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The Periodic Orbits of an Area Preserving Twist Map
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Department of Mathematics, University of Leiden, Niels Bohrweg 1, Leiden, The Netherlands

Abstract. We study the oscillation properties of periodic orbits of an area
preserving twist map. The results are inspired by the similarity between the
gradient flow of the associated action-function, and a scalar parabolic PDE in
one space dimension. The Conley-Zehnder Morse theory is used to construct
orbits with prescribed oscillatory behavior.

1. Introduction

We shall consider a C 1 area preserving diffeomorphism F of the cylinder S1 xR
onto itself. Such a diffeomorphism can be described by a mapping F: R2-+R2 (its
lift) given by F(x, y) = (f(x, y\ g(x,y)\ where x is the angle coordinate. The
components of F satisfy the periodicity conditions

The map F is said to be a twist diffeomorphism iϊf(x, y) is an increasing function
of y, and in fact

d2f{x,y)>0 (1.1)

holds for all (x, y) in R2. Here dk denotes differentiation with respect to the fc-th
argument.

We shall consider twist diffeomorphisms which satisfy the infinite twist
condition, i.e.

lim f(x, y) = ± oo
y-* ± oo

for any x e R . We shall study the set of periodic orbits of F.
The main feature which distinguishes twist maps from other area preserving

maps is that they have a single valued generating function, i.e. there is a C 2 function
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h(x,x') on R2 such that

(x'5y) = F(x,y) iff y = dίh(x, x') and yf = — d2h(x,x').

This function also satisfies

dld2h(x,x')>0 for all x and x'. (1.2)

The generating function ft is uniquely determined (up to a constant) by the map F.
Its construction is given by Mather [10]. See also Aubry and le Daeron [2].

The existence of ft implies that any orbit of the map F is completely determined
by its sequence of x coordinates {xn:neZ}. One easily verifies that a sequence
{xn :neZ] can only be the sequence of x coordinates of an orbit of F if

diW(...,x-ί,xθ9xί9...) = O9

where

W(x)= +Σ AfoXi+i)
ί = — 00

(this sum is not well defined, however its partial derivatives are).
Orbits of F are therefore critical points of the "function" W. This idea becomes

useful if we restrict ourselves to periodic orbits of F. Let XPtq be defined by

Xp,q = {(xdiez-Xi + q = Xi + P to a 1 1 iεZ},

where p and q are integers and q>0. For any x in Xpq we define

W(x)= Σ h{xi9xi + ί ) .
i=l

Now W is a well defined C2 function on Xpq and its critical points are periodic
orbits of F with period q, which "go around the cylinder" p times after q iterations.

The usual way of constructing such orbits is to prove that W takes its
maximum at some point in Xp,q. This maximum must of course be a critical point
of W. Most of the critical points of W are not maxima however. It is our intention to
study these other critical points.

Our approach is based on the similarity between the present problem and that
of finding solutions of

(V'(ί) + f(t9 x(ή) = 0, -oD<t<+ oo,
U \x{t + p) = x(t) + q,

where f(t,x) is a C1 function satisfying

/(ί+l,x) = /(ί,x + l) = /(ί,x).

Indeed, this problem is variational, with potential function

where

g(t,x)=ίf(t,ξ)dξ.
0
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In this case the gradient flow of W (with respect to the L2(0, q) innerproduct) is a
semilinear parabolic partial differential equation:

Us xtt + f(t,x)9 s>0, -oo<ί<+oo,

\

The flow induced by (II) on some function space has a number of geometric
properties, the most prominent of which is the maximum principle. The gradient
flow of W on Xpq turns out to have similar properties, and in fact our main results
will concern systems which contain (I) as a special case.

To illustrate the analogy we have in mind we shall compute W, dkW, and F in
the following specific example. Let g(x) be a C2 function such that g(x) = g(x+1)
holds for all real x, and define f(x) = g'{x)9 and

Then h(x9x') is the generating function of a twist map F :(x,y)-+(x\yf) given by

y = dίh(x9x') = x' — x9 i.e. x'

y=-d2h(x,x') = x'-x-f{x'), i.e.

so F(x9y) = (x + y, y — f{x + y)) If one takes g(x) = (k/2π)cos(2πx) (fc>0), one
obtains a map known as the "standard map."

We see that the orbit {(xk9yk)}keZ is indeed completely determined by its
sequence of x coordinates, since we have yk = xk + x — xk. Furthermore a sequence
{χk}kez is the sequence of x coordinates of an orbit of the map F if and only if it
satisfies the second order difference equation

dkW=xk+1-2xk + xk_l+f{xk) = 09 keZ,

where

Note that this is the numerical analyst's (simplest) version of the differential
equation occurring in I! The gradient flow of W is given by

Xk = Xk+l~ 2<Xk +
 χ

k - 1 ~t~ J (Xk) •>

which is the discretized version of II.
Seen in this way, it should not come as a surprise that the gradient flow of W

has much in common with the parabolic PDEII.

2. The Gradient Flow of W

Let p and q be given integers, with q>09 and let Fl9 ...9Fq be C 1 area preserving
twist maps of R2 with generating functions hί9...,hq respectively. We define hj for
j<\ and j>q by requiring hj = hj+q for all;. We shall assume that the maps Fj
satisfy the following condition:

The no flux condition. Let C be a curve which winds around the cylinder once. Then
the total area between C and F(C) vanishes, i.e.

\ydx= J ydx.
C F(C)
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This condition is equivalent to the following condition on the generating
functions hpc.x'):

(H) h(x + 1 , x' +1) = h(x, x') for all x, x1.

We recall that the twist property (1.1) of the maps F} implies that

(Tw) d1d2h(x, x') > 0 for all x and x'.

