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Abstract. The quantum version of an infinite set of polynomial conserved
quantities of a class of soliton equations is discussed from the point of view of
naive continuum field theory. By using techniques of two dimensional field
theories, we show that an infinite set of quantum commuting operators can be
constructed explicitly from the knowledge of its classical counterparts. The
quantum operators are so constructed as to coincide with the classical ones in
the ft->0 limit (h; Planck's constant divided by 2π). It is expected that the
explicit forms of these operators would shed some light on the structure of the
infinite dimensional Lie algebras which underlie a certain class of quantum
integrable systems.

1. Introduction

The existence of an infinite set of polynomial conserved quantities in involution to
each other under a certain Poisson bracket is one of the most characteristic
features of classical soliton theories [1] in 1 + 1 dimensions, which are the best
understood nonlinear field theories. The infinite set of conserved quantities is the
cornerstone for the complete integrability of classical systems. The situation is the
same for quantum theories. Therefore a natural question arises whether the
classical infinite dimensional symmetry survives quantization. Namely, do we get
an infinite set of quantum commuting operators which reduces to the classical one
in the limit of ft->0 (h; the Planck constant divided by 2π), or do we not, due to
some anomalies caused by the high nonlinearity of the interaction? Usually this
problem is investigated system by system in terms of the quantum inverse method
[2] or by the transfer matrix approach based on a lattice [3]. In such approaches,
however, the field theoretical aspects are made rather obscure behind a strong
algebraic structure like the Yang-Baxter algebra.

In this connection we should mention one of the successful examples of the
quantum inverse method, the nonlinear Schrδdinger equation,
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In this case an infinite set of quantum commuting operators (the scattering data) in
terms of the original field operators in the continuum is explicitly constructed [4]
and its relationship with the Bethe ansatz is clarified. (However, as for the quantum
version of the polynomial conserved quantities, only a few lowest members have
been identified. It is by no means obvious whether the higher members do exist or
not.) This success is due to the exceptional situation of the nonlinear Schrόdinger
equation that the creation operators and the annihilation operators are clearly
separated at the field operator level, i.e., ψ for annihilation and ψ* for creation,
thereby the direct generalization of the classical linear scattering method to the
quantum case is justified. In the other soliton theories, for example, the Korteweg
de Vries (KdV) equation, the Modified KdV (MKdV) equation or the sine-Gordon
equation, both creation and annihilation parts are contained in one hermitian field
operator. So far, at least to our knowledge, the direct application of the quantum
inverse method to derive the explicit forms of quantum commuting operators for
these equations is not successful.

In this paper we will investigate the above question, namely existence and
explicit construction of an infinite set of quantum commuting operators for soliton
equations like the KdV eq and the MKdV eq, from the quantum field theoretical
point of view, as an alternative approach to the existing formulations. Use is made
of the tools of conventional field theories, for example, propagators, Feynman
diagrams and Wick's theorem, etc. Our discussion is mainly based on a class of
soliton equations represented by the MKdV equation, Eq. (2.1), which is also
related with the sine(/z)-Gordon equation. The situation is almost the same for the
KdV equation case, on which we briefly comment in Sect. 5. The starting point is
that the Poisson bracket characteristic for these classes of soliton equations
(MKdV, KdV) corresponds exactly to the commutation relation of the two
dimensional boson fields. Therefore naive quantization in the continuum is
straightforward. As for the calculation of commutators among various operators,
the techniques of two dimensional field theories are quite useful.

An algorithm to construct the infinite set of quantum commuting operators is
obtained and the first six members are calculated explicitly. A preliminary and
partial result on these materials has been published in [5]. We believe these explicit
examples will provide another interesting path for understanding the nature of
quantum infinite dimensional symmetries.

This paper is organized as follows. In Sect. 2 we review briefly the classical
theory of the infinite set of conserved quantities for the MKdV eq. In Sect. 3 the
quantization procedure and the calculation techniques for commutators based on
field theoretical tools are explained. In Sect. 4 an algorithm of constructing the
infinite set of quantum commuting operators is derived together with its explicit
forms for lower members. In Sect. 5 we briefly discuss the parallel results for the
KdV equation. The final section is devoted to summary and comments.

