformed to loops entirely within the
multiperipheral basis, which, as we have said correspond to relations in the
modular group. Since all the relations of Γ 1 > Λ are satisfied, we have shown that
τc1(

(^1>n) = l3 so all one-loop constraints are summarized by (4.18).

///. High Genus

Again the strategy will be the same. We first check the relations of the modular
group in the "multiperipheral" basis for the high genus characters. After that we
define a complex and argue that we can always deform a loop in that complex to a
loop in the multiperipheral basis. For simplicity we will consider the modular
group for genus g with no punctures. Remarks on the case of punctures are at the
end of this appendix.

One set of generators of Γg 0 is given by Dehn twists about the curves <αf, βb <52>
shown in Fig. 40. It is convenient to define auxiliary curves εί5 δb see Fig. 41.
Identifying the span of 3F with

(B.25)
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Fig. 40. A choice of Dehn twists generating the modular group

6 =δ

Fig. 41. Other Dehn twists used in the proof

0

'1 Jl k2 J2 k3 kn-1 Jπ-1 'n

Fig. 42. Characters in the multiperipheral basis at high genus

for the basis of characters in Fig. 42, we have the following representation of the

generators: ^ λ _2 π ίM,-c/24)

-'^"1 iTL^ί-i κu

(B 26)

Q(βl)=TklSklίl(jl.lJl)Tk=Tk,Fί

Jl-1
l-ί Jl

where, as usual, the indices on the linear transformations J5, F, S, T tell which of the
subspaces of (B.25) it acts on.

The relations of Γg > 0 are [55]:
(A) αjδα = βaβ if α, β intersect, otherwise they commute.
(B) (δ2β2^2alβ^2δ2}

2 = \ a t g = 2.
(C) (α1)81α2)

4 = ε2δ2.
(D) b2δ2b1 = α1α2α3^3, where

(E) /V~1 =8β, where I = βpβ...β1u
2

1β1...aβββ.
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Fig. 43. A basis of two-loop characters

The relations (A) follow by definition or from corresponding relations for the
two- and three-point functions on the torus.

We now check (B) as follows. We use the basis of characters of Fig. 43,

identifying their span with F2"loop- 0 V^®Vfk. Denoting by Sf(/) the transfor-
i,j,k

mation φS(/)®l etc. The above representation may be written:

)=Tk-
1

9 Q(β2)=TkSk(j)Tk,

ρ(βl)=TiSi(j)Tί, ρ(α1)=7;-1, (B.27)

ρ(*2) = DΓ2B2(-)Dj-2 -

Writing out the representation of the generators we therefore find

(B.28)

Using Sf = Sk = σi3D~j~1 and (4.6) (more conveniently expressed in terms of B) we
get:

w* + *">Sk(j). (B.29)
-\_ι /cj /

Repeatedly using (B.9) in the form

J k\ J J \ i k

we may reduce this to

SfcO)^ e πι k e πι k e k Sk(i)
(B.30)



Classical and Quantum Conformal Field Theory 233

The phase factor from the central extension is to be expected since the presence of a
central term indicates we only have a projective representation, as expected from
general considerations [5]. This verifies condition (B).

Before proceeding, note that from (A.4) (or, more generally, from factorization)
it follows that ρ(δl) = e~2πιAίl and ρ(εz) = e~2πlJkί. Since <5Z, εz may be expressed in
terms of the generators αί5 /?t , δ2 we obtain nontrivial relations on F, S. Our first
task is to show that these relations are implied by those of Sect. 4. Such relations all
follow from the three-loop identity δl+1=Jδl_1J~1, where

J = βι + ι*ι + ι(βιδι*ιβι)aι + ιβι + ι βι-ι*ι(βιδM^

(The reader may easily verify this pictorially.) If we verify this for an arbitrary two-
point character at three loops, then, since α l 5 δ are represented as in (B.26) we can
use this identity to prove iteratively the relations implied by the above equations
for ρ((5j), ρ(εt). To verify the three-loop identity we use 1 ®F(χ)F(x) 1 to pass from the
multiperipheral basis

= Θ V

to the basis

(B.31)

(B.32)

This basis of characters is illustrated in Fig. 44. We denote, e.g. Skliίpί to be the
action of S on the embedded one-loop three-point function in Fig. 44 with those
indices. Mathematically, we pass from ©Vfy^Vp^^V?^ to the isomorphic
space Θ^oίi® ^2Pi®^2fcι by rewriting characters expressed as sewn planar
amplitudes as characters expressed as a trace of three chiral vertex operators. We
then use fusing to define S to be

/o

using the path illustrated in Fig. 45.
(B.33)

Fig. 44. Alternate basis of characters for a two-point function at three loops

Jo

Fig. 45. Defining S for a subloop
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Fig. 46. Dehn twists in a two holed three loop surface

Ji J,2 Jϊ

Fig. 47. A three point function at one loop

With this understood we represent the Dehn twists in Fig. 46 by

(B.34)

We now evaluate / = j53α3(^2^2α2^2)α3^3j8ι^2(^2α3^2^2)α2Aι by first writing out
βια2(/?2α3<52/?2)α2/?ι To begin we need an identity from the torus. Beginning with
characters ®V^p®VP

2i for the two-point function we have

STiTp~
1S = Pipe-iπ(A» + Δ^9 (B.35)

where Pip permutes the indicated indices, and

e-l«A» + ̂ . (B.36)

Using these one-loop equations and fusing we obtain an equation for S for the
three-point function of Fig. 47,

J2 + AJ3)e-inAlB\ h Jl \( + )e***Pplp2.