We refer to Mather [10,11] and Aubry and le Daeron [2] for more details.

hq
Given the generating functions hu ...,hq we define W in C2(X) as follows:

W { x ) = Σ j j j

where

x = Xptq = {(xj)jeZ'Xj+q = Xj + P f ° r ally}

is the space we defined in the introduction. This function will enable us to study the
fixed points of the composite map Fq ° Fq _ x o... o F x. If F} = F for all j then such
fixed points are of course q periodic points of the single map F. Note that the
composite map Fq o Fq_ 1 o... o Fx need not be a twist map.

Lemma 2.1 Any point (α, b) in R2 satisfies

if and only if there is a crtical point x in X of W which satisfies

xί=a,

-d2h1{xo,x1) = b.

Proof. The gradient of W is given by

djW= d2hj(Xj_ l9 xj) + d1hj+ ^Xj, xj+1).

Hence if one defines y/ = d1/ι/ + 1 (x i 7 ,x_/.+ 1 ) , then

(xj>yj) = Fj(χj-i>yj-i)

if and only if djW=0, which proves the lemma.
In view of this result we shall identify any orbit of Fu ..., Fq with its sequence of

x coordinates.

There are several structures on X which are relevant for our problem. First of
all X is a manifold diffeomorphic to Rq. Furthermore X has a partial ordering
defined by

xf^y iff XiSyi for ali i .

We also define

x<y iff x^y and x + y,

x<ζy iff Xi<yt for all/.

With this ordering X becomes a lattice.
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The gradient flow of W will be denoted by {φt}t>0. It is defined by the
differential equation

x'(t) = gmdW(x(ή)

o n l .

Lemma 2.2. For all x, y in X and t>0 we have:

(a) if x^y then φt(x)^φt(y),

(b) if x<y then φt(x)<φt(y)

Proof. Let Vs denote djW9 then

θ if j<i-ί orί
3iδ2Λι<xj,xί) if j = i + l

id2hj{Xi,Xj) i f 7 = i - l .

Hence all the off diagonal elements of the Jacobian of grad W are nonnegative,
which implies (a). The other assertion follows from the fact that the upper and
lower diagonal only contain strictly positive elements (see Hirsch [8]).

The analogue of this lemma for the parabolic equation (II) mentioned in the
introduction is of course the comparison principle. Lemma 2.2 may be restated as
follows:

// the graphs of x and y (think of them as piecewise linear functions on R) do not
intersect, then neither do the graphs of φt(x) and φt(y).

For parabolic equations this has been generalized by Matano [9]. His result
states roughly that, if x(s, t) and y(s, t) are solutions of the parabolic equation (II),
then the number of intersections of the graphs of ί-»x(s,ί) and t-+y(s,t) is a
nonincreasing function of 5 (note that for the PDE we have called the time variable
s)1. The discrete version of this principle is given in Smillie [13] in the context of
competitive and cooperative differential equations.

To define the "number of intersections" we introduce some more notation.
For x, y in X we say that x intersects y transversally, in symbols xcfiy, if, for any

integer z, x — ^ implies that xi_ί—yi_ί and xi + 1—yί+1 have opposite signs.
If x and y intersect transversally then we define I(x,y), the number of

intersections of x with y, to be the largest integer k for which there are

such that

holds for j = 0,1,2,... , k - l .
Clearly k must be even, and fe ̂  q.
The following result was proved by Smillie [13]:

Proposition 2.3. Given x and y in X, the set of t in R for which φt(x) and φt(y) do not
intersect transversally is discrete and I(φt(x), φt(y)) is a nonincreasing function of t

1 Actually Matano doesn't prove this. Our statement is an easy consequence of his results however
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which has a jump discontinuity exactly at those t for which φt(x) and φt(y) do not
intersect transversally.

3. The Twist Number of an Orbit

Let x in X be a critical point of W9 and put yj = dιhj+1(xj9 xj+1) and Pj = (xj,yj).
Then Pj = Fj(Pj-1) for any integer; (where we have defined Fj+q = Fj).

An intuitive description of the twist number can be given as follows. Take a
vector u0 in TPoR

2, and define Uj in TPoR
2 by

Uj = dFj(Pj-1)uj_1 for all j .

Identify the tangent spaces TPJR2 with R 2 in the obvious way, and let the
vector Uj have components (ξj9 ηj). Assume that u0 =f= 0.

For each integer) we define θj to be the angle between w7_ x and Uj, oriented in
the clockwise sense. This angle is only defined up to a multiple of 2π, so we have to
specify which multiple we mean. For this we use the following rule:

if ξj^ί'ξj^Q, then -π<θj<+π,

if ξj-i-ξjKO, then O < 0 j < + 2 π .

Then we define the twist number of the orbit x, τ(x), to be

τ(x) = lim(2n)"1 £ θj/2π-
n -»• o o j= —nq

Roughly speaking, 2πτ(x) is the average angle about which dF(P0) rotates the
vector u0. Or, alternatively, τ(x) is the average number of times the sequence ξn

changes sign, in an interval of length q.
Instead of proving that this limit exists and is independent of u0 we shall give

another definition. Our definition of τ(x) will involve the Morse index of x as a
critical point of W. It must be seen as a discrete version of Floquet theory for a Hill's
operator, which reflects the analogy of our problem with the problem (I) of the
introduction.

In a recent paper Mather [11] defines "the amount of rotation" of an orbit of a
C 1 map of the cylinder. He also shows how this amount of rotation is connected
with the Morse index of a critical point of W. It follows from his results that the
twist number τ(x) coincides with Mather's amount of rotation in the case we study.

First we take a look at the connection between the derivatives dF){Pj-1) and
the second derivative of W at x.

