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Abstract. We consider the quantum mechanical many-body problem of
electrons and fixed nuclei interacting via Coulomb forces, but with a relativistic
form for the kinetic energy, namely p2/2m is replaced by (p2c2 + m2c4)1/2 — me2.
The electrons are allowed to have q spin states (q = 2 in nature). For one
electron and one nucleus instability occurs if zα > 2/π, where z is the nuclear
charge and α is the fine structure constant. We prove that stability occurs in the
many-body case if zα;g2/π and α< ί/(47q). For small z, a better bound on α is
also given. In the other direction we show that there is a critical αc (no greater
than 128/15π) such that if α>αc then instability always occurs for all positive z
(not necessarily integral) when the number of nuclei is large enough. Several
other results of a technical nature are also given such as localization estimates
and bounds for the relativistic kinetic energy.

I. Introduction

One of the early important successes of quantum mechanics was the interpretation
of the stability of the hydrogen atom. The ground state energy of the hydrogen
Hamiltonian is finite and thus the hydrogen atom is stable quantum mechanically,
even though it is unstable classically. The Coulomb singularity —ze2/r is
controlled by a new feature of Schrόdinger mechanics, the uncertainty principle.
While the stability of the hydrogen atom is clear and simple, a more subtle question
arises when many particles are taken into account. It is convenient to distinguish
two notions of stability.

Stability of the first kind: The ground state energy is finite.
Stability of the second kind: The ground state energy is bounded below by a

constant times the number of particles.
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The second kind of stability, now commonly known as the stability of matter,
was proved in 1967 by Dyson and Lenard [10] - four decades after the invention of
Schrodinger mechanics. The Dyson-Lenard analysis clearly showed that the
stability of matter depends crucially on the Pauli exclusion principle. The ground
state energy (call if Ef) of N fermions interacting with K infinitely massive nuclei
via the Coulomb potential is bounded below by a constant time the total particle
number, i.e. Ef^ —C^N + K). On the other hand, if all the particles considered
are bosons, Dyson and Lenard [10] showed that the ground state energy (call it Eb)
satisfies Eb^ -C2(N + K)5/3>. Lieb [20] showed that this 5/3 bound is indeed the
correct law for infinitely massive nuclei. If the nuclei have finite mass, and are also
bosons, Dyson [9] showed by a variational calculation, that the ground state
energy of bosons is bounded above by Eb ̂  — C3(JV + K ) Ί / 5 . This clearly shows that
bosons are stable in the first sense, but never in the second. Dyson [9] also
conjectured a lower bound Eb^ —C4(N + K)115 and this was finally proved 20
years later by Conlon, Lieb, and Yau [4]. They also proved a related bound for
bosonic jellium.

The Dyson-Lenard proof for fermions involved a sequence of inequalities such
that the final bound for CΊ is 1014 Rydberg. New proofs were given by Federbush
[12] and Lieb-Thirring [25] in the seventies. The Lieb-Thirring proof gave a much
better bound on Cγ (23 Rydbergs) and related the stability problem to the
semiclassical picture of Thomas-Fermi theory. These matters are reviewed in [19].

The aforementioned considerations are all based on the nonrelativistic
Schrodinger equation. The kinetic energy operator is the standard p2/2m = — A /2m
(when h=ί). One might wonder whether stability still prevails in the relativistic
case since the kinetic energy then decreases from p2/2m to (/?2 + m2)1/2

— m(ft = c = l). Historically, Chandrasekhar [2] was one of the first to ask this
question, but in the context of gravitational interaction instead of Coulomb
interaction. The famous Chandrasekhar model for neutron stars or white dwarfs
consists of a semiclassical relativistic kinetic energy and classical gravitational
potential energy. This simple model remarkably predicted collapse (i.e. insta-
bility of the first kind) and gave a critical mass which is correct, at least
approximately. Despite the success of the simple semi-relativistic Chandrasekhar
theory, the kinetic energy operator,

which it employs is nonlocal and therefore violates a basic physical principle.
Nevertheless it is worthwhile studying this operator for several reasons. When
m = Q,T=\p\ and it has the correct inverse length scaling (like the Dirac operator).
Unlike the Dirac operator it allows one to formulate a variational principle for the
ground state energy and thereby to give a rigorous definition of stability without
the necessity of filling the Dirac sea or invoking quantum electrodynamics. In any
event, there does not exist a truly relativistic many-body quantum theory at the
present time and it is our belief that the study of Schrodinger operators based on T
will capture some of the essential features of "the correct theory" when it is
eventually formulated.
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Let us start with the Hydrogen atom by considering the one particle
Hamiltonian H defined by

Hί = (p2 + m2}ll2-m-az/\x\y (1.1)

where a = e2 is the fine structure constant (h = c = 1). This operator was studied
independently by Weder [29] and Herbst [16]. See also Daubechies' paper [7].
Since the difference between the operator (p2 -\-m2)112 — m and \p\ is bounded (more
precisely \p\^(p2 + m2)1/2~m^\p\ — m), the stability of (1.1) is the same as the
stability of

H1=\p\--β/\x, (1.2)
π

where

β = πaz/2. (1.3)

Note that (1.2) is homogeneous under length scaling and therefore E1 =i
is either 0 or — oo by the scaling ψ(x)-+λ*l2ψ(λx).

A first important fact about (1.2) is the existence of a critical βc= 1, similar to
that of the Klein-Gorden or Dirac theories. Kato [17] stated that βc^ί and
Herbst [16] showed that βc= 1. The ground state energy for the Hamiltonian (1.2)
is E1--oo if β>\ and £ 1 =0if β<*\. (in the Dirac theory j8c = π/2.)

Returning to the many-body case, suppose we have N electrons with
coordinates x l 5 . . . , X N in R3 and K nuclei with coordinates Rl9 ...,RK in R3 and
with positive charges z l 5...,z^. We shall consider the following relativistic
Schrόdinger Hamiltonian, HNK) for fermions with q spin states (q = 2 for real
electrons). It is the analogue of (1.2):

HNK= Σ \Pi\ + *Vc(xl9...9XN 9Rl9...9Rκ)9 (1.4)

(1.5)

Vc(xί,...,xN;Rl,...,Rκ)= I \Xi-Xj\~ -Σ Σ
1 ^ i < j ^ N i - 1 j = 1

Note that charge neutrality is not assumed in (1.4), or anywhere else in this paper.
Mathematically, the Hamiltonian HNK is a quadratic form on the g-state

physical subspace 2tfq of L2(IR3]V). More precisely, ip e ̂ q if and only if there exists
a partition P = {πl, ...,nq} of (1, ...,7V} such that tp(x1; ...,:x#) ^s an antisymmetric
function of the variables in each πj9 for all 1 gj ̂  q. When q = TV, there is no
restriction and the ground state energy for HNK is just the ground state energy for
bosons.

Physically, the nuclear kinetic energies should be included in (1.4) since the
Born-Oppenheimer approximation (i.e. the neglect of the nuclear kinetic energies)
is inadequate in the extreme relativistic regime. For simplicity, we shall confine
ourselves to the Born-Oppenheimer approximation.

In reality, our goal is to discuss stability of the second kind for HNK(m\ which is
given by (1.4) but with \p\ replaced by (p2 + m2)1/2 — m there. For this purpose,
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however, it suffices to study only stability of the first kind for HNK in (1.4). The
reason is the following. Let ENK(R^ ...,RK) denote the ground state energy
(= inf spec) of HNK and let ENK be the infimum of ENK(R 3 , . . . , Rκ) over all choices of
the .R's. By simple scaling (ψ(xl9..., xN)-+λ3N/2ιp(λxl,..., λxN) and Rj-*Rj/λ)9 we see
that ENK is either zero or — oo. On the other hand, iϊENK(m) is defined analogously,
then, since \p\ — m<(p2 + m2)1/2 — m<|p|, we have that ENK^ENK(m)^ENK — mN.
Thus stability of the first kind for HNK (in the sense that ENK is bounded below
independent of the Rj) is equivalent to stability of the second kind for HNK(m). Our
goal then - and that is the purpose of this paper - is to find necessary conditions
and sufficient conditions on z and α so that ENK(R t,..., Rκ) ̂  0 for all N and all K
and all Rί9...9Rκ.

If everything is held fixed except for q, then ENK(Rl9 ...,RK) is a monotone
decreasing function of q. The reason is that specifying q is the same thing as
requiring that the admissable wave functions ψ(xί9 ...,x#) are antisymmetric in
each of q sets of variables. The number of variables in each set is unimportant, zero
being an allowed number. Thus, a valid function for q is trivially a valid function
for q + l.

A further remark about (1.4) can be made. Using a convexity argument,
Daubechies and Lieb [8] proved that the stability of HNK for z1 = z2 = ... = zκ = z
implies the stability of HNK when all the nuclear charges are no greater than z, i.e.
0 ̂  Zj rg z for all j. With this remark, we shall assume from now on z 3 = ... = zk = z.

Let ENK(a, z) denote the dependence of ENK on α and z. We shall use the
following terminology: H(α, z) is stable means that ENK(%, z) = 0 for all N and K.
Otherwise we say that //(α, z) is unstable.

The coupling constant of the electrons to the nuclei is zα = 2β/π and, from the
hydrogen atom result, it is clearly necessary to have β^\ for stability. It is
frequently convenient, therefore, to adopt α and β as the independent variables
instead of α and z. When doing so we shall refer to the stability or instability of
//(α, β) - hopefully without confusion. Indeed α and β are the natural variables
from the following point of view. The electron-nuclear coupling is 2β/π while the
nuclear-nuclear repulsion constant is z2α = (2/π)2/?2/α. Suppose that K>ί and
β < 1, but Kβ > 1. Then, if the nuclear-nuclear repulsion is ignored, the K nuclei can
come to one common point and the system will collapse - even with only one
electron. What discourages this from happening is the repulsion which is
proportional to /?2/α. With β fixed, we see that α is required to be small in order that
this repulsion prevents collapse. It is a striking fact, and it is the main theme of this
paper, that for every fixed j3 ̂  1 and q there is a critical α (call it ac(β)) so that
H(a9β) is stable when α<αc(β). There is another critical α (call it ΰc(β}) so that
//(α, β) is unstable when α > άc(/J). These facts are the reason behind the contention
above that α and β are natural. We do not know whether or not oίc(β} = ΰc(β}. Note
that by the above monotonicity in z remark, stability for some (α,/^) implies
stability for all (α,/J) with β<β^

There is an additional piece of information. Suppose that stability occurs for a
pair α 1 ? z. Then stability occurs for a pair α, z if α^α t . The reason for the
monotonicity in α is that inf specQΓ |pt + αFc)^(l — α/αj inf spe
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Before stating our main results in detail, let us review some recent progress with
this and related problems that also have the feature of critical coupling constants.