LP2 PiJ
(B.37)

Using the relation, and similar torus relations we may reduce the transformation
βi*2(β2*3δ2β2)*2βi to

*^W^
7o Pi

i- Pi ^i p *2 ^2 Γ Pi 12 r> π π n π π- n- π-
£l fc / Pl i fe £ l i fc Pfcll>1 J 1 M Pl fcl *2 *3 ί 3 'L^i 7oJ Llι ^ij Uo κι_\

(B.38)
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We may simplify this greatly by using the pentagon repeatedly. The net result is
that J~1==WPiίk2Pi2p2Pi3k2Pi2pl, where W is a complicated transformation, but
one which does not affect the representation z\. Because of the permutation oper-
ators, it follows that J conjugates the representation of a Dehn twist on the line with
/3 to that on the line with z\, completing the proof of the three-loop identity. Thus,
the Dehn twists around δl are indeed just diagonal matrices of phases in
our representation, and in using this fact we do not need any new identities
beyond (4.18).

For the next step we show that

is represented on the characters of Fig. 42 by

p
'"Γ

(We ignore factors of e~
2πίc/24 since they drop out of the conjugation.) To prove

this start with β\κ\βι=DJ^ so from (B.35) we get

)M2iMljM202 = tt2i2D*W

From here one proceeds by induction, using (4.6) and (B.35). Because of the
permutation operators we can use this identity to establish Iδll~

1=εl, so the
curves εl are also represented by the appropriate phases, and then relation (C) is
satisfied because it is a relation for the two-point function on the torus. Clearly,
relation (E) is also satisfied.

Finally, relation (D) is simply the Chinese lantern identity (B.I 5) for the
embedded four-holed sphere shown in Fig. 48. Since we have already checked the
relation for the four-holed sphere, and since δ2, <53, α l 9 α2, α3 are represented as at

Fig. 48. Embedding of the four holed sphere in a high genus surface
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t
Fig. 49. Characters used in the verification of the Chinese lantern identity

g = 0 we need only check that the twists bί9bz defined in (D) and illustrated in
Fig. 48 are also correctly represented. To do this, we use fusing to pass to the basis
of characters in Fig. 49 such that the fourpoint function characters are given by

Thus we must check that in this basis we have

and

' e1^ . (B.40)
h z ι j Lh

To do this we first evaluate /?2

a2a3/?2 to βet

from this one easily recovers (B.39). Now, using a similar representation of
βlocίoc2βί and the above result for ρφj we recover (B.40). This completes the proof
of the high genus relations.

Next we turn to the definition of the duality complex. It is intuitively clear that
there are no further duality relations so we will content ourselves with the following
heuristic argument. The vertices of the complex ̂  „ are again pairs (β, y\ where &
is a g-loop φ3 -diagram. The simple moves S, Γcan be defined for loops connected by
a single line to the remainder of 3>. For (69 ?0 to be connected one must add moves
for Dehn twists around the propagators. There should be no new relations because
any loop can once again be deformed to a loop in the multiperipheral basis. If, in a
</>3 diagram, we cut g lines so that the diagram has no loops (i.e. we consider a sewn
2g-holed sphere amplitude) then using braidings and fusings we can bring any loop
to a loop in the multiperipheral basis, where loops correspond to relations in the
modular group. Since we are discussing braidings and fusings for a sphere
amplitude there is no ambiguity in deforming the loop. This completes the proof
for the duality complex with no external lines.

For the case of (g, n) with n > 0 the above argument can be generalized. One
needs to introduce generators analogous to the ab bt needed in the g = 1 case and
lift relations in the rc-string braid group at genus g and in Γgt0 to relations in Γg n.
Representations of the new generators are easily obtained as in the genus one case.
We have not checked all the relations in this case, but it is not really necessary since
one can obtain the transformation laws of blocks for surfaces with punctures from
those of surfaces with no punctures.

This finally ends the proof of the completeness theorem.
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Appendix C. Tannakian Categories for Pedestrians

In this appendix we describe some of the concepts mentioned in Sect. 8 with some
more precision. We will need to use some very simple notions of category theory,
an esoteric subject noted for its difficulty and irrelevance. We have attempted to
make the presentation readable, sometimes at the cost of taking short cuts. The
real thing can be found in [43]. Tannakian categories are described in [40-42].
The only part of this section which might have any remote claims to novelty is the
expression of Deligne's normalization condition in terms of the classical fusing
matrix in Eq. (C.I 5) below. We are grateful to P. Deligne and D. Kazhdan for ex-
plaining some of the category-theoretic constructions.