L e m m a 3.1. Let u} = (ξj9 η3) in TP R2 be given. Then Uj = dF(Pj_ x) uj-ί holds for all

j if and only if
α ^ + 0 ^ + 0 ^ & = ()

hold for all integers i. Here αi? βt and yt are defined by

<x.i = d1d2hι{xi-ί9xi)9
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Proof. If one differentiates the relations

ϊj= ~ δ2hj{Xj-1, xJ) = d1hj+ fa, xj+ i),

one gets

η.= - dlh/Xj- u xj)ξj-dιd2hj(Xj-1? Xj)ξj_ 1

= d2hj+ ^xj, xj+ ι)ξj + d1d2hj+ ^Xp xj+ ι)ξj+ ί ,

which proves the lemma.

After we have identified TXX with Rq (coordinates: ξj with ξj+q = ζj) we see that
the linear part of the vectorfield grad W at its critical point x is given by L,

where αf and βt are defined as in Lemma 3.1. Thus L is a Jacobi matrix, and the
following is known (see van Moerbeke [12]):

Proposition 3.2. The spectrum of L is given by

So, for all i we have λ2i>λ2i+ι.

For each real λ we consider the difference equation

Given ξ0 and ξγ then all other ξ{s can be computed and we have

where the two by two matrix M(λ) is given by

Note that detM(λ) = 1. Clearly λ is an eigenvalue of L if and only if 1 is an
eigenvalue of M(λ).

Since M(λ) is a linear mapping on R2 it maps half lines to half lines and
therefore induces a mapping on the set of half lines with the origin as end point.
This set (with the appropriate topology) is naturally identified as a circle ("polar
coordinates"), and therefore we may regard M(λ) as an orientation preserving
diffeomorphism of the circle. For such a diffeomorphism the rotation number is
defined up to an integer (see Coddington and Levinson [3]), and it depends
continuously on the mapping, i.e. on λ.

Now it is known that M(λ) depends on λ in the following manner:
(1) λ>λ0 or A 2 ί - i>A>λ 2 ί . In this case M(λ) is conjugate t o 2

μ 0

0 μ'1

2 Within SL(2,R\ i.e. there is a positively oriented base of R2 with respect to which M has the
specified matrix. The orientation explains the occurrence of the +1 in the Jordan normal forms
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for some μ > 1. As a map of the circle it has four hyperbolic fixed points, whence its
rotation number is an integer.

(2) λ2i>λ>λ2i + ι. There are several possibilities: M(λ) is conjugate to one of
the following standard forms:

sin (A
O < 0 < 2 π ,

or

In the first case the rotation number is k + (φ/2π) for some integer k, and in the
other cases it is ^ + fc for some k.

(3) λ = λj. Again there are several possibilities. If λj is a double eigenvalue of L,
then M(λ) is the identity matrix. Otherwise M(λ) is conjugate to

1 ε

0 1

where ε = (— I)7. Here we see that the conjugacy class of M(λ) within SL(2, R) allows
us to distinguish between λ2i and λ2i + 1.

Furthermore, the rotation number is a nondecreasing function of λ. Indeed, all
the factors

cos</>

sinφ

(~μ

\o

— smφ
cosφ /

0

-μ~

0

\
1
)

V

±1
- 1

of the product that defines M(λ) represent diffeomorphisms of the circle which are
strictly increasing in the parameter λ. Using this fact one can see what happens to
M(λ) (considered as a map of the circle) as λ decreases from + oo to — GO (see Fig. 1).
In this way one verifies the classification of the M(A)'s given above.

Hence, if we normalize the rotation number of M(λ) by requiring it to be zero
for λ > λ0, there is a unique function ρ(λ) representing the rotation number of M(λ).

Lemma 3.3. The rotation number ρ(λ) of M(λ\ with ρ(λ) = 0 for large λ is
nondecreasing in λ. The eigenvalues of L are those λj e R for which ρ(λj) is an integer,
and for which ρ(λ) is not constant on a neighbourhood of λj.

For /Irg/lg-! we have ρ(λ)= —\q, and for λ2j-ί^λ^λ2j we have ρ{λ)= —j.

We can now give a precise description of the twist number τ(x).

Definition. τ(s) = — ρ(0).

Remark. The matrix M(0) is conjugate to the Jacobian of F at P o ,

0) = dFq(Pq_1)o...°dF1(P0),
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- M 0)

Fig. 1. ρ(λ) and the spectrum of M(λ) for various values of λeΊR.

so that the rotation number of M(0) and dF(P0) coincide. However, as maps of the
circle the integer part of their rotation numbers are not defined, and it is this integer
part which we shall need. We have defined it in such a way that it fits in with the
intuitive description of τ(x) given at the beginning of this section.

We conclude this section with a discussion of the number of sign-changes of the
eigenvectors of L.

Let ξι be an eigenvector of L corresponding to the eigenvalue λt. Define the
number of signchanges of ξι to be I(ξ\ 0) (note that eigenvectors of L always
intersect 0 transversally). Although the following lemma can be proven in a more
direct way, we shall sketch a proof which shows that the oscillation properties of
eigenvectors of L may be regarded as consequences of Smillie's result.

Lemma 3.4. ξι has 2[(/+l)/2] signchanges3.

Proof. The unit sphere Sq~1 in Rq is naturally identified with the set of half lines in
Rq with the origin as endpoint. Since the flow on Rq given by etL is linear, this
identification gives us a flow on Sq~1. A straightforward calculation shows that
this flow is gradientlike with respect to

V(ξ) = (ξ,Lξ).

It follows from Proposition 2.3 that the following sets are isolating neighbour-
hoods for the flow etL onSq~ι:

N k = closure of {ξ in S"*"1: ĉ rfSO and ξ has 2fe sign changes}.

3 For any real number x[x] denotes the integer part of x, i.e. the largest integer which is not larger
than x
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Let the maximal invariant set in Nk be Ik. Since the isolating neighbourhood Nk

is independent of the Jacobi matrix L, the homotopy index of Ik is also independent
of L.