2. Classical Theory of an Infinite Set
of Polynomial Conserved Quantities Associated with the MKdV Eq

In order to introduce notation and to be self-contained, we summarize some of the
known results of the infinite set of polynomial conserved quantities associated with
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the Modified iCorteweg de Fries equation (the MKdV eq)

ut = uσσσ-6u2uσ. (2.1)

Here u = u(t, σ) is a real (hermitian) field in 1 + 1 dimensions depending on time (t)
and space (σ) variables and ut = dtu, uσ = dσu, uσσ = d^u,..., etc. It is assumed that u
has continuous σ-derivatives of all orders. Throughout this paper we impose the
periodic boundary condition with a period 2π,

ιι(f,σ + 2π) = tt(ί,σ), 0 ^ σ ^ 2 π . (2.2)

The reason for this will become clear in later sections. It should be remarked,
however, that the explicit forms of conserved densities to be discussed below are
the same for the periodic boundary condition case and for the ordinary boundary
condition case [ι/(σ)->0, as |σ|-*oo, — o o < σ < o o ] .

An infinite set of polynomial conserved quantities [1, 6] is given as follows:

ln=-^2\dσ\u{σ)Y2n_M, n = l,2,3,..., (2.3)
zπ o 2

in which Yn(u) is a polynomial in u and its space derivatives uσ9 uσσ,..., defined
recursively

Yn+i = dσYn + unΣYkYn-k, Y, = -u. (2.4)
fc=l

It should be remarked that in Eqs. (2.3), (2.4) and hereafter the time t is always fixed
and suppressed. It is easy to show that uY2n is a total σ-derivative giving rise to a
trivial conserved quantity. We define the order and the weight of a monomial in u,
uσ,uσσ,...,

as follows1

order(M) = £ nk, weight(M) = Σ (fc + l)nfc. (2.5)

Then we find that the polynomial uYn has a uniform weight

weight(wYJ = rc + l , (2.6)

but its component monomials have different orders, all even,

2^order of each term in uY2n-1, uY2n^2n . (2.7)

To sum up, the conserved quantity /„ has even order terms only with a uniform
weight In.

A remarkable and highly nontrivial result of the soliton theory is that the
infinite set of conserved quantities, /„, n = 1, 2, 3,..., are in involution to each other
with respect to the following Poisson bracket [8-11]

(σ-σ'), (2.8)

,2, ...,. (2.9)

1 Our notation and definition slightly differ from those given for the KdV eq in [7]
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By adopting I2 [for its explicit form, see Eq. (4.2)] as a Hamiltonian, we get the
MKdV eq (2.1) as a canonical equation

dtu{σ) = {u{σ\I2). (2.10)

From the above involution property we find that the set {/„} is conserved for a
large class of evolution equations

dtu(σ) = {u(σ\H}, (2.11)

in which the Hamiltonian H is given by

H=ΣK(t)In, (2.12)
«

with arbitrary time dependent functions hn(t\ n = ί, 2, ...,. In fact we have

dtlm = {Jm, H}=Σ K(t) {Iw /„} = 0 . (2.13)
n

Thus we see that the infinite set of conserved quantities together with the Poisson
bracket characterize the class of soliton equations. Let us call this class of soliton
equations, Eq. (2.11) the MKdV hierarchy.

A few remarks about the Poisson bracket are in order. Let us denote by P the
integral of a local polynomial p in u, uσ9 uσσ,...,

P=±- $dσp(u,uσ,uσσ,...), (2.14)

In o

and by V the linear space spanned by them2

V = {p I p given in Eq. (2.14)} . (2.15)

V is infinite dimensional but its linear subspaces of uniform weight have finite
dimensions. If P is of uniform weight, so is {/„, P}

weight {/„, P}=weight (P) + 2n-ί . (2.16)

In particular, the Poisson bracket with J2, {J2, P}, increases the weight by 3 and the
order by 0 and 2. About the uniqueness of the polynomial conserved quantities for
the MKdV hierarchy, we have the following.