We begin by recalling (for the convenience of the reader) some of the
elementary definitions from [43]. Category theory is an attempt to make precise
generalizations about mathematical concepts and constructions, and is impossible
to understand without examples. The reader is urged to consult [43] for lists of
examples. A category C consists of two sets Obj and Arr of objects and arrows (also
called "morphisms"), with two functions dom and cod from arrows to objects. An
arrow / with dom(/) = x and cod(/) = y is said to be an arrow from x to y and
written f:x-+y. There is also a function called composition Arr x Arr->Arr
defined for (/, g) when dom(g) = cod(/) such that

1. dom(g o /) = dom(/) and cod(g ° /) = cod(g).
2. For three morphisms (f°g)°h = f°(g°h).
3. For every object x there is an arrow lx:x-+x and /° \x = f and l y o / = /

An important (albeit trivial) concept in category theory is that of horn-sets which is
simply the set of arrows between two objects: hom(;c,};) = {/eArr|dom(/) = ;c,
cod(f) = y}. Examples include the category of groups whose arrows are group
homomorphisms, the category of topological spaces whose arrows are continuous
maps, the category of Hubert spaces whose arrows are bounded operators, etc.

There is an alternative (but more complicated) definition of categories in terms
of horn-sets, which we will use below when we construct a category "from nothing."
Namely, we will begin with a set of objects α, b,... and for every pair of objects we
will define a set, which with hindsight we may denote hom(α, b). Next we define a
function hom(b, c) x hom(α, 6)->hom(α,c) with the usual property of the compo-
sition law. In addition we must have, for each b an element ίb e hom(b, b) with the
properties of the identity morphism, and finally we must insist that if a Φ a' or b φ bf

then hom(α, fr)nhom(a', fe') = 0. The reader may check that these axioms define a
category. An important class of categories are those for which the horn-sets are in
fact abelian groups such that composition is bilinear. These categories are called
preadditive categories.

Often one wishes to speak of relations between categories, and to this end we
define a functor between categories C-+B to be a pair of functions, Obj(C)->Obj(B)
and Arr(C)-> Arr(B) (somewhat sloppily, we denote both by T) such that if /: c->c'
is an arrow, then the arrow T(f) is an arrow T(f): T(c)-»T(c') and we have T(lc)
= 1 Γ(c), and T(g ° /) = T(g) ° T(f). In the category of categories a functor is a
morphism between categories. Examples of functors include homology and
homotopy groups, GLn (from rings to groups) and conformal field theory
(according to Segal). Below we will use a functor called the forgetful functor.
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Finally, we may wish to compare functors, and to this end we define a natural
transformation between two functors S, T : C— >B. The basic idea is that each of S, T
maps commutative diagrams in C to commutative diagrams in B, and we would
like to have a transformation of the images of these diagrams. Precisely, a natural
transformation τ:S-+T is defined to be a collection of morphisms in B: τ c : S ( c )
-> T(c) such that for any arrow / : c-+c' in C the corresponding arrows S(f) : S(c)
->S(c') and T(f): T(c)^T(c') are related by

s(f) \ \τ(f) (C.I)

If each arrow τc has an inverse then the natural transformation is called a natural
isomorphism or, sometimes, a functorial isomorphism. Below we will define, F, Ω in
terms of certain functorial isomorphisms. This completes our rehash of the
elementary definitions of category theory.

The basic premise of Tannakian category theory is that a knowledge of the
representations of a group is equivalent to a knowledge of the group. For example,
we will indicate how, given the category of finite dimensional representations of a
group we can recover the group itself by a purely category-theoretic definition.
Recall that the category of finite dimensional representations of a group G, Rep(G)
has as objects those vector spaces X over a field k which are representation spaces
of G. That is, there is a group homomorphism ρx : G-*Aut(X). The morphisms of
Rep are vector space homomorphisms TYX:X-*Y which are also intertwining
operators, i.e. satisfy (7.2). Notice that Rep satisfies the following (rather evident)
properties (which will soon be generalized):

Al) The zero vector space is an object, and has a unique intertwiner with any
other representation.

A2) The direct sum of two representations is a representation.
A3) The kernel and cokernel ( = quotient of range by the image) of any

intertwiner is a representation.
Thus Rep(G) is an abelian category. Moreover:
Tl) The tensor product of two objects is an object and there are intertwining

operators defining isomorphisms Ω:X®Y^Y®X and F : (X (x) Y) (x) Z

T2) The isomorphisms jp, Ω satisfy the pentagon and hexagon axioms.
T3) There is an identity object, namely k itself with the trivial representation,

which satisfies X®k^X for all X.
Thus Rep(G) is a tensor category.
RT1) The set of intertwining operators Hom(Jf, Y) from X to Y is itself a

representation,

RT2) In particular the dual space X* is a representation and (Xv)v = X, that is,
X is "reflexive."

RT3) Moreover we have:

Thus Rep(G) is a rigid tensor category. (Sometimes the name "tensor category"
is used for "rigid abelian tensor category" as in [42]. We adopted that terminology
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in Sect. 8, for brevity.) If we replace "intertwiner" by "linear transformation" and
"representation" by "vector space" then the above axioms are still true. Thus, the
category Vec, whose objects are vector spaces and whose morphisms are linear
transformations is a rigid abelian tensor category.

Consider now the forgetful functor ω: Rep -»Vec which assigns to X the vector
space ω(X) = X, but considered only as a vector space and which assigns to
morphisms Tγχ the vector space homomorphisms ω(Tγχ)= Tγx, but considered
only as a linear transformation of vector spaces. This functor again satisfies some
evident properties, namely,

FF) If two intertwiners are equal as linear transformations they are equal as
intertwiners.