For the particular Jacobi matrix one gets by putting ^ Ξ I and β{ = 0, one can
explicitly determine the Ik and their homotopy indices. It turns out that, if 1 < 2k
< q, Ik is a hyperbolic circle of equilibria for the flow, given by

0eR/2πzt.

The corresponding homotopy index is

where we use [...] to denote the homotopy type of a pointed topological space, and
p is any point in S 2*" 1 .

The other invariant set Io (and in case q is even also Iq/2) consists of a hyperbolic
fixed point whose homotopy index is [S 0] (and [S"*"1] respectively). The reader
who wants to verify this should bear in mind that, since the flow is gradient like, all
isolated invariant sets consist of fixed points and orbits connecting them.

Any critical point of Fis an eigenvector of L, so we see that all Ik contain at least
one eigenvector. Since the flow is equivariant with respect to the transformation
ξ-* — ξ, it follows that each Ik contains at least one pair of eigenvectors {ξ, —ξ}.

We claim that the Ik with \<2k<q contain at least two such pairs. Indeed,
suppose that one of the Ik contains only one such pair, say {ξj, —ξj}. Then Ik

contains no orbits of etL other than the constant orbits ξj and — ξj. The fact that Ik

is an isolated invariant set implies that λj is a simple eigenvalue of L (otherwise
there would be eigenvectors of L, i.e. critical points of V, arbitrarily close to ξj). By
choosing local coordinates on Sq ~* near ζj one can compute the Hessian of V at ξj

and conclude that ξj and — ξj are nondegenerate critical points of V, and that the
homotopy index of Ik is [SJ'vSJ']. This contradicts the fact that h(Ik) = [S1

Smillie's result (Proposition 2.3) implies that (/0, Iu ...,I[q/2]) is an admissible
ordering of a Morse decomposition of (Sq~1, exp(ίL)). After some thought one
concludes from this that:

and if q is even,

which proves the lemma.

Lemma 3.5. Let ί^i^j^q be given. Then any nonzero linear combination of ξ\
ξi+1,...,ξJ has at least 2[(i+1)/2] and at most 2[(/+1)/2] sign changes.

Proof. Without loss of generality we may assume that there are numbers ck with ct

and Cj nonzero, such that
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is the given linear combination. Define

Then the number of sign changes of η(t) is nonincreasing (by Proposition 2.3).
However we have

and

η(t)/\\η(t)\\^ξJ as f - - o o ,

so the number of sign changes of η lies between that of ξι and ξj.

4. Main Results

Having defined the twist number we can now state our main results. Let
F = FqoFq_ίo ...oFu W and X be defined as before. Then we have the following
theorems.

Theorem 1. Let x in X be an orbit with τ(x)>0. Then a and b, defined by

a = sup {c < x: grad W(c) = 0},

b = inf{d > x: grad W{d) = 0},

are critical points of W with τ(a) = τ(b) = 0.

It follows from the discussion in Sect, two that two different orbits x, y always
intersect transversally. Therefore it makes sense to talk about /(x, y) for any couple
of orbits x and y (i.e. critical points of W).

Theorem 2. Let a<x<b be as in Theorem 1. For any integer k with 0<k<τ(x)
there are at least two orbits y1, y2 in X such that

a<γ<b Ϊ = 1,2,

and

I(y\x) = 2k i = l , 2 .

From this theorem we will be able to derive:

Theorem 3. There is an orbit y (not periodic, i.e. y is not in X) with a<y<b, such
that y is homoclinic to a, or homoclinic to b, or y is a hteroclinic orbit from a to b. In
the last case there is another orbit a<y''<b, which is heteroclinic from b to a.

In general, a and b will be saddle points (for the map F), and the homoclinic
orbits will be transversal. It is well known that this implies the existence of a "Smale
horseshoe," and its consequences.

We do not make any genericity assumptions however. The Theorems 1,2 and 3
are consequences of the variational structure on the set of orbits of F.
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Also it should be noted that we do not require the orbits a, x, b and y to be
monotone (i.e. xt<xi+1 for all i). Concerning monotone orbits we have the
following result:

Theorem 4. If all the maps F j are the same and x is a monotone orbit, then
(i) α^maxίXf-^Xi-i),

(ii) &ί<min(xf + l,x / + 1),
(iii) α^fci-!,
(iv) any orbit y with a<y<b is monotone.

Proof of Theorem 4. The first two inequalities follow from the definition of a and b
given in Theorem 1, and the fact that, if (x f) i eZ is an orbit, then so are (xf -f l ) ί e Z and

By Theorem 1 a = (ai+1)ieZ is an orbit, and by (i) ά>x. Hence we have ά^b,
which implies the third inequality.

Finally, if a<y<b, then yi<bi^ai+ι <yi+ί, which completes the proof.

5. Proof of Theorem 1

Let L be the linear part of the vectorfield gradW at x. Since τ(x) > 0, it follows from
the discussion in Sect. 3 that the first eigenvalue of L, λ0, is strictly positive. Indeed,
we have ρ(0)= — τ(x), so ρ(0)<0. Therefore the fact that ρ(λ) is a nondecreasing
function of λ and that ρ(λ0) = 0 implies that λ0 > 0.

This eigenvalue is simple, so there are two unique orbits y±(t) of the gradient
flow {φt: t ̂  0} of W such that

y4ή<x<y+(t) for all t,

y±(t)-^>x as ί-> — oo,

and

These orbits lie on the so called "fast unstable manifold" of x, corresponding to the
eigenvalue λ0 of L.

Let x +1 denote the points in X defined by (x ± 1); = xf ± 1. Our assumptions on
the twistmaps F l 3 ...,Fq imply that x + 1 and x — 1 are critical points of W too.
Furthermore, for large negative ί (5.1) implies that

x-l<;y_(ί)<x<;y + (ί)<x + l . (5.2)

Since the gradient flow φt is order preserving (Lemma 2.2), and x, x +1 and
x — 1 are fixed points of this flow, (5.2) holds for all t in R (use the fact that y±(t + s)
= Φs(y±(t)) holds for all s^O).