(1) The Chandrasekhar critical mass was established up to a factor of 4 in the
framework of the relativistic Schrόdinger equation by Lieb-Thirring [26]. Later,
Lieb-Yau [27] proved that not only is the Chandrasekhar critical mass exactly
correct, but the Chandrasekhar semiclassical equation can be derived rigorously
from the relativistic Schrόdinger equation in the limit that the gravitational
constant G-»0. In particular, in the physically interesting case, the discrepancy
between the Chandrasekhar semiclassical critical mass and the quantum mechan-
ical critical mass was shown in [27] to be less than 0.01%.

(2) For the non-relativistic Schrδdinger equation, but with magnetic fields
present that couple to both the electronic orbital motion and electronic spin, the
existence of a critical nuclear charge for the stability of the hydrogen atom was
proved by Frόhlich, Lieb, Loss, and Yau [15, 28]. The results were extended to the
one-electron molecule and many-electron atom by Lieb and Loss [23]. The
stability criteria are very similar to that of the relativistic stability considered in
this paper. For stability, one should keep both %2z and α small. The general case for
this model (many electrons and nuclei) remains an interesting open problem.

(3) The relativistic stability of matter itself. For N=l and K arbitrary,
Daubechies and Lieb [8] were the first to note the existence of a critical α and β
fixed. They proved that Hΐκ is stable in the critical case β = πaz/2=l if α^l/3π.
The first person to solve a general case for all N and K was Conlon [3], who proved
that the Hamiltonian //(α,z) is stable when z=l provided α^lO" 2 0 0 and q = l.
Using a different method, Fefferman and de la Llave [14] improved Conlon's
result for z=l to α^l/2.06π, and again q=\. The Fefferman-de la Llave proof
used computer assisted proofs extensively. Without using a computer, their bound
would be worse by a factor 2.5, thereby reducing α to l/5π. Recently, Fefferman
[13] announced a result for the critical case /?=! provided some numerical
computer calculations can be made rigorous. The stability criterion announced in
[13] is that stability occurs in the critical case β = 1 if α g 1/20 and q = 1. A complete
proof, however, was not available when the present paper was written. Since
H(a,β) collapses for β>ί no matter how small the difference β — 1 may be, the
application of computer assisted proofs to the β = 1 case is delicate and difficult.
Fefferman [13] states that "arbitrarily small roundoff errors are apparently fatal."

All the results mentioned above address the situation q = l. The methods
employed are not, in our opinion, easily generalized to treat arbitrary q, as is done
here. The ability to treat arbitrary q without increasing the complexity of the proof
as q increases is, in our opinion, one of the main advantages of our method.
Another is that we have no intrinsic need to invoke the computer. The essence of
our method is that for all q the many-body problem is reduced to a tractable one-body
problem (see e.g. Theorems 6 and 11). This method also makes it possible to prove,
for the first time, that stability occurs up to and including the critical value β—\.

We should point out that the main tool in proving the nonrelativistic stability
of matter, the Thomas-Fermi theory, fails to predict stability in the relativistic case.
The semiclassical kinetic energy decreases in the high momentum region from
(const) J ρ5/3 in the nonrelativistic case to (const) { ρ4/3 in the relativistic case. This
semiclassical kinetic energy, J ρ4/3, cannot control the Coulomb singularity zα/r for
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any α > 0. The fact that stability occurs only for some finite α > 0 and z > 0 is not a
trivial matter (see Conlon [3]). A good estimate for α, especially when β is set
equal to its critical value 1, is very difficult to achieve and should resolve the
following subtle points:

(i) The delicate balance of charge neutrality. If, for example, the attractive term
in Vc is changed from zα £ £ xt - Rj\~ 1 to zα(l + ε) £ X |x f - R, | " 1 for some ε > 0,
then stability will not occur for any positive α αrcd z. Physically, an attractive
gravitational interaction is present and it does alter the Hamiltonian in precisely
this manner - collapse does indeed occur. But the gravitational constant is small,
and this collapse happens only when N and K are extremely large - the order of a
solar mass [26, 27]. Indeed, the problem of determining the critical mass when
Coulomb and gravitational interactions are both taken into account is a difficult
open problem. ~

(ii) An improved version of the basic inequality \p\ -- |x| ~ 1 ̂  0 is needed. This
π

is apparently crucial since each electron in general feels attractions from more than
one nucleus. One may argue that, by virtue of screening, each electron feels only
one attraction from its nearest nucleus, but it is difficult to find a simple, precise
mathematical statement about screening. Indeed, some corrections (e.g. van der
Waals force) are obviously unavoidable and can only be controlled by the kinetic
energy.

(iii) The nonlocality of the operator \p\. The technical problems caused by this
non-locality are serious, especially since the Coulomb potential is long-ranged.

Our main results are the following four theorems about stability and
instability.

Theorem 1 (Simple Stability Criterion). For any z > 0 and q, the Hamiltonian ff (α, z)
is stable if

α^supv4,(z% (1.6)
z' ^.z

where

1[l+^ 1/ 3z- 1/ 3C(z)- 1/ 3]- 1, (1.7)

(1.8)
Corollary. Fix /J = zαπ/2<l. Then stability occurs if

< j0.062980(l-β)3jT2 if β^O.49910
q*= [0.031774 if β^O.49910. ( < J

Remark. There is a number z1} which is roughly 0.6, such that if z^z t then the
supremum in (1.6) occurs for z' = z, while if z^zί the supremum occurs for zf = z1.

Theorem 2 (Stability criterion for β ̂  1). Fix β ̂  1 . Then the Hamiltonian H(α, β) is
stable if

Theorem 3 (Instability for all z and q). There is a critical value α x such that if α > oci

then H(α, z) is unstable for every q^i and every nuclear charge z > 0 (not necessarily
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integral), no matter how small z may be. This means that if α>α l 5 one can always
choose N and K so that ENK(u.,z)= — oo. In order to achieve this collapse, it is only
necessary to use one electron, i.e. N=l. One can take o^ = 128/15π.

Theorem 4 (Instability dependence on q). Let β = παz/2 as in (1.3). There is a critical
value oί2 such that if

^β-2, (1.10)

then H(a, β) is always unstable. To achieve this collapse, only N = q electrons are
needed. One can take α2^115, 120. Alternatively, α>36g~1 / 3z2 / 3.

Corollary. // the electrons are bosons then H(a,z) is unstable for all α>0 and all
fixed z>0. The number of electrons necessary to achieve this collapse satisfies
JV^4π- 2α 2z~ 2or 3.

Remarks. In view of Theorem 3, the number 115,120 should not be taken seriously.
Its large value merely demonstrates how difficult it is to find simple, rigorous
bounds - even variational upper bounds - for the relativistic Coulomb problem.

These theorems, taken together, give a clear picture about the stability of
relativistic matter. The relevant parameters for stability are aq (if β is fixed) and
αg1/3 (if z is fixed). An upper bound for cc which is independent of z and q is given in
Theorem 3. β is never larger than 1. Theorem 1 clearly fails to predict stability for
the critical case αz = 2/π, but its proof is considerably simpler than that of
Theorem 2. It also gives the correct q dependence (when z is fixed), and its bound
on α for small z is better than that of Theorem 2.

To gain perspective on how good these bounds are, we specialize our results to
the following two cases. First, in the critical case, our upper bound (Theorem 2)
and lower bound (Theorem 3) differ by a factor of 128 for q = 1. Second, for z = 1
and q = l, Theorem 1 predicts stability for α^l/3.23π, which is not appreciably
worse than the computer assisted proof bound l/2.06π in [14]. Our bounds in
Theorem 1 and Theorem 2 can certainly be improved, as will become clear in the
proofs given below. We refrain from the temptation to optimize our results by
complicating the technicalities. Our goal is to give a simple conceptual proof which
has the correct q dependence and reasonable estimates.

Our proofs for Theorem 3 and 4 follow the same idea used in [23, 20].
Theorems 1 and 2 are much more difficult. Our basic strategy is first to reduce the
Coulomb potential to a one-body potential, W. Then, by localizing the kinetic
energy \p\, we can control the short distance Coulomb singularity of W, leaving a
bounded potential W* as remainder. The last task is to bound the sum of the
negative eigenvalues of \p\ + W*, but this is standard and can be done by using
semiclassical bounds ([6]).

The following Theorem 5 is a consequence of our localization for \p\ and
combinatorial ideas in [26]. Theorem 5 was announced in [27, Appendix B],
where it was proved for the special case q = N. Earlier, Fefferman and de la Llave
[14] proved it for q — 1. This theorem is not needed in the present work, but it is
independently interesting. (Note that the definition of δt below is the reciprocal of
that in [27].)
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Theorem 5 (Domination of the nearest neighbor attraction by kinetic energy). Let
δt = δt(x 1 5..., XN) be the nearest neighbor distance for particle i relative toN — l other
particles, i.e.

(^•ΞminllXj — X j l l j φ i } . (1.11)

Let ip e L2(IR3ΛΓ) be an N particle fermionic function of space-spin with q spin states.
Then

Σ (ψ,\PM^Cιq-
ί/3 Σ (Ψ^ΓV), (1.12)

i= 1 i= 1

N N

i = l ~ i = l

where

Cx =0.129, C2-0.0209. (1.14)

The organization of the rest of this paper is as follows:
In Sects. II and III, we prove Theorems 1 and 2 assuming an electrostatic

inequality for the Coulomb potential and localization estimates for |p|. The
theorems used in Sects. II and III are then proved in Sects. IV-VII. The
presentation has been broken up this way in order to stress the conceptual
underpinnings of Theorems 1 and 2.

Theorem 5 is proved in Sect. V. Some details of our numerical calculations are
explained in Sect. VIII. In the final Sect. IX we prove Theorems 3 and 4.

II. Proof of Theorem 1 (zα < 2/π)

The proofs of Theorems 1 and 2 are conceptually much simpler than the following
detailed calculations and technicalities would suggest. There are three main steps
for Theorem 1 and five steps for Theorem 2. Step A is the same for both theorems.

Step A. Reduction of the many-body Coulomb potential to a sum of one-body
N

potentials plus a positive constant, namely - Σ W(xt) + C. This reduces the
i

problem to that of showing that q times the sum of the negative eigenvalues of the
operator |p| - W is not less than - C.

In the next step we decompose R3 into regions J50, Bl9..., Bκ where the Bt are
disjoint balls centered at the Rt and B0 is everything else.

Step B. We write \p\=β\p\+(l -β) \p\ with β = zαπ/2 < 1. In the balls Bi9 i=\9...,K
we use β\p\ to control the Coulomb singularity of W and prove the operator
inequality -. — -. (2Λ)

where U = W in B0 and U is a continuous function inside each ball.Thus \p\ ~- ocW

Step C. The sum of the negative eigenvalues of (1 — β) \p\ — U is bounded by using
the semiclassical bound due to Daubechies [6].

