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Abstract. It is shown that the global charges of a gauge theory may yield a
nontrivial central extension of the asymptotic symmetry algebra already at the
classical level. This is done by studying three dimensional gravity with a negative
cosmological constant. The asymptotic symmetry group in that case is either
R x SO(2) or the pseudo-conformal group in two dimensions, depending on the
boundary conditions adopted at spatial infinity. In the latter situation, a
nontrivial central charge appears in the algebra of the canonical generators,
which turns out to be just the Virasoro central charge.

I. Introduction

In general relativity and in other gauge theories formulated on noncompact ("open")
spaces, the concept of asymptotic symmetry, or "global symmetry," plays a
fundamental role.

The asymptotic symmetries are by definition those gauge transformations which
leave the field configurations under consideration asymptotically invariant, and
recently, it has been explicitly shown that they are essential for a definition of the
total ("global") charges of the theory [1,2]. (For earlier connections between
asymptotic symmetries and conserved quantities in the particular case of Einstein
theory, see [3,4] and references therein.)

The basic link between asymptotic symmetries and global charges has been
emphasized again in recent papers dealing with the monopole sector of the SU(5)
grand unified theory [5] and with D = 3 gravity and supergravity [6], where it is
confirmed that the absence of asymptotic symmetries prohibits the definition of
global charges. In the first instance, the unbroken symmetry group of the monopole
solution is not contained in the set of asymptotic symmetries because of topological
obstructions. This forbids the definition of meaningful global color charges
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associated with the unbroken group. In the second case, the nontrivial global
properties of the conic geometry, which describes the elementary solution of D = 3
gravity, prevents the existence of well defined spatial translations and boosts, and
hence, also of meaningful linear momentum and "Lorentz charge."

In the Hamiltonian formalism, the global charges appear as the canonical
generators of the asymptotic symmetries of the theory: with each such infinitesimal
symmetry ξ is associated a phase space function H[£] which generates the
corresponding transformation of the canonical variables. It is generally taken for
granted that the Poisson bracket algebra of the charges H[ζ] is just isomorphic to
the Lie algebra of the infinitesimal asymptotic symmetries, i.e., that

The purpose of this paper is to analyze this question in detail.
It turns out that, while (1.1) holds in many important examples, it is not true in

the generic case. Rather, the global charges only yield a "projective" representation
of the asymptotic symmetry group,

{HK],HM}=fl[K,»y]] + XK,ι/]. (1.2)

In (1.2), the "central charges" K[£, 77], which do not involve the canonical variables,
are in general nontrivial, i.e., they cannot be eliminated by the addition of constants
Cξ to the generators H\_ξ].

The occurrence of classical central charges is by no means peculiar to general
relativity and gauge theories, and naturally arises in Hamiltonian classical
mechanics ([7] appendix 5). It results from the non-uniqueness of the canonical
generator associated with a given (Hamiltonian) phase space vector field. Indeed,
this generator is only determined up to the addition of a constant, which commutes
with everything. Accordingly, the Poisson bracket of the generators of two given
symmetries can differ by a constant from the generator associated with the Lie
bracket of these symmetries.

A similar phenomenon occurs with asymptotic symmetries in gauge theories. In
that case, the Hamiltonian generator //[ξ] of a given asymptotic symmetry ξA differs
from a linear combination of the constraints φA(x) of the canonical formalism by a
surface term J[ξ\ which is such that H\_ζ] has well defined functional derivatives [8],

nm = ld«xξ*(x)φA(x) + J[ζ\. (1.3)

But this requirement fixes J[£], and hence //[£], only up to the addition of an
arbitrary constant. This ambiguity signals the possibility of central charges.