EF) ω takes exact sequences to exact sequences.
LF) ω takes direct sums and tensor products to direct sums and tensor

products.
Thus, co is faithful, exact, and /c-linear, Moreover
TF1) ω takes the isomorphism F in Rep to the isomorphism F in Vec.
TF2) ω takes the isomorphism Ω in Rep to the isomorphism Ω in Vec.
TF3) ω takes the identity object k in Rep to the identity object k in Vec.
Thus, ω is a tensor functor.
The group G is recovered in category theory by considering "automorphisms

of the tensor functor ω" (see below). Concretely, such automorphisms are families
(λx) of invertible linear transformations λx:X-^X for ^feObj(Rep) such that
λk = ί, λχ®γ = λx®λγ, and λ commutes with intertwiners Tγxλx = λγTγχ. First note
that the set of families of such transformations forms a group: The identity element
is the family of identity transformations and multiplication is defined by (λx) - (μx)
= (λx ° μx) and every family has an inverse family for this multiplication. Second,
note that any group element g defines such a family by λx = ρx(g). In fact, it is not
hard to show that the converse holds, and every such family is defined by a group
element. Let us check this, at least in a special case. Denote the group generated by
the families {λ} by Aut®. We have that G is a subgroup. Moreover, any
representation of G extends to a representation of Aut®. Next, note that any vector
if in some representation X which is fixed by G is also fixed by Aut®. For, suppose
a vector veX is fixed by QX(G). Then define an intertwiner T:k-+X between the
trivial representation k and X by T(z) = z - if for zek. We then have λ(v) = λ(T(ί))
= Tλί(l)=T(\) = v. So if is fixed by Aut®. In the case of continuous groups this
clearly means that Aut® cannot have any "broken generators," so the Lie
algebras must be the same, and since G is a subgroup we must have G^Aut®.
This argument can be generalized [41] to conclude more generally that
G^Aut®.

The above rather trivial observations have a nontrivial generalization [41,42]:
in some cases one encounters categories which are defined with no reference to a
group. If these categories satisfy certain axioms, one can conclude that in fact the
category is equivalent to the category of representations of a group. To state the
theorem one must generalize each of the above notions.

Briefly, an abelian tensor category is an abelian category [43] with a bilinear
functor (x): C x C-»C. Using (x) we can in fact construct two functors C x C->C
and several C x C x C->C. We would like these to be "the same," so we require that
there be two functorial isomorphisms FXιYtZ:X®(Y®Z)^(X®Y)®Z and
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Ωx Y:X®Y^Y®X called associativity and commutativity constraints. These are
required to satisfy the hexagon and pentagon axioms as in Sect. 7, where we
replace representations Rt by arbitrary objects. Moreover, we require that there be
a unit object 1 which has the property that 1 ® X ^ X for all objects X. We impose
further axioms which make the tensor category "rigid." Rigidity means that an
internal horn exists and satisfies certain axioms. Since the internal horn plays an
important role in the calculation of Eq. (C.I 5) below, we spell out the meaning of
this axiom. The existence of internal horn means that for every pair of objects X, Y
there is an object Hom(Jf, Y) and a morphism evx γ : Hom(X, Y)®X^Y, which
satisfy the following property: For every object T and every morphism
g: T(χ)Jf->y there is a unique morphism : T— >Hom(.\Γ, Y) such that the follow-
ing diagram commutes:

T®X

(C.2)

The existence of internal horn canonically leads to certain morphisms [the most
important being / in (C.3) below], and the rigidity axiom further states that these
are isomorphisms. For example, one defines JΓ^Hom(Jf, 1) and requires
(X*Y=X. As we have seen Rep(G) and Vec are rigid tensor categories.

The reconstruction of the group in the general case proceeds by studying
certain functors. A tensor functor between tensor categories is a functor which
transforms the tensor product from one category to the other, so e.g. for every pair
of objects X, Y there is an isomorphism cXίY:ω(X)®ω(Y)-+ω(X®Y) (which is
functorial). Moreover, the functor takes the commutativity and associativity
constraints of one category to the other, and also transforms a unit object of one
category to the other. The key construction is of the automorphisms of a tensor
functor of rigid tensor categories. Suppose ω : C^ ->C2 is a tensor functor between
two rigid tensor categories. An automorphism of ω is a family {λx} of morphisms
λx\ω(X)-^ω(X) with the property that λ1=id1, λX(S)Ycx [ γ = cx Ύλx®λΎ, and if
aγx : X-^ Y is a morphism in Cx then λγω(θίxγ) = co(uχγ)λx. One can show that the
rigidity axiom forces the /I's to be invertible [41]. Thus, as in the example before,
the collection Aut® of such families (λx) is a group.

We are now in a position to paraphrase:

Theorem 1 (Deligne-Milne [41]). // C is a rigid abelian tensor category, with
k = Hom(l , 1), and ω : C-> Vec is an exact faithful tensor functor, then C is equivalent
to the category of representations of the group Aut®.