Theorem 1. // {/2, P} =0, then

P= Σ cnln9 (2.17)

in which Io = J udσ, and cn are constants. In particular, if P is of even order and odd
o

weight and {/2, P} = 0, then P = 0.

The proof is obtained by a slight modification of the corresponding theorem
for the KdV equation given in [7].

Corollary. For given QeV, a linear equation for P eV,

{I2,P} = Q, (2.18)
2 For details of this linear space, see [7]
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has a unique solution modulo /„, n = 0,1, 2, 3,..., if and only ifQ is in the image of a
linear operator Jί

Ji;*^{I2,*}. (2.19)

The fact that the map Jί is not surjective can be easily seen by considering a
uniform weight, w, slice. As remarked above Jί increases the weight by 3 and the
dimension of the linear subspace of V with uniform weight w -f 3 is in general
higher than that of the linear subspace with weight w.

3. Quantization

In this section we discuss the quantization of the class of non-linear Hamiltonian
dynamics, the MKdV hierarchy, introduced in the preceding section. Here we
follow the naive canonical quantization procedure in continuum theory rather
than applying the quantum inverse method or the transfer matrix approach. The
canonical quantization is achieved by replacing the canonical Poisson bracket by
the commutation relation

{qn ps} = <5r,s->[ft, Ps] = ihδrfS.

Since we are interested in the relation between the classical and the quantum
soliton theories all the h dependence are displayed explicitly. In the present case the
fundamental commutation relation derived from the Poisson bracket (2.8) reads

[u{σ\ u(σ/)] = ift2π3ffδ(σ-σ/). (3.1)

As is well known in two dimensional field theories as well as in string theories, the
above commutation relation is realized by (the derivative of) a hermitian boson
field;

u(σ)= Σ *ne~inσ, 0 ^ σ ^ 2 π , (3.2)
n= — oo

ί^m^n] = hmδm+n>0, ( α j f = α_m. (3.3)

We interpret αm, m > 0 (m < 0) as (annihilation) creation operators and α0 as a zero
mode. The vacuum |0> is defined by

αJ0> = 0, m^O, (3.4)

and the Fock space is built by repeated application of creation operators on the
state |0; /?>, which is defined by

αm|0:p> = 0, m ^ l , αo |0 ;p> = p|O; p},

In order to define the quantum version of the non-linear dynamics, Eqs. (2.11),
(2.12), we have to specify the operator ordering for /„, n = 1, 2, 3,...,. Containing
products of operators u, uσ, uσσ,..., at the same space-time point, Jn in quantum
theory is full of divergences. The simplest way to get rid of the divergence is to
adopt the normal product, which we denote by dots::. So we denote by /„ the
quantum operator corresponding to the classical quantity /„. It has the following
general structure

/ „ = : / „ : + Σ hk:lW:, n = ί,2, 3,..., (3.5)
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in which I*® are yet unspecified but they should have the form

f ^ * (3.6)

and «/̂ Λ) is a local3 polynomial in u, wσ, uσσ,...,. Namely, I{® e V. The classical
theory comes in as the ft-independent part, namely the first term on the r.h.s. of
Eq.(3.5).

We are now in a position to pose the question raised in the Introduction in a
more definite way.

Question: Is it possible to define 1^ such that all ΐn commute with each other4?

[ / B , / J = O , n , m = l , 2 , . . . . (3.7)

Since h is treated as a free parameter, Eq. (3.7) demands that the coefficients of each
power of h should vanish. We impose the following conditions on possible local
counterterms

(i) max order (./?>) = 2{n -k), (3.8 a)

implying f™ = 0 for k^n, (3.8b)

max weight (./<*>) = 2n9 (3.8 c)

j ^ has even order, even weight terms only . (3.8 d)

(ii) Irreducibility,

7^k) should not contain any of Im as a part. (3.8 e)

By considering the concrete forms of Jn, Eq. (2.3), and the condition (3.8e) this can
be restated as

J(v should not contain terms of the form u2m . (3.8f)

The necessity of the irreducibility condition is obvious. The meaning of the
condition (3.8 a ~c) is that the order and the weight of the added terms should not
exceed those of the original terms in /„. Here one should take into account the fact
that h has the order 2 due to the commutation relation (3.1). If one relaxes these
conditions then the whole program Eqs. (3.5), (3.7) would be uncontrollable.