Because the theory of central charges in classical mechanics is well known [7],
we will only discuss here the aspects which are peculiar to gauge theories and
asymptotic (as opposed to exact) symmetries. This will be done by treating three
dimensional Einstein gravity with a negative cosmological constant A in detail. In
that instance, we show that the asymptotic symmetry group is either R x SO(2), or
the conformal group in two dimensions, depending on the boundary conditions
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adopted at spatial infinity. In the latter case, a nontrivial central charge—actually
familiar from string theory [9]—appears in the Poisson bracket algebra of the
canonical generators.

Three dimensional gravity with A < 0 is presented here primarily to provide an
example of central charges in the canonical realization of asymptotic symmetries.
However, the study of three dimensional gravity is not entirely academic and
possesses some intrinsic interest apart from its connection with central charges.
Indeed, previous experience with gauge theories has indicated that something can be
learned from lower dimensional models about both the classical and quantum
aspects of the more complicated four dimensional theory. In the gravitational case,
three is the critical number of dimensions, since in fewer dimensions there is no
Einstein theory of the usual type (i.e., with a local action principle involving only the
pseudo-Riemannian metric). Thus, it is natural to turn to three dimensional models
in an effort to better understand Einstein gravity in higher dimensions.

The discussion involves some subtleties because the constraint algebra of general
relativity is not a true algebra, but rather, contains the canonical variables. This fact
has two implications: (i) the algebra of the asymptotic symmetries is a true algebra
only asymptotically; (ii) standard group theoretical arguments cannot be used in a
straightforward way.

In the course of our study, we shall rely on a useful theorem which is proved in
[10] and concerns Hamiltonian dynamics on infinite dimensional phase spaces. This
theorem establishes, under appropriate conditions, that the Poisson bracket of two
differentiable functionals contains no unwanted surface term in its variation, and
therefore has well defined functional derivatives. This property is used to prove that
the Poisson bracket of the asymptotic symmetry generators yields a (trivial or
nontrivial) project!ve representation of the asymptotic symmetry group. It should be
stressed that the techniques developed here in treating three dimensional gravity are
quite general and can be applied, for instance, to four dimensional gravity to prove a
similar representation theorem. Such a theorem has been implicitly used, but not
explicitly demonstrated, for example in [8,12].

The example of three dimensional gravity with a negative cosmological constant
also demonstrates the key role played by boundary conditions, which determine the
structure of the asymptotic symmetry group but are not entirely dictated by the
theory. (This was also pointed out in [11].)

As a final point, let us note that the existence of a true central charge can be ruled
out in the particular case when the asymptotic symmetries can be realized as exact
symmetries of some background configuration. Indeed, in this situation the charges
evaluated for that background are invariant under an asymptotic symmetry
transformation, since the background itself is left unchanged. By adjusting the
arbitrary constant in H[ζ] so that H[ξ~] (background) = 0, Eq. (1.2) shows that
K\_^η] vanishes. However, the important case of "background symmetries" does
not exhaust all interesting applications of the asymptotic symmetry concept. For
example, the infinite dimensional B.M.S. group [3,4] cannot be realized as the
group of isometries of some four dimensional metric. This gives additional
motivation for analyzing the canonical realization of the asymptotic symmetries on
general grounds.
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II. Solutions to 3-Dimensional Gravity with A < 0

This section provides a discussion of a solution to Einstein gravity in 2 + 1
dimensions with a negative cosmological constant. This solution will help motivate
our choice of appropriate boundary conditions to be imposed on the metric in
general.

In three dimensions, the gravitational field contains no dynamical degrees of
freedom, so that the spacetime away from sources is locally equivalent to the empty
space solution of Einstein's equations, namely anti-de Sitter space when A < 0. This
is demonstrated by noting that the full curvature tensor can be expressed in terms of
the Einstein tensor, and where the empty space Einstein equations hold, the curva-
ture tensor reduces to that of anti-de Sitter space.