Define

c = inΐ{y_(t): — oo<ί<oo},

d = sup{y+(t): — oo<ί<oo}.

Then y-(t)[c and y + {t)]d as t->oo.
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Claim. a = c and b = d.

Indeed c and d are critical points of W (they are ω-limit sets for the gradient
flow of Wl), so c^a and b^d hold.

Now let e<x be any critical point of W. It follows from Lemma 2.2 that e<ζx,
since e = φt(t) <̂  (/̂ (x) = x holds for all t > 0. Hence for large negative t we have
e<y_(t)<x, and, arguing as before, this must hold for all t.

So we see that e ̂  c whenever e is a critical point below x. Combining this with
the definition of a (in Theorem 1) we conclude that αrgc, and therefore a = c. The
same argument will prove that b = d.

Now suppose that τ(a) > 0. Then, as we saw before for x, there would be an orbit
z(t) of the gradient flow such that z(t)[a as t-> — oo, and z'(ί)>0. Consider

z* = sup z(f). Again we have that z* is a critical point of W. It clearly satisfies
t

f^x, which implies that z* = x. So we see that z(t)]x as t-> — oo. On the other
hand, for large negative t, z(t) is close to a and j> _(0 i s close to x, so z(ί) < j;_(ί) must

hold for all ί. Hence, letting t tend to infinity, we see that z* ̂  inf y _ (ί) = α, which is
ί

a contradiction. It follows that τ(α) = 0. The same argument also shows that
τ(fe) = 0, which concludes the proof of Theorem 1.

6. Outline of Proof of Theorem 2

Since α < b are fixed points of φv and φ f is orderpreserving, it follows that

Q = {yeX:a<y<b}

is positively invariant under the gradient flow φt:

Φt(Q)CQ f o r a l l ί ^ O .

Let k be a given integer such that 0 < k < τ(x). Then, we must show that there are
at least two critical points y1, y2 in Q such that I(y\x) = 2k holds for i= 1,2. In
order to do this we define

Ok = {y G Q: yrf̂ x and I(y, x) = 2/c}

and

where γ(y) denotes the orbit of y under the gradient flow, i.e.

Clearly, the critical points y1 and y2 we are looking for should be contained in
Mk. The study of sets like Mk belongs to Conley's generalised Morse theory. We
shall assume the reader to be familiar with the Morse-Conley index as it is
described in Conley [4], or in Conley and Zehnder [5, 6].

Theorem 2 will be a direct consequence of the next result.
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Theorem 5. If 0<k<τ(x), then Mk is an isolated invariant set for the gradient flow
of W. Its homotopy index is

where p is a point in S 2 k~ 1.

Proof that Theorem 5 implies Theorem 2. Since h(Mk) is nontrivial, Mk cannot be
empty. It therefore contains a complete orbit of φt and its closure. Since φt is a
gradient flow Mk must contain at least one critical point of W.

Suppose that Mk contains only one critical point, say y. Then Mk must be {y},
because any nontrivial orbit of φt in Mk would have to be homoclinic to y which is
impossible for gradient flows.

Let L be the linear part of grad W at y. Then λ = 0 is at most a double eigenvalue
of L (recall that Lξ = 0 is a second order difference equation). In other words the
rank of the Hessian of W at y is at least q — 2. A result of Dancer [7] then tells us
that, if bj{j>0) are the Betti numbers of h(Mk) = h({y}\ at most one of the bj is
nonzero.

It is an easy exercise in algebraic topology however to compute the Betti
numbers of h(Mk). One finds that bj= 1 iΐj = 2k — ί or j = 2k, whereas the other bj
are zero. So we see that, if there is only one critical point in Ok, h(Mk) can never be
the homotopy type of Sι x S2k~1/S1 x {/?}. Hence Ok contains at least two critical
points.

It remains to prove Theorem 5. This we do in three steps. First we prove that
Mk is an isolated invariant set, and we construct some isolating neighbourhoods
for Mk (note that Ok is not compact, and therefore can never be an isolating
neighbourhood of anything!).

Then we show that for all different choices of the twist maps Fu ...,Fq, the
integer p, and the triple a<x<b, the resulting Mks are always related by
continuation and therefore have the same Conley index (always assuming that
0<fc<τ(x)).

Finally we compute h(Mk) for a specific example. In this example we let
Fu ..., Fq be the same integrable twist map. It is at this point that we see that our
theorems also apply to Problem (I) of the introduction.

7. Proof that Mk is an Isolated Invariant Set

Lemma 7.1. The following statements are equivalent:
(a) Mk is compact.
(b) Mk is an isolated invariant set.
(c) For all y on dθk there is a neighbourhood Uy of y such that Uy and Mk are

disjoint.

Proof "(a) implies (c)" is obvious from the fact that Mk and δθk are disjoint.
"(c) implies (b)'\ Since the boundary of Ok is compact a finite number of

neighbourhoods Uy cover dθk. Let K c Ok be the complement of these Uy\ We
may assume that Mk is contained in the interior of K. By the choice of the
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neighbourhoods Uy, one easily verifies that Mk is the maximal invariant set in K.
Hence K is an isolating neighbourhood of the isolated invariant set Mk.

u(b) implies (a)". By definition isolated invariant sets are compact, so Mk is
compact.

Lemma 7.2. If 0 < k < τ(x), then Mk is an isolated invariant set.

Proof. We verify condition (c) of the foregoing lemma.

The boundary of 0k contains three kinds of points. First there are those y in dθk

for which j ifΐx, a<y<b, but not a<ζy or not b$>y holds. It follows from
Lemma 2.2 that the orbit of y cannot lie in Ok. By continuity of the flow there is a
neighbourhood of y, U say, such that U and Mk are disjoint.