For the proof see [41]. A functor of the type described in the theorem is called a
fiber functor. Recently, Deligne has shown that one can dispense with the
assumption of the existence of a fiber functor, and replace it with an integrality
condition on the rank ΐk(X) of objects of C. The rank is defined as follows. From
the universal property of Hom( , ) we obtain for each g a unique isomorphism /
satisfying

(Hom(Xl9

(C.3)

l (g) γ2) .
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Moreover, using the associativity and commutativity constraints and the evalu-
ation maps ev^z Fι there is a canonical choice of g which therefore defines a
canonical choice of/ In particular, taking X2 = 1 and Γt = 1 we obtain a canonical
isomorphism Hompf, 7) ^^Γv(χ) Z Similarly, the universal property of Horn shows
that we may uniquely associate a morphism /:l->Hompί, X) given a morphism
g:X-^X since with g we can form the diagram

1®X - > X

(Q4)

Again, there is a canonical choice for g, namely, g = id^, with this choice we obtain
a uniquely determined /0 and can therefore form the composition

1 -̂ -> Hom(JT, Jf) ̂  JT (x) JT ̂ ^ 1 . (C.5)

Since Hom(l, 1 ) = k we can take Hom(l, ) of the above sequence to obtain a map of
a one dimensional vector space to itself which can therefore be identified with an
element of /c, called the rank of X and denoted τk(X). Notice that for Rep(G),
following through this construction shows that rk(X) is just the dimension of the
vector space X. We may now quote

Theorem 2 (Deligne [42]). // C is a rigid abelίan tensor category such that
fc = Hom(l, 1) and τk(X) is a nonnegative integer for every ZeObj(C), then there
exists a fiber functor ω.

We are finally in a position to describe the application of these ideas to
conformal field theory. Recall that the axioms of classical rational conformal field
theory are the following:

Data:
1. An index set / and a bijection of / to itself written ii— >f .
2. Vector spaces: Vjk, i, j, he I, with
3. Isomorphisms:

Conditions:
1. (/7 = i.
2. ήjZδtjC, V^δifC, V^VJf,(VJtf*Vfr.
3. Ω},Ω[;. = 1.
4. The identities:

F(Ω®1)F = (1®Ω)F(1®Ω), (4.18a)

F23Fi2F23 = P23F13F12. (4.18b)

With the above data we can construct a rigid abelian tensor category as we now
show. We begin by defining a preadditive category C0. Its objects are simple
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objects Si for each i e I. The St are not defined in terms of any more elementary
concepts. We can define a preadditive category by defining a collection of horn-sets
with abelian group structure and compositions which are bilinear. The horn-sets
are defined by

{Oji} if i Φ j ,

Here 0H is the unique morphism S^Sj for i Φj and the abelian group structure is
defined by Ojt + Ojt = Ojt. We then define composition of arrows so that it is
bilinear.

This preadditive category can be turned into an additive category [43] Cx

whose objects are rc-tuples of objects of C0 (the null object is the 0-tuple).
Morphisms in C^ are matrices of morphisms in C0, and composition is given by
matrix multiplication together with composition and addition of the elements of
(C.8). It can be shown that C t is an additive and in fact an abelian category. So far
we have not used any of the data other than the index set /. The data 2, 3 are used to
turn GI into a rigid tensor category.

To begin, in any abelian category with vector space horn-sets we can to an
object X and a vector space FeObj(Vec) associate an object (more precisely, an
isomorphism class of objects) V®X [41]. One considers the transitive system
((Xn)a,φβa), where α runs over vector space isomorphisms α:/c"->K Xn

= X®X@...@X with n factors (this is only defined up to isomorphism), and
Φβ* (Xn)Λ^(Xn)β is defined by jS^αeGLfaC). An object V®X is any direct or
inverse limit (the two coinciding in this case) of the system, and can be taken to be
any of the Xn. The definition of V® X is thus analogous to the definition of tensors
adopted in most books on general relativity. One defines tensors to be multi-
indexed objects and simply specifies their transformation laws. Morphisms
Y-+V&X are families of morphisms £α: Y-+(Xn)Λ which are compatible with the
system, i.e., φβaίζa = ζβί and similarly for morphisms V®X-+Y. In particular, note
that a morphism V®X-+W®X canonically defines a vector space morphism
F-> W. In terms of this construction and the simple objects we can define the tensor
functor by taking

(C.9)

and then extending ® to other objects by linearity. The data (C.6) now provide us
with associativity constraints, defining, for simple objects, isomorphisms Ω: Sj®Sk

^Sk®Sj and F:Si®(Sj®Sk)^(Si®Sj)®Sk. For example, Ω is defined by the
matrix of morphisms

Ωfjk®idSl

We can take F0°0 = C and then SQ with an obvious isomorphism is an identity
object. To show rigidity we begin by showing that if we take Hom(Sί,S0) = (Sί)

v

^ Sr, then Sr satisfies the universal property, the evaluation map being given by

J.^ 0 ^.(χ)S^j/P.(χ)S0^S0. (C.ll)
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(We must choose a basis of l°t e V^ to define the last isomorphism.) We may then
extend the dual by linearity to obtain X* for all objects X. Clearly, every object is
reflexive. Finally, we take Hom(SbSj)^SΓ®Sp defining the evaluation map
similarly to (Cil), that is, by the following composition of morphisms:

we can check the universality property and extend by linearity to other objects.
It remains to express Deligne's integrality condition in terms of a condition on

the above data. Following through the above definitions we see that the
computation of the morphism /0 in (C.5) (with X = Si) follows from the diagram:

So® Si ̂

ΐ

ΐ ev,,0®ids.