In order to facilitate the calculation of commutators of normal ordered
polynomials in field operators, we adopt the following technique which is rather
common in string theories and in conformally invariant two dimensional field
theories. Let us introduce a fictitious "time" variable τ and define a complex
coordinate z by

z = eτ+ίσ, (3.9)

3 The locality is essential in order that the resulting integrable quantum field theory defined by /„
be local
4 For systems with finite degrees of freedom, similar approach to ours, namely deriving a quantum
completely integrable system directly from a classical integrable one by adding appropriate
counterterms of order h and higher, has been discussed for several models [12]
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and consider the field theory defined on the complex plane

u(z)=Σ*nz-\ (3.10)
n

instead of the original theory defined on a circle S1. It is obvious that by restricting
the coordinate z to a unit circle we regain the original theory. For an arbitrary local
polynomial p in the field variables w, uσ, uσσ,..., we have

1 2π \ dz
— f dσp(u,uσ,uσσ,...,)=—§ — p(u,Du,D2u,...,), (3.11)

in which
D = ίzdz. (3.12)

The integration contour on the r.h.s. of Eq. (3.11) should encircle the origin once
and otherwise arbitrary due to the analyticity. Next we define the radial ordering
[13] R of two local operators α((), b(z) with complex coordinates ζ and z,

. f | c | < | z | β (3.13)

The minus sign is for fermionic operators a and b, which we do not consider in the
present paper. The propagator of the u field is defined as the vacuum expectation
value of the radial ordered product Ru(ζ)u(z),

hA(ζ, z)^{O\Ru(ζ)u(z)\O) = h-—^. (3.14)

Let us denote by :P: the integral of a normal ordered polynomial p as is given in

Similarly : Q: is defined by

Then by using the definition of the radial ordering and a simple deformation of
integral contours, we get the following general formula for the commutator [: P:,

(3.16)

Fig.l
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in which cz is a small contour encircling the point z. By Wick's theorem [14] we
expand the radial ordered product R: p(ζ):: q(z): in terms of the propagator Δ(ζ, z).

k

The fc-times contraction term contains a factor hk γ\ (DniA) and it corresponds to a
i

(fc — 1) loop Feynman diagram. The ζ-integration is the standard residue calculus.
Therefore the resulting commutator, i.e., the r.h.s. of Eq. (3.16) has the same
structure as P and Q,

C : P : ' : β : ] = έ f v : ^ : ' (3 17)

uσσ,
in which r is an appropriate polynomial in w, uσ, uσ

Let us denote by hk [: P:, : Q :] ( f c ) the contribution from the fc-times contraction
terms for the commutator (3.16). Then obviously we have

[ :P:, :β:] = Σ h\:P:, : β : ] ( t ) . (3.18)
k= 1

The first contraction term, fc = 1, corresponding to tree diagrams and proportional
to h, gives the classical contribution as is well known.

[:P:, : β : ] ( 1 ) = i:{P,Q}:. (3.19)

Since the number of contractions cannot exceed either of the maximal order of p
and q, we have

I'.P , :β:](o = O, if Z^min(p, φ9 (3.20)

in which p(q) is the maximal order of p(q). It is easy to see that by making a
commutator the parity of the order is conserved whereas the parity of the weight is
changed. In particular, if P and Q are both of even order and even weight, then
[:P:, :β : ] is of even order and odd weight.

4. Infinite Set of Quantum Commuting Operators

In this section we give evidence that the infinite set of quantum commuting
operators /„,

[fn,7m] = 0, n,m = l,2,..., (3.7)

does exist and that its members can be determined explicitly. As stated in the
previous section we look for /„ in the following form:

Tn = :In: + }]hk:I^):, (3.5)

in which Jj*)Js (fc^l) satisfying the conditions (3.8) are to be determined. Let us
write down possible forms for some lower members explicitly in the notation of Eq.
(3.6);

/Wi:, Sχ = W, (4.1)
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(Ό2uf + a2u
2(Du)2 + a3(Du)2, (4.3a)