The second kind of points are those y on the boundary of Ok for which a 4, y < b,
yή=x but yrfϋc does not hold. Proposition 2.3 tells us that, either for all ί > 0 or for
all ί <0, φt(y) does not lie in Ok. Again, by continuity, some neighbourhood of y is
then disjoint from Mk.

We are now left with one other boundary point of Ofc, namely x itself. This point
deserves its own lemma.

Lemma 7.2. // 0 < k < τ(x), then there is a neighbourhood U of x such that U and Mk

are disjoint.

Proof Identify X and Rq via

yeX^(yί-xuy2-x2,...,yq-xq)eRq,

so that x becomes the origin.
The linear part of grad W at x, L, can be written as L = L + + L _ , where L + and

L_ are self adjoint, L+L_ ~L_L+ = 0 and

holds for all nonzero u in Rq.
Let {vθ9 ...,^_1} and {λo>λί^λ1, ...,λq_1} be the eigenvectors and values of

L. The null space of L+ is spanned by {vm, vm+1,...,vq-1}, where m>2k. Indeed,
τ(x) > k implies g(0) < — k (notation as in Sect, two), so L must have at least 2k + 1
positive eigenvalues.

Hence w + O and L+u = 0 imply that u has at least 2/c + 2 sign changes (by
Lemma 3.5) and therefore does not lie in Ok. Thus there is a constant K>0 such

holds for all u in Ok {\\u\\ is the Euclidean norm of u). This also implies that | |L+«| |
| for all win Ok.

Consider the function G(u) = \{u, L + u). Close to u = 0 the gradient flow is given

o(\\u(t)\\),

and so we have

whenever u lies in Ok.
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Now let ε > 0 be so small that Gt > 0 whenever G(u) ̂  ε and u e Ok, and define
U = {u: G(u) < ε}. If u(t) is an orbit of the gradient flow which lies in Ok, and for some

ί0 in R lies in U9 then for all t ^ ί0 we have w(ί) e (7 and — G(u(ή) > 0. It follows that

w(£)—•() as ί—• — oo. Hence the closure of this orbit does not lie in 0k which proves
that U and Mk are disjoint.

8. Continuation of h{Mk)

Identify X with Rq as in the proof of Lemma 7.3. In these coordinates we have

q

W(u) =

This sum represents the Lagrangian W we would get if we had taken p = 0, and had
studied the maps G; defined by

Gj(u, v) = (fpcj _! + u) - xp gj{u, v)),

where Fj = {fβgj).
Without loss of generality we may therefore assume that p = 0 and x = 0.
Our main tool in computing h(Mk) will be its invariance under continuation.
Let Fγ(λ\ ..., Fq(λ) be a continuous family of twist maps such that a(λ) < 0 < b(λ)

are critical points of the corresponding Lagrangians W(λ). Also assume that a(λ)
and b(λ) depend continuously on λ.

Lemma 8.1. If for all λ in (λu λ2) we have 0<k< τ(0), then the isolated invariant sets
Mk(λ) are related by continuation, and h(Mk(λ)) is independent of λ.

Proof Let λ0 in (λu λ2) be given. In the proof of Lemma 7.1 we constructed an
isolating neighbourhood K for Mk(λ). Using the postulated continuity of a(λ) and
b(λ) one easily proves that K is an isolating neighbourhood of Mk(λ) for all λ close
to λ0. Since the interval (λuλ2) is connected, this proves the lemma.

We shall prove that all the isolated invariant sets Mk corresponding to different
sets of maps Fί9...,Fq are related by continuation. Our proof is divided into two
steps. First we show that if we keep a < 0 < b fixed any Mk can be related to one
particular Mk(a, b). Then we show that these special Mk(a, fe)'s are all related to each
other.

Construction of Mk(a, b). Let a < 0 < b be given and consider

where the functions Vi in C2(R) have the properties

(1)

for i= 1, ...,q, and
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(2) V"(0)9 -V"(μi) and -V"(bι) are chosen so large that 0, a and b are
nondegenerate minima respectively maxima of U. Furthermore the matrix [/"(0)
— W"(0) should be strictly positive definite.

With some effort one can even construct polynomials which have these
properties.

Define Wλ = {\ -λ)W + λU= W+λ(U- W), and a(λ) = a, b(λ) = b for O ^ λ ^ l .

Lemma 8.2. The family {(a(λ), b(λ), Wλ): 0 ^ λ rg 1} satisfies the hypothesis of
Lemma 8.1.

Proof We only have to check that for 0 ^ λ ^ 1 the twist number τ(0) is larger than
k.

By assumption, this certainly holds if λ = 0, for then Wλ=W. The construction
of the twist number given in Sect, three shows that τ(0) increases if the Hessian of W
at x = 0 increases. Since we have chosen U" — W" positive definite, the twist
number is an increasing function of λ. Hence τ(0)>/c for all λ in [0,1].

Lemma 8.2 shows that, if τ(0)>fc, h(Mk) only depends on a and b, and in fact
that h(Mk) = h(Mk(a, b)\ where we define Mk(a, b) to be the Mk corresponding to the
Lagrangian U introduced above.

Continuation of the Mk(a,b). Let Uo and U1 be two functions given by (8.1) with
different a and b: α(0)<0<fr(0), and a(ί)<0<b{ί), and different V^.V^y) and
Vi(l,y) (which satisfy the conditions (1) and (2) we introduced in the construction
of the Mk(a, b)).

Then again we have two isolated invariant sets, Mk(0) and Mk(\) (assuming
τ(0) > k for both cases of course).

Lemma 8.3. Mk(0) and Mk(l) are related by continuation.