^ Θ (® VZ®V& ®Sr

 ΩF 1(Ω®1}> Θ (® VZ® V& ®Sr (C.I 3)
r \ l ) r \ l )

Recall that morphisms are given by matrices of more elementary morphisms.
Considering f0 : V^-* © V^® V^ the only non vanishing component is in the space

/
with / = 0. This is determined by a single nonvanishing element of /c, call it z, which
is in fact rk(Sf). It remains to evaluate the matrix along the bottom row of (C.I 3) the
idSι component of which is

®(Ω|Γ®1)FΓZ I .,

For the computation of z we need only look at the term with l = r = 0. The
commutativity of the diagram forces

z(Ω!o®l)Foo .

Using the identity F"1 ~Ω®ΩFΩ®Ω finally gives

*&)= r. ..vπ^^-
-* i

Note that the quantity in the denominator is a linear map of a one-dimensional
vector space to itself and is therefore a canonically defined complex number.
Equation (C.I 5) is in agreement with Eq. (7.14). Thus, by Theorems 1 and 2, when
(C.I5) is a nonnegative integer for all i we can identify our category with the
category of representations of a group, and the isomorphisms F are the analogs of
the 6j symbols as in Sect. 7.
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Appendix D. Examples of Solutions

For simple fusion rule algebras one can solve the equations of Sect. 4 by hand. We
give here a few examples of such solutions in order to illustrate some points about
the integral parts of A, c/8 and about the algebraic nature of operator product
coefficients.

1. I sing Model. In this case we have three representations 1, ψ, σ with the
famous fusion rule algebra:

ψχψ = l, ψxσ = σ, σxσ = l-\-ψ. (D.I)

To solve for the linear transformations we must choose bases for the various vector
spaces (i.e. we must "choose a gauge" in the terminology of [11]) and we do this by
demanding that ||Φ}fc|| [recall the notation of (2.9)] be totally symmetric in z, j9 k,
and that

F\σ Ψ]=F\V σ]=F\ψ *]=F\σ σ l = l . (D.2)
σ w \ w σ \ σ σ w wl_ r _ J l_τ _J L _J L _ r τ _ l

As discussed above, when two identical representations occur in Vjk9 some of the
permutations σ could have eigenvalues ξ=—l. To simplify the analysis in this
example, we will assume the eigenvalues are all +1. This is clearly the case in the
Ising model. Define χ = eίπAlp, y = eiπΛσ and

Ψ ψ\, β = F\σ Vl. (D.3)
Ψ ipj \_ψ σj

From (4.5) we obtain a2 = β2 = \ and

σj = 1 (D'4)

From the pentagon we have

(D.5)
σ

_ . _. ^ σ

From (D.4) and (D.5) we deduce that

Γσ σΊ = J L /l 1

[σ σj j/^l -1

with y2 = 1. Defining

we have from (4.6)

DFσ θF D = F /, (D.6)
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1 +x
which implies that x2=— 1 and y4 = y—;=- from which we find y8 = x and

1/2
yΐβ = — 1, and therefore γ = (y4 + y 4)/|/2. Applying (4.6) once more shows that
α —1, β= —1. The equations on the torus lead to

Ί J/2 1

5(0) =^|/2 0 -]/2 (D.7)

and
ίπc

e^ = y2', y = l. (D.8)

±-
Thus, all the matrices are determined from a single choice of y such that y4 = e 4.
For example, one may then easily compute

(D.9)

The operator product coefficients are seen to be (dψσσ)
2 = (d0σσ)

2 = 1. Giving a
complete solution on the plane. Naively, it seems that each of these eight solutions
has a physical realization in terms of 0(2m-f 1) level 1 current algebra in which
there are three primary fields 1, ψ, σ with weights 0, 1/2, γ^(2w+1) respectively.
However, the assumption that all the σ's are realized as ξ= +1 is not satisfied for
all m but only for m = 0mod4.

Let us compare the above matrices with the explicit blocks known for the Ising
model. From the 4-spin correlation function [1] we see that with the normalization
to obtain (D.9) we have

l+l/l-x

2 '
(D.10)

Hence in this basis the chiral vertex operators have a nontrivial normalization
||Φ^J|2 = 1/2. We may use this to derive the physical operator product expansion
coefficient cσσε (ε is the energy operator) defined by

The physical vertex operators are

From these equations one may deduce c*σε=l/4 in agreement with [56]
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In this case it is very easy to show how analytic constraints on the sections
restrict the integer parts of Aσ, Aψ, c/8. Choosing the root y = eιπ/lβ and defining Aσ

= 1/16 + 2nσ, Aψ = l/2 + 2nψ, c = 1/2 + $nc (with nσ, nv, nc e Z) we see that «(τ))24 is
a modular form of weight 12 + 48«φ whose ^-expansion begins with
g1+48"σ~8"c[l -f...]. If we make the (physically reasonable) assumption that the
partition function only has a zero at τ-n'oo, then it must be a power oϊη24 and we
obtain 6nσ — nc = 6nψ = 0. Similar considerations might fix the integers nσ, nc up to
tensor products with c = 24 theories. (Note that in the Ising case all these integers
are zero, from which one immediately obtains the one-point block η(τ) (dz)1/2. This
block can also be derived by factorizing the φ-channel two-point block for <σσ)
on the torus:

where θ are Jacobi theta functions, which may in turn be extracted from [56].)