Steps B, C, D, and E for Theorem 2 will be explained in Sect. III.
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In this section we shall state the basic theorems for steps A and B. These will be
proved later in Sects. IV and V. These theorems will be combined here in step C,
thus completing the proof of Theorem 1.

Step A. Reduction of the Coulomb Potential to a One-Body Potential

This step has nothing to do with quantum mechanics or the nature of the kinetic
energy operator. It has to do with screening in classical potential theory. The total
Coulomb potential, Vc, is given in (1 .5). There are K nuclei located at distinct points
R^ ...,RK in IR3 and having the same charge, z. There are N electrons.

Introduce the nearest neighbor, or Voronoi, cells {/}}f= i defined by

Γj = {x| |x - Rj\ g |x - Rk\ for all k Φ 7} . (2.2)

The boundary of /}, <37], consists of a finite number of planes. Another important
quantity is the distance

Dj = dist (RJ9 dΓj) = imin {\Rk - Rj\ \j Φ k} . (2.3)

The following theorem will be proved in Sect. IV. Recall (1.5).

Theorem 6 (Reduction of the Coulomb potential). For any 0 < λ < 1

Vc(xί9...,xN',Rί9...,Rκ)2:- Σ W\xt)+lz2 X D]-1 (2.4)
i = l O 7=1

and, for x in the cell /}, W\x) = Wfa) = G/x) + Fj(x) with

(2.5)

far X-R^W> (2.6)
for x — R^λDt.

Theorem 6 says that when the electron-electron and nucleus-nucleus Coulomb
repulsion is taken into account, Vc is bounded below by a positive term [the last
term in (2.4)] consisting of a residue of the nucleus-nucleus repulsion (in fact one
quarter of the nearest neighbor repulsion) and an attractive single particle part Wλ.
In each cell ΓJ9 W ' is essentially the attraction to the nearest nucleus (this is the Gj
part of Wjλ); there is also a small attractive error Fj.

There are two essential points in (2.4). One is that the charge z appearing in G7 is
the same as in the original potential Vc. The other is the existence of the positive
term. The error term Fj can certainly be improved, especially the long-range part
\x — Rι\>λDp we have not tried to optimize Fj.

It is interesting to compare our Theorem 6 with Baxter's Proposition 1 [1]
which says that

F c ^-( l+2z)_Σ δ(XjΓ
l (2.7)

with

δ(x) = mm{\x — R j \ \ j = l , . . . , K } = = \ x — Rj\ when xe/] . (2.8)

Fefferman and de la Llave [14] later improved this when z = 1 from 1 +2z = 3 to
8/3. Our proof is completely different from both proofs of (2.7), as is Theorem 6
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itself. To reiterate the essential points, our bound has the correct singularity near
the nucleus (namely z and not 1 + 2z) and it also has a positive repulsive term.

Step B. Control of the Coulomb Singularity in Balls

The following formula is well known. For /eL2 with Fourier transform £

(/Jp|/M2πΓ3J|/(p)|^ (2.9)

One way to derive this formula is to write

(/,|p|/)=limr1{α/)-(/,β" ί^/)}. (2.10)
ί|0

The convergence is a simple consequence of dominated convergence in Fourier
space. The kernel of exp( — φ|) can easily be calculated to be

e ~ t l p l ( x , y ) = π-2t[\x~y\2 + t2y2. (2.11)

Inserting (2.11) in (2.10) yields (2.9).
A formula similar to (2.9) can be derived this way for (p2 + m2)1/2 in place of |p|.

M^

where K2 is a Bessel function. This follows from [11]

^
Starting with formula (2.9) we have

Theorem 7 (Kinetic energy in balls). Let B be a ball of radius D centered at z e R3

and let /eL2(£). Define

(fAP\nB=^UB\f(x)-f(y)\2\x-yΓ4dxdy (2.14)

and assume this is finite. Then

(/,|p|/)B^/r' ί Q(\x-z\/D)\f(x)\2dx, (2.15)
β

where Q(r) is defined for 0<r^l by

6W = 2/(πr)-y1(r),

l+3r 2 1—r 2 4r1^J" ι ,„ . N A ' 1r>M - r i —-
π(l+r 2)r l J π(l+r 2)

^1.56712. (2.16)

The maximum of Y^r) occurs at r ̂ 0.225975 and was computed by S. Knabe.
Note that YΊ(|X|) is continuous for all |x|^l.

Using (2.9) we have

Corollary. // J5 1 ?..., Bκ are disjoint balls in R3 centered at R^ ..., Rκ and with radii
D^...,DK,1 κ 9 x K

(2.17)

γι(r}= -^-Γ^ + Z77TT2^ ln(l+r)- ̂ 77̂ -̂ ln(l -r)- -f,-^ Inr

π j = ι

where Bj(x) is the characteristic function of Bj.
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Theorem 7 is proved in Sect. V. Theorem 12, which is the analogue of
Theorem 7 with p2 in place of |p|, is stated and proved in Sect. V.

Step C. Semiclassical Bounds and the Conclusion of the Proof of Theorem 1

The problem of showing that H=^|p f | + a^^0 has been reduced to the
N _

following. In step A we showed that H ̂  £ /^ + C, where
i

i)9 (2.18)

C = * z 2 α f D Γ I . (2.19)
o j=ί

If we write \p\ = β\p\+(ί— β) \p\, with β =zαπ/2, then step B shows that it suffices to
replace /ιt in H by /τf where

hi = (l-β)\pi\~U(xi)7 (2.20)

l/(x) - xFj(x) + j8D r 1 Yi(|χ - Rj\/Dj)Bj(x) + zα |x| " ̂ 1 - J3/x)) when x e Γ3 .

(2.21)
N ^ '

Proving that £ /ιt + C ̂  0 for all numbers, N, of g-state fermions amounts to the
i

following inequality in terms of density matrices satisfying 0<Lγ<Lq. [A density
matrix is a positive definite trace class operator on L2(R3).]

Ύryh^-C for all 7, (2.22)

with h = (l -β)\p\~ t/(x). (Try/i is shorthand for £ (fk,hfk)yk, where (fk,yk) are the
k

eigenfunctions and eigenvalues of y.) For more details see [21].
The tool we shall use to prove (2.22) is Daubechies' extension of the Lieb-

Thirring semiclassical bound from p2 to \p\.

Theorem 8 (Daubechies). Let y be a density matrix satisfying 0 :§ y rg q. (q need not be
an integer.) Let U(x) be any positive function in L4(1R3). Then for μ > 0,

Ύrγ(μ\p\ - 17) ̂  -0.0258^μ~ 3 J U(x)4dx . (2.23)

To complete the proof we merely insert (2.21) into (2.23). A simple bound is
obtained by extending the integral over each /]• to an integral over all of IR3. This
will give K terms on the right side of (2.23) (each of which scales like Dj~ ̂  to be
compared with the K terms in C (2.19). Our condition is then (recalling that
j8 = zαπ/2)

0.0258^(1 -£Γ3{ J
|W<ι

+ f [αF^lxD + zαlxΓTdxl ^iz2α (2.24)
| x | > l

for some choice of 0 < λ < 1 and where

for O^

for ^r.
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The second integral (|x >1) in (2.24) (call it /+) is easy to evaluate. It is
independent of λ,

I+ = (4/π)3β4[l +(2z)~1/2]8. (2.26)

Next, the integral of Y4 over |x| < 1 has been done numerically by S. Knabe. The
following is actually an upper bound.

j Y^x^dx = 7.6245 = I , . (2.27)
|x| <1

We shall take λ = 10/11. Then

Γl Ί4
?λ(x)*dx = (4π/ίΰ) - + (2z)1/2 =7 2, (2.28)

J Fλ(x}4dx^(π/4)λ j (1 -r2Γ4rdrΞΞ/3
\x\<λ 0

- (πλ/24) [(1 - λ2) ~3 -1 ] - 22.645. (2.29)

To bound the first integral (|x|<l) in (2.24) one can use the triangle inequality
J(/ + g + /z)4^[(j/4)1/4 + (Jg4)1/4 + (J/z4)1/4]4. Thus our condition for stability is
satisfied if

0.0258^(1 -j8)~3 {[1.6617j3 + 1.

+ (4/π)3^4[l+(2z)-1/2]8}^(2/π)2^2/^. (2.30)

Let us rewrite the stability condition (2.30) as

q-lzC(z}^β\\-βY* (2.31)

with C(z) given by (1.8), namely

(2.32)

By taking the cube root in (2.31) we have that (2.31) is equivalent to the
assertion that stability occurs if

α^^(z)Ξ(2/π)z-1{l+^1 / 3z-1/3C(z)-1 / 3}^1. (2.33)

Using the monotonicity in z for fixed α [8] mentioned in Sect. I, (2.33) can be
improved to the statement that stability occurs if

(2.34)

and this is precisely Theorem 1. Π

Next, we address the question of finding a bound on α that depends only on β
and not on z. For this purpose return to (2.31) and solve the equation ^-1zC(z)
= β3(l — β)~3. Since z^C(z) is monotone increasing, this equation has a unique
solution. Call it Zq(β). Then stability occurs for any given β if

a £ a*(β) = (2/π) sup {β'/Zq(β')\β' ^ β} . (2.35)



Stability and Instability of Relativistic Matter 189

Again we have used the aforementioned fact that stability for (α, β') implies stability

Formula (2.35) is correct but lacks transparency. We shall now present a way to
find a function α**(/J) which is less than or equal to α*(j8) but which has the same
general features as «*(/?)• It is this function, oι**(β) that is given in the corollary.

Choose an arbitrary z0. Let (x.0 = Aq(zQ) and let β0 = (2/π)α0z0. Define

((2/πq)C(z0)(l-β)3β~2 if β^β0 {f) ̂
q I(2/π<?) C(z0) (1 - β0)

3 j?o 2 if

We claim that α ̂  α**(β) implies stability. First, suppose that β ̂  jβ0. Then we have

z = (2/π)α - ' /? £ (2/π) [α**(j8)] ~ 1 j50 ̂  (2/π) [α^o)Γ % (since ̂  /g = z0 .

By the monotonicity of C, we have C(z) ̂  C(z0). Therefore

This is (2.31).
Second, suppose that β^β0. To prove the stability, we only have to verify

(2.35). For this purpose, it suffices to show that α ̂  — βQ/Zq(β0) with Zq(β0) solving

q-lzC(z) = βl(l-βQΓ3. Since by definition q"1 z0C(z0) = β3

0(l -β0Γ
3, we have

from the uniqueness of the solution of the above equations that Zq(β0) = z0 and

)(l-^0)
3^o2^-)80/Z^0). Hence α^α**(0) is the same as

π

0) and thus stability occurs for (α, j8) with α^α**(^?) and jS^j80.