Proof Without loss of generality one may assume that U'[(0)— UQ(0) is positive
definite. Define a(λ), b(λ) and Vι(λ,y) by linear interpolation:

= (ί-λ)b(O) + λb(l)9

Using smooth "bump-functions" (a partition of unity) one can now redefine
the Vt(λ, y) in a neighbourhood of a£λ) and b^λ) in such a way that a(λ) and b(λ)
become nondegenerate local maxima of Uλ = (ί — λ)U0-\-λU1, and without
changing Uλ near χ = 0(0^/1^1), or near a(λ) and b(λ) {λ = 0,1).

The family {(a(λ), b(λ), Uλ) :0^λ^ί} satisfies the hypothesis of Lemma 8.1, so
Mk(0) and Mk(\) are related by continuation.

Corollary. There is a universal homotopy type, hk, such that whenever τ(x) > k one
has h(Mk) = hk, where Mk is defined as in Sects. 6 and 7.

All that remains to be done to compute hk is to find a specific example for which
h(Mk) can be computed explicitly.
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9. An Explicit Example

Let Fγ be the time one map of the following system of ordinary differential
equations: . _

y = — (ω2/π) sin πx.

This system is Hamiltonian with

, y)=\y2 — (ω2/π) cos πx,

so the map Fγ is integrable, and area preserving.
We shall put F2 = F3 = ...=Fq = Fv

Define the function h(x&Xi) on R2 by

h(xo,x1)= sup< J {^u'(s)2 + (ω/π)2 cosπu(s)} ds

where the supremum is taken over all u in the Sobolev space H1^, 1) which satisfy
the boundary conditions u(0) = xo and M(1) = X1.

Lemma 9.1. // 0 < ω < π, then h is an analytic function, and it is the generating
function of the map Fv The map F\ is an analytic area-preserving twist
diffeomorphism.

Proof Let F1(x,y) = (f(x,y), g(x,y)). Then

where v is the solution in C2([0,1]) of

v"(t) + ω2 cos (πx(ή) v(t) = 0, 0 < t < 1,

= 0, ι/(0) = l ,

and x is the C2 solution of

x"(t) + (ω2/π) sinπx(ί) = 0, 0 < t < 1,

The inequality — π 2 < ω2 cosπx(ί) < π 2 on [0,1] implies that υ(t) > 0 for all t in

a

x"(t) + (ω2/π) sin πx(t) = 0 , 0 < ί < 1,

(0,1]. Hence — >0, and Fί is a twist map. The same inequality implies that

x(0) = xO9 x(l) = x l 9

has a unique solution which depends analytically on x0 and xv Indeed, the
inequality states that the first t value conjugate to t = 0 lies outside of the interval
[0,1], independent of the initial data x(0) and x'(0).

The solution x(xo,x1; t) of (9.4) maximizes the "action integral"

- ί {iu'(s
o
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so h(xo,X)) is just this integral with u(t) = x(xo,xί; i) inserted. Hence, h is also
analytic. It is well known from classical mechanics that h(x0, xj is the generating
function for the time one map Fx (see Arnold [1]).

Having specified the maps Fu...,Fq, and F = (Fί)
q, we define a<0<b by

Let fc>0 be an integer. Note that the twist number of an orbit in any Xpq is
never larger than \q (compare with Lemma 3.3). Therefore we only have to
compute hk when 0<k<jq.

To compute hk we must have 0 < k < τ in our example.

Lemma 9.2. For 0 < ω < π the twist number of the zero solution of our example is
given by τ = qωβπ.

Proof In Sect, three a straightforward method of calculating τ is given. We leave it
to the reader to perform these calculations. It should be noted however that
dF^O, 0) is conjugate to a rotation over an angle ω, so {dFγ)

q — dF(0) is conjugate to
a rotation over qω. Hence its twist number should be qωβπ, according to the
intuitive description given in Sect, three.

So we see that, if we choose ω close enough to π, then we will certainly have
0</c<τ.

To find Mk we have to locate the critical points of

in Ok, and the orbits of the gradient flow that connect these critical points. A phase-
plane analysis shows that there is a unique solution X(t) of

X"(f) + ω2/π sin πX(t) = 0, - oo < t < oo ,
W ' W (9.5)

) = X(t)9 X(-t) X{t)

which has 2k sign changes in the interval 0<t<q (the assumption 0<k<τ is
essential here!). This provides us with a one parameter family, x(s\ of critical points
of W, namely

() X(j ) , j=ί,2,3,...,q, 5 in R.

Lemma 9.3. Mk = {x{s):seR} is diffeomorphic to a circle.

Proof. The system (9.1) has a one parameter family of periodic solutions whose
period is a monotone increasing function of the amplitude.4 Using this fact one
proves that the x(s) are the only critical points of W in Ok. Since W is constant on
{x(s)\ — oo <5<oo}, there are no orbits between the x(s), so that Mk

= {x(s): — oo<s<oo}.
The fact that x(s) is periodic in s (x(s + q) = x(s), so the period divides q) shows

that Mk is the image of a circle. It follows from our assumption 0 < ω < π that, if
X'(s) = 0 for some 5, then X'(s +1) + 0. Hence Mk is an immersed circle. We leave it

4 The period can be explicitely computed using elliptic integrals. That the period is a monotone
function of the amplitude is a consequence of the fact that (sinx)/x is a decreasing function of x
(x>0)
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to the reader to verify that Mk is an embedded circle (one has to check that x(s0 + i0)
= x(s0) for some s0 and some integer i0 implies that x(s + i0) = x(s) holds for all 5).

The final step in computing hk = h(Mk) consists of studying the gradient flow
near Mk.

Lemma 9.4. Mk is a hyperbolic invariant set of the gradient flow. Its unstable
manifold has dimension 2/c.

Proof. From grad W(x{s)) = 0 for all s one derives

W"{x{s))-x'{s) = 0 for a l l s .