2. Another simple but instructive example is provided by the fusion rules for
two fields 1, φ with φxφ = l+φ. Defining χ = eiπAφ one easily finds:

U φ](a± 1 \

LΦ Φj \a± -«±/
(D.ll)

The operator product coefficients may be found, e.g.

(dk)2=— d°φφ. (D.12)
a +

As discussed in [18] the choice a+ >0 should correspond to a unitary theory and
a - < 0 to a nonunitary theory, in accord with the observations in [9]. This example
is also useful for studying the reconstruction problem. Namely, it is easily shown
that the conformal blocks 3?^ ^φ for the four-point function of φ are uniquely
determined from the above monodromies together with (1) a choise of the integral
part of Aφ and (2) the assumption that the conformal blocks have no common
zeroes. It would be very interesting to see whether the generalization of the latter
assumption leads to any general uniqueness theorems.

3. SU(2), fc = 3. This example clarifies some of the issues associated with the
transcendental nature of operator product coefficients.1Ί The primary fields in this
theory have spins 0, |, 1, f with the usual SU(2) current algebra fusion rules, e.g.
\ x \ = 0 +1, one can solve for the duality matrices up to a few discrete choices of

17 To the best of our knowledge this issue was first addressed in unpublished work of D. Friedan
and S. Shenker. Based on the example of the c —7/10 model they suggested, in various seminars,
that all transcendental numbers could be absorbed into the normalization of the conformal
blocks. Our results give a first step towards proving this assertion
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"1 1"

signs ( a solution for B 2 2 for any level appears in [30] I. In this example some
V L* *J /

of the eigenvalues of the permutations σ are — 1. Choosing the signs appropriate
to this example we find:

'i-i/i ι
ίίF l ? J

2/5-7 2
κ 7 (D.I 3)

2 _ l+/5
"i.i.i- 2 '

These are algebraic numbers and should be compared to the transcendental
numbers found by Knizhnik and Zamalodchikov [2]. By comparing two
singularities of the four-point function of the spin \ field we obtain

f̂ j ,D,4,
l|Φ*'lll1+'ί"'lF"U l\) Γnifrgf + 4Γ(})»r(f)'r(f)='

from which one may recover dl^^ in (D.I3). The difference in operator product
expansion coefficients is, therefore, a difference in normalization of the chiral
vertex operators. The above examples (and others) suggest that a given fusion rule
algebra always has a discrete set of solutions for F, d. In this case the numbers F, d
must be algebraic, and hence any "gauge-invariant" combination of operator
product coefficients will be algebraic. It would be of interest to see if this has any
implications for the algebraic nature of F-functions at rational arguments.

Appendix E. The Pentagon as a 3-Cocycle Condition

There is one class of fusion rules for which the polynomial equations admit a very
general solution, namely, when there is only one representation on the right-hand
side of every fusion rule. A little thought reveals that such fusion rules are in one-
one correspondence with abelian groups. In this appendix we show that for such
fusion rules the polynomial equations on the plane admit an interpretation in terms
of group cohomology. This might be a hint at another interpretation of the
equations, and might prove a useful starting point for finding a general solution to
the equations.

If A is the abelian group defining the fusion rules, then all spaces of intertwiners
are zero or one-dimensional, and the one dimensional spaces are always of the
form Vg^g2. Therefore, choosing a basis \g^92 for these spaces we interpret our
basic data in terms of C*-valued functions on A, A x A, A x A x A:

σ(gι»g2)=±l,

(E.I)
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Under a change of basis I g i, g 2->^(gi 5g2)lg l fg 2 j we nave to change

i, 82) = 0(81,82),
(K2)

We can interpret some of our equations in terms of the cohomology groups
Hk(A,C*). Recall that these are defined as follows [57, 58]. A fc-cochain is a
function A . ~±

c\A x ...A-*C* .
/c-times

The coboundary operation on a /c-chain is defined by

For example, for zero and one-cochains we have

•«• ««-•>-»
•*•->• **•—

As usual the cohomology groups are the groups of cocycles modulo coboundaries.
We may interpret F and Ω as 2 and 3 cochains respectively. Note that under a

change of basis ( = "gauge transformation") the fusing matrix F changes by a
coboundary. Moreover, it is easy to see that the pentagon condition is the
statement that F is a three-cocycle:18

l> g2> g3)