(D2u)2 + b2(Du)2, 7 4 = : / 4 : + / ί . Λ 1 ) : + / z 2 : ^ 2 ) : + / z 3 : / l 3 ) : ? (4.3b)

±(D3u)2 - Ίu2(D2u)2 + i(Du)4 - 35u4(Du)2 - f u8, (4.4)

) = Clu
4(Du)2 + c2u\D2uf + c3(Dw)4 + c4u

2(Du)2

+ c5(D3w)2 + c6(D2u)2 + c7(Dw)2, (4.4c)

J(2) = dγu
2(p2u)2 + d 2φw) 4 + d3u

2(Du)2

w)2 + J6(Dw)2, (4.4d)

+ e3{Du)2,...,. (4.4e)

Here the coefficients α l 5 α 2 , ...,e 3,..., are to be determined. A few remarks are in
order. The individual terms in J^ are linearly independent, namely no linear
combination of them will lead to a total (σ) derivative. The choice of the set of
monomials is not unique due to the freedom of addition of total (σ) derivative
terms. However, here we have chosen them to be irreducible [7], i.e., no term has its
highest derivative factor occurring linearly. From the general requirement, Eqs.
(3.5) and (3.8), ΐ2 can have a term proportional to h, i.e., J2

γ) = λ(Du)2, with an
indefinite coefficient λ. However, the effect of this new term can always be absorbed
to the original form of J2 by a suitable rescaling of h and of the field operator u.
Therefore Jψ is disregarded.

Since ϊί commute with all of: 1^: it does not give any information on the form
of I%\ Vanishing commutator of /„ and ΐ2, on the other hand, gives severe
restriction on 7^ (n ̂  3) and all the undetermined coefficients are fixed uniquely by
this condition. Let us write down the condition [/2, /„] = 0 more explicitly, namely
we expand it in powers of h and require that each coefficient should vanish. In the
notation introduced in Eqs. (3.18) and (3.19) they read

[ / V J = O, (4.5)

ft1, ; : {J 2 Λ}: = 0, (4.5.1)

\ + [:/2:?:/«:](2) = 0, (4.5.2)

/i1):](2) + [:/2:J:/»:](3) = 0, (4.5.3)

ft", i:{/2,/f-1)}: + [:/2:,:/<--2^0 ( 2 ) + [:/2:,:/i--3>:] (3 ) = 0^ (4.5.n)

hn+1, [:/2:5:/in~1):](2) + [:/2:,:4M"2 ):](3 ) = 0, (4.5.n+l)

h n + 2, [ :/ 2 : J :/?" 1 ) : ] (3 ) = 0. (4.5.n

The first condition (4.5.1) is automatically satisfied, since it is just the classical
result, Eq. (2.9). The last two equations (4.5.n + l) and (4.5.n + 2) are satisfied
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trivially due to Eq. (3.20). (It should be remarked that I 2, having maximal order 4,
has at most triple contraction.) The remaining conditions, (4.5.2) to (4.5.n)
determine I^ to I{n~l) successively. By combining the Corollary to Theorem 1
with the irreducibility condition (3.8e), we arrive at

Theorem 2. The condition of vanishing commutator with T2, determines the quantum
operator ϊn uniquely, if the double and triple contraction terms lie in the image of the
linear operator Jί, Eq. (2.18). // not, such Tn does not exist.

By explicit calculation with the aid of a formula manipulation program [15] we
have established the existence of ίn, n = 3,4, 5, 6, and obtained their explicit forms.
The orderliness seen everywhere in the calculation together with the knowledge
from other formulations [2, 3, 16] led us to the conviction that ΐn exists for
arbitrary n, although an analytic proof is yet to be worked out.