Let us choose z0 = 10. Then (2/π) C(10) = 0.062980 and ^50 -0.49910. This
together with (2.36) proves the Corollary of Theorem 1. Π

III. Proof of Theorem 2 (zα^

In the proof of Theorem 1 we first reduced the many-body Coulomb potential to a
one-body potential in Step A. Then we split the kinetic energy \p\ into two pieces.
One of them was used to control the Coulomb singularity and the other was used
to control the long range part of the potential. If the method of Theorem 1 is used
when zα = 2/π, all of \p\ must be used for the singularities and nothing remains to
control the long-range potential. In this section both parts of the potential will be
controlled without splitting |p|, but this requires inventing a suitable localization
formula for |p|. We shall henceforth take zα = 2/π; by the monotonicity in z, this
case will cover all the cases zα ̂  2/π.

There are five steps.

Step A is the same as before. The Coulomb potential Vc is replaced by a one-body
potential Wλ plus a positive constant. Henceforth we shall take 2 = 0.97 and omit
the superscript on W.

Step B. Here we show that if χ^x) is a C1 function which is approximately the
characteristic function of a ball, and if y is a density matrix with O^y^q and if χ2M
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is defined by χι(x)2 + χ2(x)2 = l, then

\ — W)'^.Ύτχίγχl(\p\ — potential energy correction —W)

+ Trχ2)72(|/?| — potential energy correction — W) — q const . (3.1)

The important aspect of this inequality is this: It might have been thought that
since \p\ is not a local operator, the potential energy corrections would have to be
very long range. In fact they have support only inside a ball which is only slightly
larger than the original ball. The long range nature oϊ\p\ manifests itself in the term
g-constant which depends on | |y | | but not on ΛΓ = Try.

Step C. The ball referred to in step B is taken to be B1 centered at R1 (see Sect. II).
To control the first term on the right side of (3.1) we have to bound q times the sum
of the negative eigenvalues of \p\ - potential energy correction - W in a ball, where
W is the one-body potential defined in step A.

Step D. For the second term on the right side of (3.1), the localization process in
steps B and C are repeated K — 1 times for nuclei, 2, ...,K. This finally leaves us
with a term Trχ0)70(|p| —potential energy corrections) where χ0 is essentially the
characteristic function of the complement of the K balls. To estimate this term,
Daubechies' semiclassical bound, Theorem 8, is used.

Step E. The above process leads to a lower bound on inf spec(H) in terms of
certain integrals which depend on certain parameters that remain to be specified.
These numerical facts are presented in this step. The details of the computation are
given in Sect. VIII.

Step B. Localization of the Kinetic Energy

By way of comparison we begin by reminding the reader of the IMS localization
formula (see [5, Theorem 3.2]) for p2 = — A instead of \p\. Let χ0, χ1 ? . . ., χκ be real
valued functions on R3 satisfying

Σ χ/x)2 = l for all x. (3.2)
7 = 0

Then an elementary calculation yields the following operator identity.

(3.3)
7 = 0 7 = 0

This is a localization of — A. If we assume additionally that χ^ has support in some
set AJ (which are not pairwise disjoint, of course) then for any /eL2(IR3) and any
arbitrary potential K

)= Σ ( X j f , t - A + V(x)-U(xKXjf) (3.4)
7 = 0

with

) = Σ |
7 = 0
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The advantage of (3.4) is that in the/h term of (3.4) only [F(x)-t/(x)]l^(x)
appears [where \A(x) = 1 if x e A and ίA(x) = 0 if x φA] and one can utilize different
bounds on V— U according to the region Aj under consideration. Furthermore,
since Xjf has support in Aj one can replace — A by the larger operator — A with
Dirichlet boundary conditions on dAjf The price one has to pay for all this is the
negative potential operator — U(x).

For the operator \p\ the following analogue of (3.3) is much more complicated
because \p\ is not a local operator. We also state its generalization to (p2 + w2)1/2.
The proof is immediate starting with (2.9) and (2.12).

Theorem 9 (Localization of kinetic energy-general form). Let χQ,..., χκ be Lipschitz
continuous functions satisfying (3.2). Then for any /eL2(R3),

(f,\P\f) = Σ (Xjf,\P\Xj f ) ~ ( f , L f ) , (3.6)
7 = 0

where L is a bounded operator with the kernel

1 κ

2π2 j= 0

 J ^J

More generally,

~ X , f ) - ( f , L M f ) , (3.8)
7 = 0

where L(m} is a bounded operator with the kernel

£ [χ/x)-χ/)0]2 (3.9)
7-0

and K2 is a Bessel function.

Formula (3.6) was proposed to us by M. Loss, to whom we are grateful.
A simple, but important corollary of Theorem 9 concerns g-state, density

matrices. As defined in Sect. II, this is any bounded operator on L2(R3) which
satisfies the operator inequality O r g y r g g and for which Try<oo.

Corollary. For any density matrix, 7,

Ίrγ\p\= X Try>|-TryL, (3.10)
7 = 0

where yj = χ/yχ,-, with χ7 being thought of as a multiplication operator.

To exploit (3.10) we now impose a condition on χ0, ...,χκ. Let jR 1 ? ...,RK be
distinct points in R3 (namely the nuclear coordinates) and let Dj be given by (2.3).
The K disjoint balls Bj={x\x-Rj\<Dj} were defined in Sect. II. Choose some
0 < σ < 1 and consider the smaller balls

^ = {x\\x-Rj^(i-ff)Dj}. (3.11)

Let χ0* •••?#£ satisfy (3.2) with χ7- supported in B^ for 7 = !, ...,X. The explicit
choice for χ7- will be made in step D.



192 E. H. Lieb and H.-T. Yau

First, consider the case K = 1. We decompose the L of (3.7) into a long-range
part, L°, and a short-range part, Lf, with L = LQ + L\. Furthermore, L%(x,y)
vanishes if x or y is not in Bv or if |x — y\>σ, namely

if |*-y|>σ,

(3.12)

where 51(x) = l if xeB^ and 51(x) = 0 otherwise. Recall that Xo(x)2 + Xi(x)2 = l in
the X = 1 case. With these conventions, we have the following theorem which will
be proved in Sect. VI.

Theorem 10 (Localization of kinetic energy-explicit bound in the one-center case).
For K = l, let Lf be given by (3.12) and L° = L — L^ with L given by (3.7). For any
positive function, hΐ9 defined on the ball #15 let

01(x) = Λ1(x)-1 SLίfryWMdy. (3.13)
Bι

i.e.

(3.14)

JJ \χ-yrs^-
yeB{σ>
\y\\^*Dι

4Dl J f \x-yΓ*[_l-χ0(x)-]2dxdy. (3.16)

Then, for any density matrix y with \\y\\ ^q, and any ε>0,

Ύτy\p\^Ύrχιπί(\p\~UUx)} + πχ0yχM (3.17)

where [7f(x) = 0 for xφBl and, for xeB^

) . (3.18)

Inequality (3.17) looks complicated, but it is not vastly different from (3.3). The
first two terms in (3.17) are the localized kinetic energies (inside and outside the ball
BI). The Uf term is a potential energy correction like the U in (3.4), but this
potential has support only in the ball Blf The last term is novel; it involves only the
norm of y and not a trace over y. One might expect that the non-local nature of |p|
would give rise to a long range contribution to (7, but these long range effects can
be bounded by the norm of y - as is done in the last term of (3.17).

Step C. Bound on Negative Eigenvalues in a Ball

Our goal is to give a lower bound to Trχ^/χ^lpl — W(x)—Uf(x)). The following is
our main tool. It will be proved in Sect. VII.

Theorem 11 (Lower bound to the short-range energy in a ball). Let C > 0 and R > 0
and let

HCR = \p\--\xΓ1-C/R (3.19)
π
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be defined on L2(1R3) as a quadratic form. Let 0 ̂  y ̂  q be a density matrix as before
and let χ be any function with support in BR = {x\\x\^R}. Then

3) J \χ(x)\2dx} . (3.20)

Remark. When χ= 1 in BR then the factor in braces { } in (3.20) is 1.

To apply Theorem 1 1 to our case we take R in Theorem 1 1 to be (1 — σ)Dl and
we take C to be an upper bound for (1 -σ)Dl{aW(x) + t/f(x)-(2/π)|xΓ1}
= (l-σ)D1{αF1(x)+t/f(x)} in the ball \x\^(l-σ)Dί. This computation will be
done in Step E.

Step D. The Negative Eigenvalues for the Long Range Potential

Associated
defined by
Associated with each ball Bj of radius Dj centered at Rj will be a cutoff function χ

χ(\x-Rj\/D^ (3.21)

where the universal χ is given by

r 1 for r^l-3σ

χ(r) - I cos [π(r - 1 + 3σ)/4σ] for 1 - 3σ ̂  r ̂  1 - σ (3.22)

1 0 for 1-σ^r.

Here, it is important that σ<l/3. We also choose a function hj(x) for xe#7,

1 for r ^ l — 3 σ and 1— σ r g r r g l

2-σ~ 1 | r- l-f 2σ| for 1 — 3 σ ^ r ^ l — σ .

Starting with Theorem 10, Eq. (3.17), we choose some ε and compute Ω l 5 ^(x),
using (3.13)-(3.16). We also compute some bound

C ̂  (1 - σ)D! {αFj (x) + C7f (x)} (3.25)

in B .̂ By scaling, C does not depend on D^ Then, using Theorem 11, Eq. (3.20),
we have that

, + inf Tr(l -χ?)1/27(l -χϊ)1 / 2(|p|-αW-l/?).
7 (3.26)

The first term, qA/D^ is a sum of two pieces. One is the q(^Dl}~lΩl in (3.17); the
other is the right side of (3.20) (call it qA2). The sum is written as qA/D^ because the
various quantities that have been introduced scale in just the right way - so that A
really is independent of Dv and q.

For the second term on the right side of (3.26) we note the identity

(1 ~χι(x)2) [αP^(x)+ C/?(x)] -(1 -χt(x)2) l<*W(x)β1(x)+ ί/fM&ίx)] , (3.27)

where /^(xHl if \x-Rl\^\-3σD1 and βί(x) = 0 otherwise. Since
(1 ~ Zι)1 / 2?(l ~ Zι)1 / 2 is a ^-state density matrix whenever y is, the last term in (3.26)
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can be bounded below by

iaSττy(\p\-ΛW(x)βl(x)-U^(X)βl(x)). (3.28)
y

Now we can apply Theorems 10 and 1 1 to (3.28), using the ball B2 in place of B1.
Since I7*(χ) - 0 for x φ Bl we see that (xW(x) + C/f (x)) β^x) = aW(x] ίorxφB^ This
process can be repeated until all the balls B^...,BK have been used. Our final result
(with U* defined as in (3.18) with R^ D{ replaced by RJ9 Dj) is

UJ(x) [ βj(x) (3.29)
J = l y \ J = l / J = l J

To bound the last term in (3.29) we use Theorem 8. This will result in a sum of K
integrals, one for each cell /]. As in the proof of Theorem 1, a further bound is
obtained by pretending that each ΓJ extends to all of R3. Thus

07 1 > (3 3°)
7 = 1

where

J-0.0258 J ^/πJIxΓ^αFdxD+t/^lxl)]4^, (3.31)
|jc|>l-3σ

and where F(r) is given in (2.25) with /I = 0.97, and ί/*(x) is given by (3.18) with
D! = ! there.