Matter, which is assumed to be localized, has no influence on the local geometry
of the source free regions, and therefore can only effect the global geometry of the
spacetime. The basic solution which we consider then is locally anti-de Sitter space
with radius of curvature R = (— l//i)1/2,

(2.1)

but with an unusual identification of points which will alter the global geometry. By
identifying the points (Γ= f ', r = r',φ = φ') with the points (Γ= t' — 2πA, f = r', $ —
φ' + 2πα) for all f', r' and φ', this will have the effect of removing a "wedge" of
coordinate angle 2π(l — α) and introducing a "jump" of 2πA in coordinate time.
Because the Ricci tensor is defined locally, it is not modified by this unusual
identification except at the origin r = 0. Hence, the vacuum Einstein equations will
be satisfied everywhere except at the origin.

The motivation for considering the spacetime just described is that it is the
analogue of the conic geometry for 2 + 1 gravity with Λ = 0 [12], for which the
wedge α Φ 1 is related to total energy and the jump A Φ 0 is related to total angular
momentum. It is also interesting to note that, just as in the de Sitter case [13], a
wedge cut from anti-de Sitter space provides a solution to Einstein's equations with
the stress-energy tensor of a point mass. The metric (2.1) can also be assumed to
apply to the empty region exterior to a more general compact source distribution.

The geometrically invariant character of the wedge and the jump can be seen in
the following way which does not depend on the details of the interior to the
spacetime containing the source. First note that even though the spacetime is locally
maximally symmetric, the only Killing vector fields consistent with the unusual
identification of points are linear combinations of d/dϊand d/dφ. The vectors d/dϊ
and d/df can be singled out uniquely (to within normalization constants) as the only
two Killing vector fields which are everywhere orthogonal to one another. To within
a normalization, d/df is the unique vector field everywhere orthogonal to all Killing
vector fields.

So the curves which serve as the T , f , f coordinate lines for the metric (2.1) can
always be singled out. Furthermore, consider the proper length L of the curve of a
trajectory of d/d(β between points of intersection with a trajectory of d/df. The
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change dL as the curve is moved a proper distance dS along the direction d/df equals

dL

For α < 1, the length L increases more slowly with proper distance than if the space
were globally anti-de Sitter. Finally, the jump A is proportional to the proper time
distance between points of intersection of the trajectories just considered.

From now on, it will be more convenient to write the metric (2.1) with a
continuous time variable. The coordinate transformation t = F-h (A/<x)ij)9 r = f,
φ = (l/α)<^ yields

dS2 = - ( ζϊ + 1 ) (dt - Adφ)2 + (ί+l] V 4- *2r2dφ2, (2.2)
\R J \R /

where φ has period 2π, and there is no jump in the new time. The Killing vector fields
in this coordinate system are linear combinations of d/dt and d/dφ. Also note that
the trajectories of d/dφ will form closed timelike lines unless \A\ < α |K | and

A2R2

r >
z2R2-A2'

As a result, the spacetime constructed represents a reasonable solution to Einstein
gravity only for \A\ < α | R | and large values of r; in particular it is valid in the
asymptotic limit r-> oo.

III. Global Charges and the RxSO(2) Asymptotic Symmetries

The procedure for obtaining the global charges of a gauge theory within the
Hamiltonian formalism has been well established [8]. The first step is to define the
boundary conditions at spatial infinity which the generic fields should obey, and
then identify the asymptotic symmetries which preserve this asymptotic behavior.
Of course, for gravity theories in particular, in order to continue with the
Hamiltonian formulation, the boundary conditions on the spacetime metric must be
converted into boundary conditions on the canonical variables gij9 πij. Likewise, the
asymptotic symmetries of the spacetime determine the allowed surface deformation
vectors ξμ (μ = _L, i) for the space-like hypersurfaces under consideration.