Theorem 3. // /„ and ΐm are operators commuting with T2, then they commute,

[44] = 0. (4.6)

The proof is a quantum version of the proof [8] for the classical result
{/„, Im} = 0. We start from Jacobi's identity

0 = [/2,[4/J], (4.7)

in which the other two terms are zero by assumption. By expanding [ΐn, /m] in
powers of h, we write

[ 4 4 ] = Σ hk:J^m.. (4.8)
fc=l

The classical result tells that J^m = 0. From the remark at the end of Sect. 3 we find
that J^m (k ̂  2) are of even order and odd weight. By substituting Eq. (4.8) into Eq.
(4.7), we get

+ hs(i: {I2, βn%}: + ίΐ2,: J[% : ] ( 2 ) + [T2,: J™, :](3)) + . . . . (4.9)

The condition that the h3-term should vanish gives J(?)

m = 0 via Theorem 1. And
similarly we get J*^, = J<4>, =..., =0, therefore [ 4 4 ] ' = 0 .

The numerical values for the coefficients α l 5 ...,e3 are [5]

fll=2/3, o2 = 10, α3 = 5/6,

fc1 = - l/6, b2=-5/6,

C l = -140, c 2 =-98/3, c3 = 112/9, c 4 = - 3 5 / 3 ,

c5 =-26/15, c 6 = - 7 / 3 , c7 = 7/30,

<*! = —91/3, d2 = 14/9, d3 = 35/3, d4=-4/45,

d5=~7/6, rf6=-56/45,

e i = _ 8 / 4 5 , e2 = 7/2, e3 = 91/90. (4.10)
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Determination of higher operators 7{f} is straightforward [15]. As is clear from Eq.
(4.10), the quantum operator /„ for arbitrary h is not of uniform weight in
contradistinction to the classical one /„, which is of uniform weight In. However,
for a special value of ft, i.e., ft = l (the "genuine" quantum theory?) /„ simplifies
drastically and all the non-uniform weight terms disappear, and it is expected to
lead to no particle creation as in the classical case:

I2= ^.§γ:{(Du)2 + u4} x(-i): , (4.10.2)

T3(h = 1)=-f: {{D2uf +15u2{Du)2 + u6}:, (4.10.3)

T4(h = 1)=f: {(D3u)2 + 28u2(D2u)2 - Ί(Duf + 70u\Du)2 + u8} x ( - f):,
(4.10.4)

ΐ5(h = 1)=-f: {(Γ>4M)2 + 45u2(D3u)2 -1 00w(D2u)3 - 9 0 ( D M ) 2 (D2U)2

+ 2ί0u\D2u)2-315u2{Du)4 + 210u6(Du)2 + ulo}xΊ:, (4.10.5)

T6(h = 1)=-f: {{D5uf + 66u2(D4u)2 - 660u(D2u) (D3u)2

-165(Du)2(D3u)2 + 495u4(D3u)2 + 220(D2u)4 - 2 2 0 0 M 3 ( D 2 M ) 3

- 5940u2(Dκ)2(D2w)2 + 924u6{D2u)2 + 297(Du)6

-3465u\Du)4 + 495u8(Du)2 + u12} x(-21):, (4.10.6)

in which -f stands for

2πi f z '

Another remarkable feature of the operators ϊn(h = 1) is that the lowest order term
[e.g. (D4u)2 in 75] and the highest order term [e.g. u10 in 75] have the same
coefficient. Mathematical reasons for this and for the uniformity of weight as well
as their physical significance should better be understood.

5. KdV Hierarchy

Historically it was for the KdV equation

(5.1)

that the involutive structure of an infinite set of conserved quantities was first
discovered [8]. The field v(σ) is assumed to obey the same boundary conditions
and other conditions as for u(σ) introduced in Sect. 2. The infinite set of polynomial
conserved quantities is given by

\dσ\υ{σ)Z2n+M, n = l,2,3,..., (5.2)
λ% o

in which Zn(v) is defined recursively

Zn+ί = dσZn + vnΣ ZkZn_k, Zγ = \. (5.3)
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They are in involution to each other {Kn, Km} = 0 under the same Poisson bracket
(2.8) as the MKdV hierarchy. By adopting K2

Sdσii((vσ) + 2v), (5.4)

as a Hamiltonian we get the KdV Eq. (5.1) as a canonical equation. For the KdV
hierarchy the definition of the order is the same as before but the weight, Eq. (2.5) is
slightly changed,

order(M) = £ nk, weight(M) = £ (fc + 2)nk. (5.5)

This implies that Kn is of uniform weight 2(n +1) and it has both even and odd
order terms.