From (3.30) and (2.4), stability holds if

q(A + J)^^z2(x = (2π2Γ1^1. (3.32)

Step E. Numerical Results

We take σ = 0.3 and ε = 0.2077 (recall that /I was previously chosen to be 0.97).
Since all quantities have the correct length scaling, we shall refer everything to a
standard ball of unit radius D1 = l. The following are the results of the
computations given in Sect. VIII.

Starting with χ(r) in (3.22) we compute Ω^=Ω in (3.13H3.16),

/(1)- 0.05529, /(2) = 0.06042,

β-J(1) + /(2)-0.1157, ε"10 = 0.5571 . (3.33)

From the definition (3.13) and (3.24) we find that # I(X)ΞΞ#(|.X|) satisfies

/3*M-^1 7 A ^ ; -v.j/Ji ιuι ,^ι-u
17 "'~ W _ / A / I \ --5H , O^ «W1 «\3 r_ 4 -ι VJ JtV

^_ |(3π/32)(2-|/2)σ~1-0.5751 for r^l-

(π/64)σ""5(l+2σ-r)(l-r)3 for 1-

Using this we have, from (3.18), that

C7*(r) ̂  εB(σ\r) + θ*(r) (3.35)

with B(σ\r)=ί for r<l-σ = 0.7 and β(σ)(r) = 0 otherwise.
Next, we want to find some C satisfying (3.25). Since λ = 0.97 > 1 — σ = 0.7, we

need only concern ourselves with the first line of (2.25). Note that α appears in (3.25)
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in the form αFx(x) and, since F t(x) does not depend on z in the region r<λ, the
quantity αF^x) is proportional to oc when zα is fixed. Our goal is to prove stability
when α< l/47g^ 1/47, and therefore we can replace αFt(x) by Ft(x)/47 in (3.25).
Then

C = 0.7 {0.02086 + 0.2077 + 0.5751 } -0.5629 (3.36)

satisfies (3.25) for r<l-σ = 0.7.
The right side of (3.20) (with R=l — σ = 0.7) can now be easily calculated. It is

(3.37)

Adding ε"1^ and A2 we have

A= 0.7232. (3.38)

Finally, the integral in (3.31) must be computed. To bound αF(r) we can use
(1/47) F(r) for r < λ, while for r > λ we write z = 2/πα in (2.25). When r > λ this results
in two terms in αF, one of which is proportional to α1 / 2 and the other to α. In both
terms we can take α=l/47. Thus, we bound αF(r) by 0.1753/r for r>λ and by
(1/94) (1 -r2)-1 for r<λ. We then find that

(0.025 8)~1(4π)~1J^ j [2/πr + (l/94)(l -r2)"1 +0.2077 + 0.5751]4r2dr
o.i

0.97

+ J [(2/πr + (1/94) (l-r2)-1^- 20.20(1. 6 -r)(l-r)3]4r2rf
0.7

+ j [2/πr-f0.1753/r + 20.20(1.6-r)(l-r)3]4r2cίr
0.97

+ J [2/πr + 0.1753r-1]4r2dr. (3.39)
i

The first integral, J l s can be bounded by replacing (1 — r2}~ 1 by (1 — (0.7)2)~ l and
then doing the integral analytically. The second integral, J2, was done on a
computer. In the third integral, J3, 1.6 — r was replaced by 1.6 — 0.97 and (1 — r3)
was replaced by (1 — 0.97)3; it was then done analytically. The fourth integral, J4,
can be done analytically. We find J1 ^ 4.435, J2 ̂  0.1 7, J3 <; 0.01 35, and J4 g 0.435.
Thus

J^1.64 (3.40)

and, from (3.32), stability occurs if αg<l/47. This completes the proof of
Theorem 2. Π

IV. An Electrostatic Inequality

Our goal here is to prove Theorem 6 about the Coulomb potential Vc given in (1.5).
A similar theorem can be derived for the Yukawa potential |x|" 1 exp( — μ|x|), but
we shall not do so here. We recall the definition (2.2) of the K Voronoi cells
Γ1? . . ., Γκ for K nuclei located at JR 1 } . . ., Rκ slR3, and also the radii Dj in (2.3) which
is the distance of JR 7 to δJΓ). Since Theorem 6 is trivial when K = 1, we shall assume
henceforth that K > 1 . We set

V(x)= i x-Rj-1, (4.1)
7 = 1
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which is the potential of K nuclei of unit charge located at the Rp and

(4.2)

which is the distance of a particle at x to the set of K nuclei. We set

Φ(x)=V(x)-δ(xΓl, (4.3)

which is the potential of all the nuclei except for the nucleus in the cell 7} in which x
is located. Φ is continuous but not differentiable.

Let v be any Borel measure (possibly signed) on R3. We say that v is a bounded
measure if |v|(R3)< oo. In this case J Φ(x)dv(x) is well defined since Φ is continuous
and bounded. We define

$Φ,z(v)= ~ ίί \x-y\~ 1dv(x)dv(y) — z $ Φ(x)dv(x) + z2 Σ \Ri-Rj\~1 -(4-4)
2 i ^ i < j -g K

The first term on the right side of (4.4) is well defined (in the sense that it is either
finite or + oo) since \x — y\~1 is a positive definite kernel. The following is basic to
our analysis.

Lemma 1. Let v be any bounded measure, let z>0 and let Φ be given by (4.3). Then

6ύ

φ z(v)> - z2 Σ D~l (4-5)

Proof. There is a (positive) measure μ that satisfies the equation

\x\~l*μ = zΦ (4.6)

K
and μ has support on δΓ = (j dΓj. In fact, μ can be computed explicitly as

7 = 1

μ=-(z/4π)AΦ. (4.7)

More precisely, dΓ consists of pieces of 2 dimensional planes separating some Γt

from some /}; on dΓj

dμ(χ] = - (z/2π)n > 7\x-Rj~1 d2x, (4.8)

where d2x is two-dimensional Lebesgue measure on δ/] , and n is the unit normal
pointing out of /). Let

A — — \ z j δ(x) ~ λ dμ(x). (4.9)
Then

-ίi\x-yΓldμ(x)dμ(y)=-ίΦ(x)dμ(x)=^ Σ ί\x-Rj~ldμ(x) + A
2 2 2 j = ι

z2 κ

= — Σ Φ(Rj) + A = z2 Σ l^i-^ Γ^^ (4.10)
2 j = ι ι ^ ί < j ^ κ

On the other hand, if each part of dΓ is counted twice we obtain

Γld2x. (4.11)
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Let Ij denote the integral in (4.11). The integrand is ^n 7 \x-Rj\~2. With Λj

denoting the complement of 7} in R3 (so that dΛj = dΓj) we have

_ i _ 2 2 _ i _ 2 _ 4

2 δ Γ j ' 2 y l j ' Λj (4.12)

For convenience in evaluating (4.12) we can take Rj = Q and assume that Λj
contains the half-space {{x,y,z)\x^Dj}; the reason for this is that (assuming 7);

Φ oo) there is another nucleus at some Rt such that the midplane between Rj and Rt

is given (after rotation of coordinates) by {{x,y,z)\x = Dj}. Thus

oo 00 00

Ijίί- I ί dydz ί dx(x2 + y2 + z2)~2=-π/Dj9 (4.13)
— oo — oo Dj

and therefore

^-Iz'jiV (4.14)

Using (4.6) and (4.10) we have that

$Φ,z(v)~ iίί lx~3 ;l~1^(v~~^) M^(v~~Aθ(};)~~yl. (4.15)

The integral in (4.15) is nonnegative (since \x-y\~~1 is positive definite), and the
lemma follows from (4.14). Π

Proof of Theorem 6. There are TV points x l s . . . , XN. If xt is in some cell 7] we shall
replace the unit point charge at x t by a unit charge distributed on a sphere St but, in
general, the center of St will not be x l and the charge distribution on St will not be
uniform. Also, St is not always contained entirely in 7]. (If xt is in more than one 7}
then an arbitrary choice can be made.) The definition of St and the charge
distribution vt on St is the following:

(i) If \xt - Rj\ g λDj9 then St is the sphere 5B,. - {x| |x - Rj\ = DJ. The charge v f is
determined so that its (continuous) potential Vt= x j " 1 * v f satisfies

for \x-Rj\^Dj

i for x-Rj\^Dj9

where xf is the image of xi with respect to Sp namely

Λ^5^ P n^l-v. ]Γ) — 2 / , . r> \ //i ^ ^7\X j — Kj — L>j |X j — Kj (X^ — K j j . l ^ . l / j

The potential T^(x) is harmonic inside and outside Bjy and vt can be computed from
the formula — A Vt = 4πv ί3 but we shall not need this. It is important to note that vt is
nonnegative.

(ii) If | X j — Rj\ > λDj and xt e Γp then S{ is a sphere centered at x£ and of radius ί{

given by

The charge distribution vt on Sf is the uniform one with unit total charge.
Now we apply Lemma 1 with

N

(4.19)
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In order to utilize inequality (4.5) it is necessary to relate ^φ>z(v) to Vc. The last term
in (4.4) is, of course, exactly the nuclear repulsion. The first term on the right side of
(4.4) (call it /) satisfies

'= Σ tt\χ-yΓldvί(x}dvk(y)+l- Σ Hlx-y-'dvMdvti). (4.20)

Each V j vfc integral in (4.20) is less than or equal to \xt — xk\ ~ 1. This is so because, by
construction

(\x\~l*vi)(x)^\x-xi\-'i9 a l l x , (4.21)

and hence

ί(\x\~1*^(x)dvM^(\x\-ί*v^(xi)^\xk-xi\-1. (4.22)

The vivi integral in (4.20) is just the self energy of v f. Call it et. There are two cases.
(i) Xi-Rjl^λDj. Then, from (4.16)

(4.23)

(ii) |xf — Rj\ > λDj and xt e /]. Here et = l/t} since vt is uniformly distributed on a
sphere of radius ί f.

To summarize,

/g y |χ.-χ|-ι + l y ίEq (4 23) i n c a s e ( i )j. (4.24)
i ^ i < k ^ N ' f e 2 i = ι jl/ί; incase(ii)J

The second term on the right side of (4.4) is a sum of z J Φ r f V j . Again, there are
two cases.