Now, for the boundary conditions and asymptotic symmetries of a gravitation
theory to be acceptable, it must be possible to write the Hamiltonian as the usual
linear combination of constraints [14]

fd"x^(x)Jfμ(x) (3.1)

plus an appropriate surface term J[_ζ]. This surface term J[£], which will be referred
to as the charge from now on, must have a variation which will cancel the unwanted
surface terms in the variation of (3.1). Then the Hamiltonian,

HK]=Jd-x^(x)^(x)-hJK], (3.2)

will have well defined variational derivatives, and may be used as the generator of
the allowed surface deformations.
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In practice, the charges J[ζ] are usually determined by looking at the surface
terms coming from the variation of the "volume piece" (3.1) of the Hamiltonian,
namely

- lim^-^ίcn^i,*- ξ\kδgίj-]^2ξiδπil-{-(2ξίπkl-ξlπik)δgik}, (3.3)
r — » oo

where Gijkl =^g1/2(gikgjl + gilgjk — 2gίjgkl) and the semicolon denotes covariant
differentiation within a spacelike hypersurface. Using the assumed asymptotic
behavior of the fields gtj, π

ij and vectors ξμ, this is rewritten as the total variation of a
surface integral. Then the negative of this surface integral is, to within a constant, the
charge J[£] (As stated in the introduction, this constant represents the non-
uniqueness of the canonical generators, and in Sect. V will be related to the possible
existence of central charges in the algebra of these generators.)

For the case of 2 + 1, A < 0 gravity, the analogy with 2 + 1, A = 0 gravity [6, 12]
suggests that we restrict the metric outside sources to the family of metrics defined by
the two parameters α and A appearing in (2.2). This restriction serves as the
boundary condition on the metric. Then the asymptotic symmetries coincide with
the Killing vector fields d/dt and d/dφ, and the asymptotic symmetry group
associated with these boundary conditions is R x SO(2).

The values of the charges associated with d/dt and d/dφ for the metric (2.2) can be
computed in the following way. Denote by ξ some linear combination of vectors
d/dt, d/dφ with components (3)£α, α = ί, r, φ in the spacetime coordinate system. Then
the 1, r, φ components ξμ of this vector describe an allowed deformation of the
surface outside the source. They are related to the spacetime components by

(3.4)

where N is the lapse and Nr, Nφ are the shifts for the spacetime coordinate system.
The lapse and shifts and computed straightforwardly from (2.2); in particular,

Γ Γ2 + R2 HI/2 Γ A2R2 Π-1/2

α

A(r2 + R2)
''r2(a2R2-A2)-A2R2'

and, since (3)<f = 0, the component ξr = 0 always.
The only nonzero components of the canonical variables needed for computing

expression (3.3) areexpression (3.3) are

r

κ*4

,2r*
(3.5)
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which gives

- δJ[_ζ] = 4π[(3)<f <Sα - (3)ξφδ(aA)l

Thus, the charges associated with the symmetries d/dt and d/dφ are, to within
constants,

- α), (3.6a)

J[d/dφ] = 4παA (3.6b)

These are precisely the energy and angular momentum of locally flat 2 + 1 gravity
[6,12], so that the limit of these charges as A -»0 is trivially correct.

IV. The Conformal Group of Asymptotic Symmetries

It is natural to question whether the restriction of the metric to the form (2.2) outside
sources is too severe. Ideally, the boundary conditions could be weakened just
enough so that the group of asymptotic symmetries is enlarged to the anti-de Sitter
group in 2 + 1 dimensions, namely 0(2,2). This section addresses such a weakening
of the boundary conditions, although the group of asymptotic symmetries which
naturally arises is not 0(2,2), but the conformal group in two dimensions.

The inspiration for the weakened boundary conditions comes from rewriting the
metric (2.2) by making the replacements

-+-( 2- —ί"*α\ ~"R*

so that the metric now reads

/ r2 \ ίr2-A2 V 1

dS2=- —y + α2 }dt2 + 2Attdtdo + ( = h α2 dr2 + (r2 - A2)dφ2. (4.2)
\R J \ R J

Notice that when A = 0, the dominant contributions in this metric and in a globally
anti-de Sitter space coincide with one another, equaling

In this sense, it seems natural to consider the metric (4.2), at least when A = 0, to be
"asymptotically anti-de Sitter."