To prove hyperbolicity we have to prove that x'(s) spans the null space of W"(x(s)).
Apply the construction (and notation) of Sect, three to this situation. Using the

fact that the periods of the solutions of

X"(t) + ω2/πsmπX(ή = O

increase with amplitude one sees that the matrix M(0) is conjugate to

Ί -

with α>0. Indeed, this is just the matrix of d(F γ

q) at (X(s), X'(s)) with respect to the
(positively oriented) basis

The null space of W"(x(s)) must therefore be one dimensional which proves the
hyperbolicity of Mk.

From x'j(s) = X(J + s) one sees that x'(s) has 2/c sign changes. Thus W"(x(s)) has
2k or 2/c — 1 positive eigenvalues. It follows from the discussion in Sect, three (after
Lemma 3.2) that α > 0 implies that W"(x(s)) has 2k — 1 positive eigenvalues, and the
unstable manifold of Mk is 2/c-dimensional.

Corollary. h(Mk) = hk is the homotopy type of S1 x S 2 * " 1 / ^ x {p}

Proof. By the unstable manifold theorem the flow near Mk is the product of that
near a hyperbolic fixed point with index 2/c — 1, and the trivial flow on a circle. Now
use the product rule to obtain h(Mk) (see Conley [4]).

This corollary finishes the proof of Theorem 5.

10. Proof of Theorem 3

Let a < x < b be defined as in Sect. 4, and put

Y= {(Xj)jez' sup|x7-- jp/q\ < 00}.

This set is a Banach manifold diffeomorphic to ί̂ , the space of bounded sequences
with the supremum norm. Furthermore it is ordered in the same way as Xpq.

The function W cannot be defined on Y, however its gradient flow can. It is
simply given by the system of ordinary differential equations

j + x{xp xj+ x ) . (10.1)
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Thus we still have a C 1 flow, φt (—00 <t< 00), which is orderpreserving for
ί^O. Indeed, the variational equation corresponding to (10.1) is of the form δx(t)
= A(t)δx(t). Here Λ(t) is an infinite matrix whose off diagonal elements are
nonnegative, and whose sub and super diagonal elements are strictly positive.
Therefore the derivative Dφ(t) is a strictly positive operator.

The flow φ(t) extends the gradient flow of W on Xpq which we have used up to
now.

On Y we also define the left translation T:(Ty)i = yi+q — p.

Lemma 10.1 There is no orbit y in Y of the maps Ft lying strictly between x and b.

Proof. Let y be such an orbit. Then we have x <̂  y <ζ b.
Using the fact that τ(x) > 0, an analysis of the map F around the periodic point

corresponding to x will reveal that, if for some integer j , y^ is close enough to xp

the orbit y will oscillate about x (near j). This contradicts the fact that y > x and
therefore we have inf(^ — X;)>0.

Now let y+(t) be the orbit of φt we had constructed in the proof of Theorem 1
(Sect. 5). Then again we havey +(t) < y for large negative t. Since the flow φt is order
preserving we get sup y+(0 = y, i e. b ^ y. This contradicts y < b so the orbit y cannot
exist.

Lemma 10.2. // y in Y is an orbit of the maps Ft satisfying x f < j ^ ^ for all
then lim yt — bt = 0.

Proof Consider the translates yn = Tn(y). Then we have x ; < y" ^ bt for all
i> —nq — 1.

Each yn is an orbit of the maps Ft which satisfies xt<yn

i^bi for all i^ — nq.
Extract a subsequence ynk of the yn such that the (jΛ^ converge as k-+co (not
necessarily uniformly in i). This can be done since for each i, (y")t is a bounded
sequence. Denote the limit by z. Then z is an orbit of the maps lying between x and
ft. It follows from the previous lemma that z = x or z = b. If z = x, then the
sequence yt would contain elements which come arbitrarily close to xt. As we
remarked in the proof of the previous lemma this is impossible, since yt would
have to oscillate around xt in some interval io<i<i1, so z = b.

We have shown that any convergent subsequence of the translates yn converges
to b. This implies that the whole sequence yn converges to fo, i.e. that yt — b^O as
ι->oo.

Lemma 10.3. There is an orbit y in Y such that a<y<b and y — x has one or two sign
changes

Proof By Theorem 2 we have orbits / in XnPί nq such that a<yn<b and ( / - x)t has
two sign changes for 0 < i < nq + 1 . We may assume that one of these sign changes
occurs in the interval 0 < i < q + 1 .

Now take a convergent subsequence of the jΛ Its limit, which we call z, is an
orbit of the maps. There are two possibilities:

(1) z = x.
(2) a<z<x is an orbit with at least one sign change (in the interval

0 < / < g + l), and at most two sign changes.
We can exclude the first alternative for the following reasons. If z = x were to

hold, then for large n the orbit (yn)i would come arbitrarily close to xt on any
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bounded interval of the form —N<i<N. The twist number of the orbit x, τ(x), is
positive however, so that for large n the orbit yn intersects x approximately
2τ(x)N/q times on the interval —N<ί<N. This contradicts the fact that yn

intersects x exactly twice on any interval of length nq.
Thus we are left with the second alternative, which proves the lemma.
These lemmas enable us to prove Theorem 3. Let y be the orbit constructed in

the last lemma. If y and x intersect twice, then it follows from Lemma 10.2 that y is
homoclinic to a or to b.

Suppose that y and x only intersect once, and that y is a heteroclinic orbit from
a to b. In the proof of Lemma 10.3 we had a sequence of orbits, yn, intersecting x
twice in the interval 0 < i < nq +1. By fixing one of these intersections in the fixed
interval 0 < i < q +1 and taking a limit, we constructed y. Since y is heteroclinic
from a to b we have obviously fixed the left intersection of the yn with x. By fixing
the other intersection and repeating the argument in Lemma 10.3, we then get a
heteroclinic orbit from b to α.

Acknowledgement. I would like to thank L.A. Peletier for critically reading the original manuscript
and pointing out to me some of the vague and inaccurate "arguments" (all of them I hope) it
contained.
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