(i) ta — Λ y l f g Λ D j . From the definition of W and the fact that (\x\~l *Vi)(x)
= |x — X ί l " 1 when x^/}, we have

(4.25)
k= 1

(ii) Ixt-Rj^λDj and X eΓ), By the definition of Φ

JΦ(x)dV ί(x)= Σ ί lx-Λfcr 'dViW-ίδίx)- 1 ^^), (4.26)
fc=l

where 5(x) is the distance to the nearest nucleus. Since every Rk (including Rj) is
K

outside Siy the first term in (4.26) is merely Σ l^i^^kΓ 1- The difficulty in
k= 1

estimating the second term in (4.4) stems from the fact that vt can have support in
several cells - not just /}. We have, however, that for \x — x.\ = i . and any fc,

x-Rk+tt= X-R^ + IX-X^R.-X^RJ-X^. (4.2?)
Hence δ(x)'^\Rj — xi\ — ti, and therefore in case (ii),

\Φ(x)dvi(x)^ Σ k-^r'-d^-Xil-ii)"1. (4-28)
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Using these inequalities and the definition (4.18) we find that

<ίφ»^Fc + £ Wλ(xD, (4.29)
i = l

with Wλ(x) given in (2.5), (2.6). This, together with Lemma 1, proves
Theorem 6. Π

V. Simple Localization of the Kinetic Energy

Here we shall prove Theorem 7, but before doing so let us motivate Theorem 7 by
stating the analogous Theorem 1 2 below for p2 instead of \p\. This latter theorem is
simple to prove, but we have not seen it in the literature.

Theorem 12 (The energy of p2 in balls). Let Bbea ball of radius R centered at z e R3

and let feL2(B) and F/eL2(B). Define

(5.1)
B

Then

\2dx, (5.2)

where H(x\ for \x <1, is any function of the form H(x) = — h~l(x)Ah(x)andwhere
h is a smooth, strictly positive function with vanishing normal derivative on the
boundary |x| = l. In particular, by taking /z(x) = (|x|2 + 0~1 / 4exp[iMV(l +01 and
then letting £->0 (using Fatou's lemma) we have that (5.2) holds with

H(x) = i|xΓ2-y2(|x|), Y 2 (r)=l+ir 2 . (5.3)

Remark. It is important to note that ,̂ the coefficient of the \x\~2 singularity, is
precisely the sharp constant for the uncertainty principle in all of R3,

Proof. Write f ( x ) = g(x)h(x) so that Vf = hVg + gVh. Then

j |F/p= J h2\Vg\2

B B

Integrating the last integral by parts

j |F/p= J h2\Vg\2 + f \ξ\2(Vh)2 + I ( V g 2 ) h V h . (5.4)
B B B B

(5.5)

Equation (5.3) is merely a calculation.

We turn now to the problem of proving Theorem 7 which is the analogue of
Theorem 12 for

(f,\P\f)B = (2π2Γ1 j I \f(x)-f(y)\2\x-y\-*dxdy. (5.6)
B B

If B is R3 then this is just (/, |p| /); see (2.9).

Proof of Theorem 7. Without loss of generality we can take z = 0 and R — 1. First,
we regularize x — y\~* to Lt(x,y) = (\x — y\2 + t)~2. The theorem will follow by
letting f-»0 and using dominated convergence and Fatou's lemma.
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With Lt in place of |x — y\~4 we have

(/,|p|/)*,f = π-2 ί \f(x)\2Kt(x)dx-π-2 j $ f(x)f(y)LJ(x9y)dxdy, (5.7)
B B B

K K x ) = $ L K x , y ) d y . (5.8)
B

The second integral in (5.7) can be bounded above using the Schwarz inequality as
follows. Choose a real valued function h with h(x)>0 for all |x |^l. Then

lffLt= j I [/
B B

^ ί |/(x)|\(x)rfx (5.9)
B

with

(5.10)

We make the choice that h is radial, i.e. h(x) = h(r) with r = \x\. To compute Kf

and ηt we can do the angular y integration. With \y\ = s we have

Ί (5.11)

Combining (5.7H5.H) we have that

(5.12)

with

i

0

Finally, we choose

h(r) = (\ -f r2)/r. (5.14)

(Note that dh/dr = 0 at r=l.) The integrand in (5.13) is then

1). (5.15)

At this point we can let ί->0 by recognizing that the integral in (5.13) becomes a
principal value integral in the limit, i.e. Qt-+Q with

β(r) = 4π~ 1 (l+r 2 )" 1 f(s-r)- 1 (r + s)~2(s-rs2)ds. (5.16)

To do this integral (call it /) we set

/1 = j:( s_ r)-1( r-fS)~2^^[2r(l+r)]-1-(4r)-1ln[(l-fr)/(l-r)]. (5.17)
o

The remainder of / (namely the rs2 term) is

l)" 1-r 2/ 1. (5.18)
o

By combining (5.17), (5.18), Eq. (2.16) is derived. The maximum of Y^r) was
computed numerically by S. Knabe. Π
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With the help of Theorems 7 and 12, the proof of Theorem 5, which was stated
in Sect. 1, can now be given.

Proof of Theorem 5. Fix 0<L<N and M = N — L and consider any partition
P = (π l 5π2) of {1, ...,N} into two disjoint sets with Lintegers in πl and M integers

(N\
in π2. There are such partitions. For each P we define

Ly

(5ί{π2) = min{|.xί —x7 | [/eπ 2 and j'Φi if ieπ 2 } . (5.19)

First the operator |p| will be considered. Define the N-particle operator

hp= y I P / I — λ Y δi(π?)~ί+(x. V ^, (π7)~1 (5.20)f Z—ί If H _ ̂  IV Z/ ' _ , , ! _ , l\ Z/ V /

i e π i i e π i i e π 2

for some /I, α > 0 to be determined later. Let the N-particle operators H and H be
given by

JV
τ Σ Λ P , (5.21)
L p

N N

LJ V ITΛ Γ* ^<~l/3 V > v ~ l ('^ 00\
^"^ L IP; -<-!<? λ ^i (!).22)

i=l i= 1

If H and H are compared we observe that the \pt\ terms are identical. The
potential energy terms are more complicated, but we wish to choose λ and α so that
H^H. To this end, fix x1? ...5xN and let x7 (ί) be a nearest neighbor of xb that is
|x/(i) — X j | =min{|x f c — x J I f e φ i } . It is obvious that ί^π^"1^^/"1, so that the last

N

term in (5.20), when summed on P, is at most ατ Σ ί^1, where

To bound the middle, or λ, term in hp we note that for each / e (1, . . ., JV} there will

/JV — 2\
be I I partitions in which i E π ί and 7(1) 6 π2. Therefore this middle sum in

\L— 1 /
N

hp, when summed on all partitions, is at least λv Σ <5f *, where
i

V = ,L

Consequently, H ̂  H if

lJ-^αL'1]. (5.25)

Assuming (5.25), Theorem 5 will be proved if we show that (ψ, hpψ)^0 for
every P. Since permutation of the labels in πγ and π2 is irrelevant, it suffices to
prove this for any one P. To this end we henceforth change notation so that
x1? ...,xLeR3 are the variables in the π1 block and Rί,...,RMeΊR3 are the
variables in the π2 block. Obviously we can assume that the Rt are fixed and
distinct and that ψ is then a function of x l 5 . . ., XL with g-state Fermi statistics. We
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shall also drop the subscript P on hp. Thus, we want to show that h^O for all
choices of the Rίt Since h is a sum of one-body operators, we have to show that for
any density matrix y with 0 _" y g q,

M
Tn/(|/j|-F)^ — α £ (2D;)"1, (5.26)

7 = 1

where V(x) and Dj are defined by

V(x)=-λδ(xΓ1

9 (5.27)

2DJ. = min{|R J—R k | | fc=l,...,M but fcφj), (5.28)

x-1^.11; = 1,...,M}. (5.29)

Under the assumption that λ < 2/π, we write \p\ as the sum of two pieces |p|
= (λπ/2)\p\+(ί-λπ/2)\p\. We also introduce the Voronoi cells Γj={x\\x-Rj\
^\x-Rk\ for all k + y} and the balls BjCΓj defined by Bj={xEΓ^\x-Rj\^Dj}.
Obviously

(f,\P\f)^ Σ (f,\P\f)Bj, (530)
/ = 1

where the right side is the sum of the kinetic energies in the balls Bj defined in
Theorem 7, (2.14). Using Theorem 7, we have that

(λπ/2)(f,\p\f)^(λπ/2) Σ DJ1 f |/(x)|2β(|x-^i/^)^, (5.31)
7=1 BJ

with Q given by (2.16). Hence

Tτγ(\p\-V)2:Trγl(l--λπ/2)\p\-λW]9 (5.32)

where W is given in each JΓ) by

with yt given in (2.16).
Next, we use the Daubechies bound, Theorem 8,

Try [(1 - Aπ/2) |p| ~λW^- 0.0258(? [1 - λπ/2] ~ 3λ4 J ^(x)4dx . (5.34)

The integral in (5.34) is a sum of integrals over each /}. To obtain a bound we
shall merely integrate each |x — Rj\ term in W [see (5.33)] over all x — Rj\ > Dj and
omit the restriction that x e ΓJ . The integral outside each ball Bj is thus

J Wf = 4π/Dj. (5.35)

The integral inside Bj is (see (2.27))

j W^ = (π/2)4D]~1 J Y^xfdx = 46.418/1);. (5.36)
β, \x\ < 1

Combining (5.34)~(5.36) we find that (5.26) is satisfied provided

^±a (5.37)
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with

A = 0.0258 [4π + 46.41 8] - 1 .522 (5.38)

and provided λ < 2/π. We shall choose α so that (5.37) is an equality. We shall also
write λ = Xq~1/3. Then (5.25) is satisfied if C1 satisfies the following for some
Q^X<,2/π and some ΰ<L<N:

Cl^(N-L)[X(N-lΓl-AX*(l-Xπ/2Γ3L-ί']. (5.39)

(Here we have used the bound that λπ/2<Xπ/2, which holds since g^l.)
Consider the case N^3. To utilize (5.39) we make the following choices

X = \/5 and L={(B/X)1/2N} , (5.40)

where B = AX\\ -Xπ/2)~3 -0.0075486 and where {a} denotes the smallest
integer Ξ>α. Write L=l + ε with l = N(B/X)ί/2 and 0^ε<l. We claim that when

(L- ί)X/(N - 1) + BN/L^ IX /N + BN/l . (5.41)

Assuming this for the moment, we would then have that (5.39) is satisfied with

Cί=(Xl/2-B112)2 ^0.129, (5.42)

which proves Theorem 5 when N ̂  3. If N = 1 there is nothing to prove. If N = 2,
Theorem 3 is trivial because it asserts that

\Pi + |p2 |^0.129<r1 / 3x1-x2-
1, (5.43)

2
but we already have the simple bound |p1 |^(2/π)|x1— x 2 Γ l for all x

To prove (5.41), insert L = / + ε in the left side and multiply by N(N — ί)Ll
(recalling that l = N(B/X)ί/2). Then (5.41) is equivalent to

Nl - 1(1 + 2ε) + Nε(l - ε) ̂  0 . (5.44)

Since l<N/5, (5.44) holds for Λ^3.
The proof for p2 in place of \p\ follows the same route, but using Theorem 12 in

place of Theorem 7 and using the Lieb-Thirring [25] bound in place of the
Daubechies bound. This is

-λW)^ -qσμ~3/2λ5{2 J W(x)5/2dx.