So the gauge-invariant information in F is a class in H3(A,C*).19

The two hexagon equations give

^W(g1)w(g2)w(g3)w(g1g2g3)\2

(E.5)
\ nsι&2;»nsιg3;vng2S3; /

and

1? g2> g3/ °vg23 g3/°vgl? g3/ I 'r\t>ιs'r\t>2S"\t>όS"\fc>ιc>2&ά/ j /p /-\

18 A similar remark was made (independently!) in the context of category theory by N. Saavedra,
voir [40]
19 In [59] three-cocycles where used to discuss the failure of associativity of operators. Here
the opposite is true, since the pentagon is derived from the associativity of the operator product
expansion
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All the above considerations apply to an arbitrary abelian group (defining a
quasirational conformal field theory). If A is a finite abelian group we can write
A = Z/m^Z x ... x Z/WjZ with mi\mi+ί. Writing a group element f = (r1? . . ., rz) (with
an additive group law) the most general solution of (E.5) is Δr = f a f + b r + n(r)
where n(r) is an integer with rc(0) = 0, n(r) = n( — r) and a is a quadratic form with

(E 7)

Further restrictions on the weights can be deduced from the torus equations. From
the expression for S in terms of duality matrices we have

e-2πi[Agl+Ag2-Aglg2]

Έ - (E 8)

Putting this back into the equation SaS~l — b, we find that the quadratic form a

f fc }
must be diagonal with a = diag < — — > and (fef, mt ) = 1 . Moreover, F must be a one-

cocycle. No further information is obtained from S2 = C. The remaining equation
constrains c. Defining k

\ eπ™r2 = mll2eίφ(k<m}, (E.9)
r = 0

the phase can be evaluated in terms of Gauss sums [60]. The condition on c is

Since the phase of a Gauss sum is always an eight root of unity, we see that c must
be an integer.

Although one could use the above remarks to give a complete solution for
arbitrary finite abelian groups, we will henceforth restrict ourselves to the case of
A = Z/mZ and give a complete solution. Consider first the restrictions on c. These

are expressed in terms of the Jacobi symbol ( — I defined as follows. For p prime
n\ \m/ fn\
- = +1 if there is an r with n = r2modp. If no such r exists then I - = —1. If
P/ \PJ
= pi...pt is the prime factorization of m, then for (n,m) = l we define

For m odd and k even we may distinguish four cases:

m=l(4), = _ί c = 4(8);
m /

(E.H)
= 3(4), — 1 = 1 , c = 2(8),

m

= 3(4), = -\, c = 6(8).
m
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When m is even we write m = 2lm with m odd and distinguish twelve cases:

/k2l+1\
m=l(4), (— — ) = 1 , (/ + !) = 1(2), c = fcm(8),

m=l(4), — — =l, (ί + l) = 0(2),

/fc2 / + 1 \
= l , (ί+l) = 0(2), m/c = 3(4), c = 7(8),

//c2/+

m=l(4),
/c2 / + 1\

= 0(2), mfc = l(4), c = 5(8),

2l

m=l(4), - -l, (/+1) = 0(2),
m /

(K12)

m = 3(4), (— — J = l , (/+!) = 1(2),

/k2l+1\
= 3(4), ί— — J = l , (/+1) = 0(2), Λ

//c2 / + 1\
= 3(4), - =1, (/ + 1) = 0(2), mfc = 3(4), c = 0(8),

V m /

//c2 ί + 1\
m = 3(4), ί— — J = -l, (/+!)= 1(2), c-

m = 3(4), = -!> (ί+l) = 0(2)> mfc = l(4), c = 6(8),
V m /

A2 / + 1\
m = 3(4), = -!> (/+1) = 0(2), mfc = 3(4), c = 4(8).V m /

We can use group cohomology to solve for F.20 The cohomology groups of
Z/mZ are

(A Γ*\=7.ln>7. N (A Γ*^ = Π , ^^

the two coefficient systems being related by the exponential sequence. From the
representative of the generator f(r) = e2πιr/m oϊH1(A, C*) we may use the long exact
sequence in cohomology to obtain a generator

1 _
2 m 1 2 1 2

' We would like to thank D. Kazhdan for some help with group cohomology
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for H2(A, Z), and therefore, we obtain

\ _ _ _ _ .

for H\A, Z\ where r is the residue of r modulo m. From this, going backwards in
the long exact sequence we obtain a representative of the generator for H3(A, C*):

(E.I 4)

From the hexagon equation we find F(gί9g2,g3)F(g39g29gl) = δσ(gί,g2,g3), and
since F = ys up to a coboundary, and y ( r 3 9 r 2 9 r l ) = γ ( r ί 9 r 2 9 r 3 ) up to a coboundary
we find that 2s = 0(m), and hence F is pure gauge when m is odd and is pure gauge or
cohomologous to ym/2 when m is even. In gauging F to one must be careful about σ,
since the change of gauge might spoil the physical requirement that σ be ± 1 with
-h 1 for distinct group elements. Demanding that there exist a gauge satisfying this
physical requirement, and using some further group cohomology one can show
that F can always be gauged to one. Moreover, the complete solution in this case is
given by any choice of n(r) with one of

F = 1 , σ(r, r) - eίπn(2r} m even or odd ,

F = 1 9 σ(r,r) = eiπn(2r)~iπr2 meven.

Based on this example we might speculate that one can define some kind of
nonabelian cohomology theory for general fusion rule algebras in which the
pentagon condition is a 3-cocycle condition. Such an interpretation might be very
helpful in fidinging the general solution to the equations.
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Note added in proof. After completing this work, we noticed that the solution for S in terms of F
and Ω [11, 18] satisfies Eq. (4.18e). Hence, this equation can be replaced by a definition of S in
terms of F and Ω.