The notion of "asymptotically anti-de Sitter" must be made precise by specifying
the boundary conditions that the metric should satisfy. If the anti-de Sitter group is
to be a part of the asymptotic symmetries preserving these conditions, then the
metric obtained from an anti-de Sitter transformation acting on (4.2) must also be
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"asymptotically anti-de Sitter." By acting on (4.2) (with or without ,4 = 0) with all
possible anti-de Sitter group transformations, the following boundary conditions
are generated:

^ (4.3a)

(4.3b)

(4.3c)

(4.4a)

(4.4b)

(4.4c)

It is interesting to compare the boundary conditions (4.3,4.4) with the boundary
conditions on the metric for gravity in 3 -f 1 dimensions with A <0 [15]. By
restricting the spatial sections in the 3 + 1 case to two dimensions (for example, by

'Θ = π/2) this shows that the difference between the allowed metrics and anti-de Sitter
space must fall off faster by one power of 1/r in 3 + 1 dimensions than in 2 + 1
dimensions.

Having chosen boundary conditions for the metric, the asymptotic symmetries
are described by vector fields which transform metrics of this form (4.3,4.4) into
themselves. Of course, these vector fields will include the anti-de Sitter group of
symmetries, 0(2,2). Analysis of the Lie transformation equations for metrics
(4.354.4) shows that the spacetime components (3)ξα of these vectors satisfy

(3)<f = RT(t, φ) + ̂  T(ί, φ) + 0(l/r4),

(4.5)

with

(4.6)

For the above vectors, the O(l/r4) terms in the ί, φ components and 0(1 /r) terms
in the r components are arbitrary, and just represent the pure, or "proper" [16], gauge
transformations. That is, consider any deformation vector whose ί, φ components
behave as 0(l/r4) and r component behaves as 0(1 /r). As will be shown below, such
deformation vectors have no associated charge and the generators of these
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deformations vanish weakly. Then the transformations described by these vectors
are pure gauge, producing effects which are not to be considered as physically
meaningful. So to be precise, the asymptotic symmetry group will be defined as the
factor group obtained by identifying all transformations described by vectors (4.5)
which may differ by O(l/r4) terms in their ί, φ components, or by 0(\/r) terms in their
r components.

The asymptotic symmetry group defined above is isomorphic to the pseudo-
conformal group in two dimensions. This may be seen from (4.6) by noticing that the
functions T(t,φ) and Φ(t,φ) satisfy the conformal Killing equations in two
dimensions with an indefinite metric, and once a solution T(t, φ), Φ(t, φ) has been
selected, the remaining functions R(t, φ), T(ί, φ), and Φ(ί, φ) are determined. We will
often refer to the asymptotic symmetry group as simply the conformal group.

The conformal group also arises as the asymptotic symmetry group from a
conformal analysis of infinity [17]. Denoting the metric (4.3,4.4) by dS2, the
conformally related metric dS2 = (l/r2)dS2 has a surface at r— oo with induced
metric

dSl = j-dt2 -f dφ2.
R2

The group of conformal motions on this surface is just the pseudo-conformal group
in two dimensions.

Because of the periodicity conditions in the coordinate φ, the conformal Killing
equations (4.6) can be Fourier analyzed. Then the asymptotic symmetries (4.5) may
be written explicitly in terms of an integer n as

+ rn sin— cos nφ + O(l/r) \d/dr,

B„ = £_ = \ R{ 1-

nt ^1/4J^cos—cosnφ + O(l/r ) \d/dφ
2r2 R

+ rn cos —sin nφ + 0(1 /r) \ d/dr,
L R

2r2 I R
4) \d/dt



216 J. D. Brown and M. Henneaux

— rncos—cosnφ -f 0(l/r) \d/dr,

[ ( n2R2\ nt Ί
R{ 1 —£2-1cos-sinnφ + 0(ί/r4) \d/dt

K n2R2\ nt Ί
1 +—2- sin-cosm/> + 0(l/r4) \d/dφ

2r J R J

+ rnsin^-sinnφ + O(l/r) \d/dr. (4.7)
L R J

The group algebra for the generators (4.7) may be written as follows:

Γ 4 A -i-fc^V iL/ι n ,>Ί m j— i l^n- fm ' I

D Ί-^umΛ — \

(4.8)

Notice that the anti-de Sitter group 0(2,2) is the subgroup spanned by the
vectors (4.7) with n = 0, 1. However, 0(2, 2) is not an invariant subgroup, so there is
no obvious way to restrict the asymptotic symmetries to just the anti-de Sitter
group. The situation here is similar to 3 -f 1 asymptotically flat gravity which has the
Spi group (similar to the BMS group) of asymptotic symmetries containing the
Poincare group as a sub-group. In contrast, the group of asymptotic symmetries for



Global Charges and Asymptotic Symmetry 217

gravity in 3 + 1 dimensions with A < 0 is precisely the anti-de Sitter group O(2, 3)
[15].

To this point, the asymptotic symmetries have been treated as the group of
vector fields preserving the spacetime metric (4.3,4.4) under Lie transport. In the
canonical formalism, these vector fields become the allowed asymptotic deform-
ations of a spacelike surface which is described by the canonical variables gtj, πij.
From (4.3,4.4), the lapse and shift are determined to be

9 \ (4.9)
K

so that the asymptotic behavior of the canonical variables is given by Eqs. (4.4) along
with

πrr = 0(l/r), π^ = 0(l/r2), π++ = 0(l/r5). (4.10)

However, in the canonical formalism, the spacelike surfaces are evolved according to
Hamiltonian evolution, which generally differs from Lie transport unless the spatial
Einstein equations (3)Gij = Λgij hold. To insure that spacelike surfaces initially
obeying the boundary conditions (4.4) and (4.10) will preserve these boundary
conditions under deformations generated by the Hamiltonian, it is necessary to
impose further restrictions on the canonical variables [15].

In the appendix, we show that when the Hamiltonian constraints J^μ = 0 hold in
a neighborhood of infinity, then the boundary conditions (4.4,4.10) are preserved
under Hamiltonian evolution. The reason it is possible to formulate the extra
conditions on the canonical variables in terms of the constraints is because the
spatial part of the Einstein tensor (3)Gίj5 which determines the difference between Lie
and Hamiltonian evolution, is related to the constraints Jjfμ through the contracted
Bianchi identities. In 2 + 1 dimensions, no further conditions on the canonical
variables are needed, because there are precisely three components (3)Gi; to be
restricted by the three constraints Jj?μ. Of course, as long as the spacelike surface is
imbedded in a spacetime which solves Einstein's equations, the constraints Jtfμ = 0
will be satisfied anyway, so these conditions have no serious consequences.

As described in Sect. Ill, the charge J[£] may be found by taking into account the
asymptotic behaviour of the canonical variables (4.4, 4.10) and deformation vectors
(4.5) and rewriting the integral (3.3) as the total variation of a surface integral. The
negative of this surface integral, actually a line integral for 2 + 1 spacetime
dimensions, determines the charge J\_ζ] to within a constant which will be adjusted
so that J\_ξ] vanishes for globally anti-de Sitter space. Denoting the spatial metric
for a globally anti-de Sitter spacetime by gij9 the charge is

= lim § dSά&^g^ - ξ\k(gij - 0y)] + 2ξ V}, (4.1 1)
r->oo

where the horizontal bar indicates co variant differentiation with respect to gu. This
expression for J[ζ] has the same form as the one obtained for 3 + 1 dimensional
gravity with Λ<0 [15]. Also note that, as previously mentioned, the charge
vanishes for any surface deformation which describes a pure gauge transformation.
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For the spacetime (4.2), the only nonzero charges are those associated with
AQ = R d/dt and B0 = — d/dφ, namely