The best bound for σ is obtained in [22] and is σ = 0.040305. We split the operator
p2 into 4λp2 + (1 - 4λ)p2, and take the μ above to be (1 - 4λ}. Using Theorem 1 2, W
is given in each cell Γj by

if \x-Rj\<Dj.

The analogue of (5.35), (5.36) using Ύ2(r)=\ +r2/4, is

W Ξ j D f f FK (x)5/2Jx-2π + 128π f( l+r 2 /4) 5 / 2 r 2 dr.
R3 0

Using (1 +r2/4)1 / 2<^l +r2/8 in the above integral we find w< 198.2.
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Setting λ = Xq~2/3, the analogue of (5.39) is

1] (5.46)

with A = σw = 7.988. For JV^3 we make the following choices:

X = l/20 and L-{(β/X)1/2N}, (5.47)

with B = AX5/2(l-4XΓ3/2 = 0.006241. Again, setting L=/ + ε with /-(
we have to verify (5.41), which is equivalent to (5.44). This inequality is true for
N^4 since J-0.3533IV. With (5.41) satisfied we have that

C2^(X1 / 2-B1 / 2)2^ 0.0209. (5.48)

This proves Theorem 3 for N ^4. When N=l there is nothing to prove, while for
N — 2 we require

pi + p2^ 0.0209<? ~ 2 / 3 |x ι-x 2 Γ 2 (5.49)

Since pi g: ̂ \x1 — x2\ ~ 2 for all x2, inequality (5.49) is satisfied. For TV = 3 it suffices
to have

P2^0.0209^~2/3{|x1-x2 -2 + |X l_;c 3 |-2}, (5.50)

and this is clearly true by the inequality just mentioned, Π

Remarks. In the above proof, the inequality for p2 was proved in a fashion
analogous to that for \p\ by substituting Theorem 12 for Theorem 7. However,
another proof for p2 can be given by using the IMS localization [see (3.3)] instead
of Theorem 12.

VI. Refined Localization of the Kinetic Energy

Proof of Theorem 10 (Sect. III). Starting from the Corollary of Theorem 9, we see
from (3.10) that our task is to find an upper bound to TryL with L = L° + Lf and
with

(6.1)

and

^L(x,y)Bl(x)B1(y)

if |x — y\>σ.

Recall that E j is a ball of radius D l centered at the origin. By simple scaling we can,
and shall take D1 = l ; we shall also write Bί=B. We have χi(x) = 0 unless
|x|g(l — σ), i.e. unlessxeB ( σ\

We first bound TryL°. Notice that when |χ| < \y\, L°(x, y) = 0 unless |x| g (1 - σ).
Using the symmetry of L0 we can write

J J J y1/2(x,z)y1/2(z,};)L0(x?}
;)^(σ)W^^3;^? (6-3)
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where yί/2 is the operator square root of y. We do the y integration first and then
apply Minkowski's inequality to the x integration. For any ε > 0,

+ S"1 ίί ί yil2(z,y)L°(x,y)dy2&*\x)dxdz. (6.4)
M>W

The first integral is just
$y(x,x)B(σ\x)dx. (6.5)

In the second integral we do the z integration before the x integration and obtain

ίί y(y,y') (ί L^y^x^^dx^dydy1, (6.6)

where A is the region [x| :gmin((l — σ), |y|, |/|). The factor in parentheses in (6.6) is
the kernel of a positive definite operator, so we can bound (6.6) by

| |y| | J SLQ(x,y)2dxdy, (6.7)
Λ

where A is the region |x| ^(1 — σ) and \y\ ̂  x|. In view of the fact that L°(x,y) is
symmetric and L°(x, j^) = 0 unless at least one of |x| or \y\ is less than (1 — σ), and
given that | |y | | =q by assumption, (6.7) is just ^Tr(L°)2. Thus,

1Ω1 (6.8)

with Ωl = ̂ Ύΐ(L°)2. The verification of the two integrals for Ωl in (3.15), (3.16) is
evident if one recognizes that χ0(x)= 1 and χ1(χ) = 0 for |x| ^(1 — σ).

Now we turn to TryL* . Since y is a positive operator, its kernel satisfies |y(x, y)\2

^y(x,x)y(y,y). Hence, since Lf(x5y)>0 and /z1(x)>0,

^ ίί ίy(χ,χ)hι(y)/hι(χ)Ϋ/2[y(y,y)h^^^^^
^ ίί Ly(x^)hί(y)/hί(x)-]L^y)dxdy

= S γ ( x , x ) θ ί ( x ) d x . (6.9)

The second inequality in (6.9) is the Schwarz inequality, together with the
symmetry in x and y. The idea of using the Schwarz inequality in this fashion goes
back to Hardy and Littlewood; see [18] for another application.

When inequalities (6.8) and (6.9) are inserted into (3.10), the Corollary of
Theorem 9, the result is Theorem 10. Π

VIL Estimates of Negative Eigenvalues

Proof of Theorem 11 (Sect. III). It obviously suffices to consider the case q= 1. Let
the kernel of y be _

with Orgτ α :g l and £τ α <oo and with the /α being orthonormal Let gα(x)
ΞxM/α(*) We want to Prove that^ wίth V(x) = 2/(π\x\) + C/R,

C*R^\\χ\\2. (7.2)
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By scaling it clearly suffices to prove the theorem for R = l, which we assume
henceforth.

It is convenient to use Fourier transforms. Let

Q(P>q) = ίί X(*)χ(y)y(x,y)exp(φ x-iq y)dxdy. (7.3)

Since χyχ is positive semidefinite, so is ρ, and hence

\Q(P, q)\ ̂  Q(P, p}1/2Q(q, q}ί/2=μ(p)μ(q) (7.4)
with μ(p) = ρ ( p , p } i / 2 . From (7.3) and the fact that O ^ y ^ l as an operator,

= (np,ynp)^(np,np) = J \χ(x)\2dx = M2, (7.5)

where np(x) = χ(x) exp( — ip x) and M = || χ\\ 2. Using the Fourier transform of |x| 1,
namely

4π |pΓ 2 =ί |xΓ l exp(φ.χ)dx, (7.6)

E can be written as

E = (2π)~3{J Q(P,p)(\p\ — C)dp — π~3 j j ρ(p,q)\p — q\~2dpdq] . (7.7)

Using (7.5) we have that

E ̂  (2π)"3 inf {%)|0 g μ(p) ^ M for all p}, (7.8)

where £(//) is defined by

E(μ)= §μ(p)2(\p\-C)dp —π~3 J J μ ( p ) μ ( q ] \p-q\~2dpdq . (7.9)

To bound the second integral in (7.9), let

~2 if |p|^^4

|>Γ2 if \p\>A,

where A is some constant to be determined later. Employing the same strategy as
in (6.9) we have

Nμ(p)μ(q)\p-qΓ2dpdq
= $μ(p}(h(q)/h(p))l/2μ(q)(h(p)/h^^ (7.11)

with

(7.12)

and with

s(p)= J \p-qΓ2(q-2~A-2)dq. (7.13)
\q\<A

To calculate s(p) we use bipolar coordinates, i.e. for any functions / and g

« (\P\+β ]

i β f ( β ) \ f xg(*)d*\dβ. (7.14)
o (\\P\-β\ }
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Thus,

\P\+β
J a^

\\P\- β\

_ M

= (2π/|p|) ί (u-*-uξ2)ln- - -du (7.15)

with ξ = \p\/A.
We claim that

We shall prove (7.16) later. For now, let us insert (7.16) into (7.12), and then into
(7.11) and (7.9),

E(μ)Z I μ(p)2[SA(3π2Γ1-C]dp+ f μ(p)2 ί\p\ - A2 \p\~ 1

\p\>A \p\<A

+ π-342s(p)-C]dp. (7.17)

We choose
A = 3π2Cβ (7.18)

so that the first integral in (7.17) vanishes. Then, using (7.18) and performing the
angular integration,

i (
E(μ) ^ 4πA4 J μ(Aw)2 < w + 2w2/3π2 -f 5w3/9π2

o [

_ l_4Q/(9π2) L"1-32/(3π2)lw2ί/w. (7.19)

As is easily seen, the factor { } in (7.19) has its maximum at w = 1 and it is negative
there. Therefore the infimum of the right side of (7.19) over the set μ(Aw)^M
occurs for μ(Aw) = M for all O ^ w r g l . The right side of (7.19) with μ = M is

- (598/1 35π)A4M2. (7.20)

Returning to (7.8) and using (7.18) and (7.20) (with 598 replaced by 600) we have
that

c*M2. (7.21)

Since M= | |χ | i 2, (7.21) is the same as (7.2).
To complete the proof we must bound (7.15) by (7.16). When u^ 1/ξ, the factor

υ"ί-uξ2^0. When ξ^l (i.e. \p\^A\ u^l and we have the bound

ln[(l+M)/(l-M)]^2tt. (7.22)

Inserting (7.22) into (7.15) yields the first part of (7.16).
If \p\^A, then ξ<\. The integral in (7.15) from 0 to 1 can be done explicitly,

j (u - 1 - uξ2) In [(1 + M)/(l - u)~] du = π2/4 - ξ2 . (7.23)
o
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To bound the integral from 1 to 1/ξ, use the fact that for u> 1,
1 + f w " 3 . (7.24)

Then

2 \
Γ^-tΓ3 )du = 2Q/9-4ξ + 4ξ2β+4ξ3/9. (7.25)

3 /

When (7.25) is combined with (7.23) (and the 4ξ3/9 term is replaced by the smaller
quantity 5ξ3/l8) the result is the second part of (7.16). Π

VIII. Some Numerical Calculations

Our goal here is to derive the bounds (3.33) for Ω and (3.34) for θ(r).

(A) Evaluation of Ω. Ω is defined as the sum of the two integrals in (3.15), (3.16).
Recall that σ = 0.3 and χi(x) = χ(\x\) is given in (3.22) while χ0(x)2 = 1 ~Zi(x)2. We
already set Dl = 1.