Since the Poisson bracket for the KdV hierarchy is the same as that for the
MKdV case, the program for finding an infinite set of quantum commuting
operators goes almost parallel. We start from the ansatz

Kn = :Kn:+ Σ hk:K™:, n^3, (5.6)

and try to determine the local counterterms K^ by demanding a vanishing
commutator with K2,

[ £ 2 , £ j = 0, K2 = :K2:. (5.7)

The conditions for the possible counterterms change slightly;

(i) max. order (jf ?>) - n + 1 - 2k, (5.8a)

implying jf jJ^O for 2k>n-l, (5.8b)

max. weight (Jf <,*>) = 2(n + 1 - k), (5.8c)

has even weight terms only. (5.8d)
(ii) Irreducibility.
The condition (3.8e) remain true, whereas Eq. (3.8f) is changed to

Jf J*} should not contain terms of the form vm. (5.8f)

With these modifications Theorems 1-3, hold as well. Explicit calculation of
commutators (which is simpler for the KdV case, since K2, has simple and double
contractions only) show that the lower members of commuting quantum
operators do exist. The high degree of orderliness, in this case too, convince us of
the existence of the higher members as well.

The explicit forms of the lower members of the quantum commuting operators
for the KdV hierarchy are:

K3 = f: \{{D2v)2 -10v(Dυ)2 + 5v4) - hi(Dv)2: (5.9.3)

K4=f:±{-{D3v)2 + Uv{D2v)2 - Ί0v2{Dv)2 + Uv5)

+ hi(-35(D2v)2 + 6v(Dv)2): (5.9.4)

K5 = f :i((DV)2 - ίSv(D3v)2 + 20(D2v)3 + 126v2(D2v)2

- 35 {Dvf - 420v3(Dv)2 + 42*;6)

+ hiό(193(D3v)2 - 2100v(D2v)2 + 6300ι>2(Dt;)2

+ 7 (Dv)2) + ft221 (D2v)2:. (5.9.5)
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They do not simplify at all for h= 1. This is related to the fact that the canonical
dimension of the field v [2, as seen from Eq. (5.1) or (5.4)] is not preserved by the
Poisson bracket, (2.8) and the commutation relation (3.1). This might cause some
subtlety for physical applications. If one wants to preserve the canonical
dimension of the field v, one should adopt the following Poisson bracket:

{v(σ)9 v(σ')}{1) = 2π(d3

σδ(σ - σ') + 2(v(σ) + v(σ'))dσδ(σ - σ')). (5.10)

This is the second member (the first member is (2.8)) of the infinite set of "Poisson
brackets" for the KdV hierarchy [11],

{P,Q}{N) = 2π2$ dσ^MN~H-ψ, iV = 0,l,2,..., (5.11)

o ov oσ ov

M = (dσ)
2 + 2v(σ) + 2dσv(σ)d;1, (5.12)

under which the set Kn, n = 1,2,3,..., is in involution

{Kn,Km\N) = 0. (5.13)

In fact, the Poisson bracket (5.10) has been discussed by Gervais [3] in connection
with the Virasoro algebra. It is not, however, straightforward to quantize the
u-field starting from the Poisson bracket (5.10).

6. Summary and Comments

By applying field theoretical techniques, we have almost established the existence
of an infinite set of quantum commuting operators of the MKdV hierarchy. Our
method gives an algorithm to determine the explicit forms of these operators. For
the KdV hierarchy similar results are obtained. These sets of operators may
constitute the Cartan subalgebra of an infinite rank Lie algebra which might
underlie the quantum integrable systems of some sort.

A lot of interesting things remain to be elucidated. We remark on only a few of
them here. Clear understanding of the reasons for the existence of ΐn is vital for
further steps. Is there a recursion formula linking /π's? An immediate next step for a
quantum field theory would be to find a complete set of states constituting the
simultaneous eigenstates of the /π's. This is also connected to understanding the
relationship [16] between our naive continuum approach and the conventional
quantum inverse method or the transfer matrix approach based on a lattice. The
applicability of the present method to other broader types of soliton equations is
certainly an interesting point.
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