A2'
(4.12a)1 n2ι-« -
(4.12b)

The two vectors A0 and £0 are essentially the generators of the asymptotic symmetry
group R x SO(2) treated in Sect. Ill, differing from those quantities only in their
normalization. However, the "energy" l/R J\_AQ~] obtained from (4.12a), in contrast
with (3.6a), no longer has the desired limit as R -» oo. This should not be too
surprising, since the coordinate change (4.1) involved the "canonical variables" in
the form of α and A. The coordinate t in (4.2) is no longer normalized to proper time
in the R -»oo limit, and correspondingly, the normal components AQ of the
deformation vector AQ9 used to determine the energy, is no longer normalized to
unity in this limit.

Finally, it will be important for what remains to understand the asymptotic form
of the _l_, r, φ components of the surface deformation vectors ξ. These components
are given in Eqs. (3.4) in terms of the spacetime components of some conformal
group vector (3)ξα restricted to a t = constant surface. The leading order terms in ξμ

are completely determined once the spacetime components (3)ξα are given. But to
higher orders in 1/r, ζL and ξφ depend on the unspecified 0(l/r) term in the lapse N
and on the shift Nφ. Then in Hamiltonian language, the asymptotic form of the
surface deformation vectors depends on the canonical variables. (See the appendix
for details.)

Actually, the dependence of ξμ on the canonical variables is not relevant in
establishing (4.11) as the proper surface integral to appear in the Hamiltonian, or in
evaluating the charges for a spacetime such as (4.2), because for these purposes, ξμ is
only needed to leading order in 1/r. However, more than just the leading order terms
in ξμ are important for the requirement that the boundary conditions on the
canonical variables be preserved under surface deformations.

V. The Canonical Realization of Asymptotic Symmetries

The primary goal of this article is to point out the possible existence of central
charges in the canonical realization of asymptotic symmetries. In this section, we
explicitly derive the Poisson bracket algebra of the Hamiltonian generators H[ξ] for
2 + 1, Λ < 0 gravity with the conformal group of asymptotic symmetries, and obtain
such central charges. It should be clear from this example that for any gauge theory,
the global charges may form a central extension of the asymptotic symmetry algebra
with potentially non-trivial central charges.

The Hamiltonian generators for 2 + 1, Λ < 0 gravity have the form

H[ξ] = fd2xξ"(x)jrμ(x) + J[α (5.1)

where J^μ are the standard constraints for general relativity, and J[ξ] are the
charges. When the allowed deformations are defined by the conformal group of
asymptotic symmetries, the charges J[ξ] are given by the surface integral in Eq.
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(4.11). These surface integrals are constructed in such a way that the Hamiltonian
will have well defined variational derivatives, and as a result, will be a well defined
generator of surface deformations through the Poisson bracket.

The asymptotic symmetries are canonically realized by the "factor group" of
surface deformation generators, which is defined by identifying two Hamiltonian
generators if they describe the same asymptotic (conformal group) deformation and
differ only by a pure gauge deformation. It is in this sense that we shall loosely refer
to the Hamiltonian generators //[£] as providing a canonical realization, or else a
central extension, of the conformal group algebra. On the other hand, fixing the
gauge so that the constraints $fμ — 0 hold strongly is effectively the same as
considering the factor group, because then the asymptotic part of the deformation
vector ξμ determines the surface deformation everywhere, and the charges
themselves become well defined as generators through the Dirac bracket [18]. The
algebra of these charges is identical to the factor group algebra of the Hamiltonian
generators, so that the charges J[£] also realize the asymptotic symmetry group
algebra.