To evaluate /(1) we use the spherical symmetry of χ and first do the angular
integration on x and y. This integral is

o

=(π/3)(|x ly lΓ 'UI* -MΓ6-(I* +\y\~6)} (8.1)
Thus,

-(1 -Z(s)2)1/2(l -χ(t)2Yl2-χ(s)χ(tli]2 (8-2)

(Note that we integrate over t > s + σ and s, ί < 1 — σ, and then multiply by 2. Since
s < t — σ and t < 1 — σ, we have that 5 < 1 — 2σ.) This integral is not elementary, but
because it is an integral of a continuous, bounded function over a bounded domain
in 1R2 it can be confidently evaluated on a computer. The result is (3.33).

To evaluate /(2), the angular integration over y is done first as before, with the
result (8.1). Then J(2) is the sum of three integrals according as |x| < 1 — 3σ, 1 — 3σ
^|x|<l-2σ, l-2σ^|x ^1-σ. Thus,

) I sds J tdtl(t-sΓ6 -
0 1 -σ

+ (16/3π2)1 \° sds J
l -3<τ 1-

+ (16/3π2) V sds J ίί/ί[(t-s)-6-(ί + s ) - 6 ] s i n 4 ( l - σ - s ) | . (8.3)
l-2σ s + σ
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In each case the t integration can easily be done analytically. This transforms (8.3)
into three integrals over the bounded intervals O r g s < l — 3σ, 1— 3σ:gs<l — 2σ
and 1 — 2 σ ^ s g l — σ . The integrands are again bounded and continuous so
numerical integration can be used. The result is (3.33).

(B) Bound on θ(r),Eq. (3.34). The function θ = θl is defined in (3.13) with h defined
in (3.24). Again we take D1=L The kernel Lf is given in (3.12) with χl =χ given in
(3.22) and χ^l-χ2.

We want to compute

I(r)=$L*(x,y)h(\y\)dy (8.4)

with r = x . Since the angular integral of \x — y\ ~~4 is less than π(rs) ~ ~ ] (r — s) ~2, with
s = \y\, we have that

/(r)^(l/πr) J (r-sΓ2h(s)m(r,s)sds, (8.5)
o

where m(r,s) = m(s,r) and, for rrgs, m(r,s) is given by

1 — cos[π(s —τ)/4σ]

1 — cos[π(s —r)/4σ]
/O / f\

l-cos[π(2σ + τ-r)/4σ] *- " ' " ' ^Λ ( ' J

^ 0

In (8.6), τ = l-3σ.
The arguments of the cosines in (8.6) are all at most π/4 and one can use the

inequality cosfc^ 1 —b2/2 for \b\ ^π/4. If we use this inequality in (8.6) and then
insert the result in (8.5), the integral (8.5) is seen to be elementary but tedious [recall
(3.24)]. Finally, θ(r) = I(r)/h(r).

Let us verify (3.34) when r^l — σ. Then rh(r) = \ and thus

Θ(r) = (πβ2σ2) ^sh(s)(r-sΓ2(^~σ-s)2ds. (8.7)
r — a

The second line of (3.24) is appropriate for this region. In the region r — σ g s r g l — σ
the function (r — s ) ~ 2 ( l — σ~s)2 is monotone decreasing in s and so has its
maximum at s = r — σ. Thus,

Θ(r)^(πβ2σ2)σ~2(l-r)2 { {2-σ(s-1 +2σ)}ds, (8.8)
r — σ

and this agrees with (3.34) for r^ 1 — σ.
The verification of the r^ 1 — σ case of (3.34) is elementary and we omit the

details.

IXe The Occurrence of Collapse for Large α

In the previous sections it was shown that the Hamiltonian HNK (1.4) under
consideration is stable if α is small enough. There are two parameters in the
problem, zα and α. For stability of one electron and one nucleus it is necessary and
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sufficient that zα ̂  2/π, but, assuming this condition, there is stability in the many-
body case if α < a0/q with α0 > 1/47. In this section we shall prove that this stability
bound is not just an artifact of our proof but that instability definitely occurs if α is
too large. Theorems 3 and 4 will be proved here.

Proof of Theorem 3. The method of proof here is the same as the method employed
in [23] to prove the instability of one-electron molecules in a magnetic field. Let
φ e L2(R3) be real with || φ \\ 2 = 1 and let τ = (0, |p| φ) which is assumed to be finite.
Then

E = (φ,HNKφ) = τ-za$φ2(x) £ \x-Rj\^dx + z2^ £ I^-R Γ 1 .(9.1)
j=ί 1 ̂  i < ^ K

With φ fixed let us try to position the Rt so as to minimize the right side of (9.1).
This minimum (call it e) is less than any average of E over positions of the Rt. In

K

particular, we use ip = J~J φ(Rj)2 as a probability density for such an average. Then
7 = 1

(9.2)
where

σ = Sφ(x)2φ(y)2 x-y\~ldxdy. (9.3)

Now K can be chosen so that \K — \ — z~l\^^. Using this K, we have

%σu. (9.4)

If we set α t = 2τ/σ, then when α > α1 ? e < 0, and we can drive e to — oc simply by
dilation, i.e. φ(x)-+λ3/2φ(λx) and R^λRj/λ with λ->oo.

To obtain a numerical value for α1 ? choose 0(x) = π~ 1 / 2 exp( — r) with r = |x|.
The Fourier transforms of φ and </>2 are

- 2. (9.5)

Then

τ^(2π)-3ί^)2 |p|dp = 8/3π, σ = (2π)'3 ^2(p)(^/\p\2)dp = 5β, (9.6)

and 2τ/σ = l 28/1 5π. D

Proof o/ Theorem 4. The method of proof here is similar to that used in [20] to
prove that the energy of N nonrelativistic bosons interacting with fixed nuclei via
Coulomb forces diverges as — TV 5/ 3 . Again, let φ E L2(R3) be real with || φ || 2 = 1 and
τ = (φ^ \p\ 0). Since there are q spin states, we can put N = q electrons into the state
φ. The energy is then

E = qτ-zκq$φ2(x) X \x-Rj -1 dx + z2α X \Rt-Rj ~ 1 + ~q(q-\)σ
j=l l^i<J^K ^

(9.7)

with σ given in (9.3). Let us first prove the theorem under the condition q/z ̂  1 at
the end of the proof we shall show how to handle the case q/z< 1.
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To construct φ we first define g e L2(IR3) by

g(x,y,z) = f(x)f(y)f(z), (9.8)

where /e L2(RX) is given by f ( x ) = J/3/2 (1 - x|) for |x| ̂  1 and /(x) - 0 for |x| ̂  1 .
This / has || / |l 2 = 1 , and thus || g || 2 = 1 . Let h e L2(R3) be some other function with
compact support and with (h, \p\h)< oo and \\h\\ 2 = 1. Define the integers n and K
and the positive number λ by

n=[(g/z)1 / 3]>l, K = n3,
1 \ (9.9)

λ = n3z/q = Kz/q,

where [b] means integral part of b. Clearly, 1^/1^1/8. Finally, we construct a
sequence of functions φ(s\x), xeIR3, by

^(x)2 = λg(x) + (l-λ)s-3fe(x/s + (0,0,s2))2. (9.10)

Now choose some fixed locations Rl9 . . ., Rκ of K nuclei. Because of the scaling
of h by s~ l and translation by (0, 0, s2), we have that E converges to the following Er

as s— » G O :

E' = qλτ-zaλqlg2(x) f x-RjΓ^x + z2!* Σ \Ri-Rj\~1 + \λ2q(q-l)σa,

(9.11)

where τ now means (g, \p\g) and σ is given in (9.3) with g in place of φ.
We claim that it is possible to choose the locations JR 1 5 ...,RK so that

. (9.12)
l^ ί<j^^ j = l

If (9.12) holds then, recalling (9.9),

F ̂  qλτ - ^z2a(λq/z)413 . (9.1 3)

Recalling that λ> 1/8 we have that E' <0 whenever

(9.14)

We also have that τ = (g, |/?|g)^(g,/?2g)1/2 = 3 (by the Schwarz inequality). Thus,
collapse occurs if^a2q~lβ~2 with α2 - (π/2)2 8 (1 8)3 = 1 1 5, 1 20, provided g/z ̂  1 .

If, on the other hand, q/z<\ and if α>α 2^" 1^~ 2 = α2^"1z"2α~2(2/π)2, we
have that (π/2)2(zα)3>α2z/g>α2. Since α2>(2/π)5, we are in the situation that
zα>2/π, which certainly entails collapse. Therefore, the theorem is proved for all
ratios q/z with the α, given above.

There remains to prove (9. 12). Chooser — 1 numbers/?!, ...,βn_1 satisfying —1
= j8 0 <j8 1 <. . .< j8 B _ 1 <j8 n = l such that

J $ l f(x)2dx = \/n for all j.
βj

Let Ly be the interval [/?/- j , jδ/] in R1 and, with m denoting a triplet (ij, k\ let Γ(m)
ClR3 be the rectangular parallelepiped Lf x Lj x Lfc. Then, for each m,

I g\x)dx = \/n3 = \ / K . (9.15)
7'(m)
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There are π3 of these parallelepipeds. To prove (9.12) we shall place one of the R^s
in each Γ(m) and average its location with respect to the density g2(x) restricted to
Γ(m). If the average satisfies (9.12) then there is surely some choice of the l '̂s tnat

satisfies (9.12). Apart from a self energy contribution from each parallelepiped, the
average of the left side of (9.12) is zero. Thus the average of the left side is given by
the self energy terms

W=~\n*Σ\ j g(x)2g(y)2 \x-yΓ\lxdy. (9.16)
£ m Γ(ra) x Γ(m)

Each integral is the self energy of a charge density g2 in Γ(m). However Γ(m) lies
inside a ball B(m) of radius r(m) = (s2 + t2 + t/2)1/2, where 2s, 2ί, and 2u are the
lengths of Γ(m), namely (ft - ft _ j, (̂  - jS,. _ J, (ft - ft _ t). The self energy is greater
than the minimum self energy of a charge 1/K distributed in B(m); the minimum
occurs for a uniform charge distribution on the boundary oΐB(m) and is r(m) ~ YK2.
Thus,

W^-4 Σ Σ Σ (s2 + ί2 + u2Γ 1 / 2. (9.17)
^ 1=1 7 = 1 k = i

Now (s2 + f 2 + M 2 )~ 1 / 2 >(s + ί + M)~ 1 . Substituting this latter expression in (9.17)
and then using the convexity of the function (5, ί, u)-+(s +1 + ύ) ~1 and recalling that
K = n3, we have that

W^-$K(a + b + cΓl, (9.18)

where α, 6, and c are the averages of s, f, and u. But α = 6 = c = 1/n, and thus (9.12) is
proved. Π
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