In principle, the algebra of the generators //[£] could be computed directly from
the Poisson bracket. Such a calculation is typically very cumbersome, but for the
case at hand, the situation is even worse because the deformation vector components
ξμ depend on the canonical variables. This dependence was discussed at the end of
Sect. IV, where it was also pointed out that ξμ does not depend on the canonical
variables to leading order in 1/r, and thus its asymptotic form can be completely
determined once a conformal group vector is chosen. The derivation which we
present here does not depend on any further details of ξμ, and it should also be
emphasized that the dependence of ξμ on the canonical variables has no logical
connection with the presence of central charges in the algebra of the generators.

Our starting point for computing the algebra of the generators (5.1) is based on a
theorem proved in [10]. The theorem is a completely natural one, stating that the
Poisson bracket {//[£], H [ η ] } of two well defined generators H[ξ] and H[_η] is itself
a well defined generator. As pointed out earlier, the charges J[£] are only defined up
to the addition of a constant, which has been adjusted in (4.11) so that a globally
anti-de Sitter space has no charge. As a result, once it is shown that the volume
integral part of {#[£], H[η~]} is of the same form as that of (5.1), it follows that the
surface term which must occur in that Poisson bracket can at most differ from the
charge of Eq. (4.11) by a constant K[£,?/], which depends only on the asymptotic
form of the deformations ξ, η. Then given two generators //[£] and H[η] of the form
(5.1), their Poisson bracket may be written as

{tf[a#MHtf[C] + KM, (5.2)
where //[ζ] is also a well defined generator of the form (5.1).

In order to demonstrate that (5.2) is a central extension of the conformal group
algebra, it must be shown that the asymptotic form of the deformation vector ζ is
given by the Lie bracket [£, η]. Of course, this still leaves open the possibility that the
constants X[ξ, η] = 0, so that the central extension is trivial. We will wait until the
end to compute the constants K explicitly and show that they cannot be absorbed
into a redefinition of the canonical generators.
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The critical step in this analysis is to recognize that the "volume" term of the
Poisson bracket (5.2) may be calculated by assuming that ξ and η are pure gauge, in
which case the charges vanish. Indeed, the Poisson bracket is defined in terms of
variational derivatives of the Hamiltonian generators. The definition of these
generators includes the addition of surface integral charges in just such a way that
variations will yield the "right-hand side" of the Hamiltonian equations, which are
local in the canonical variables and deformation vectors, regardless of the
asymptotic behavior of the deformation vectors. Then the generator obtained by
computing the Poisson bracket under the assumption that ξ and η describe pure
gauge deformations can only differ from the generator which would be obtained
without this assumption by terms which vanish when ξ and η are pure gauge.
Furthermore, these additional terms occurring in the Poisson bracket {//[ξ], H[_η\ }
are just surface terms arising from integration by parts. In view of the above
mentioned theorem, they must be precisely those surface integrals necessary to make
{//[£],//[>/]} a well defined Hamiltonian generator when the deformation vectors
are allowed to describe conformal group transformations at infinity.

So by assuming ξ and η to be pure gauge, the charges vanish and the Poisson
bracket can be computed as

= J d2xd2yξ"(xW

+ μMm
+ $d2y{Hlξl

- ] d2xd2y{ξμ(x\

Here, [£, η]%D is given by the usual surface deformation algebra for the vectors ξμ, ηv

[19], and δηξ
μ represents the change in the vector components ξμ under the surface

deformations generated by H[r]]. Also, Poisson brackets such as {Jf?μ(x)9 3lfv(y)}
must be computed by taking into account the integration over ξμ(x) and ηv(y\ since
these are pure gauge deformation vectors and vanish sufficiently rapidly at infinity
to insure that the variational derivatives of JΊP μ(x) and 3Ίfv(y) can be well defined.
Then by the arguments above, the Poisson bracket must generally have the form
(5.2), where

C"M = fclYsD + V - δξη
μ -Id2y{ξμ(x\η\y)}tfv(y\ (5.3)

even when ξ and η are conformal group vectors.
In order to recognize ζ as a particular conformal group vector (4.5), recall that

any such vector is uniquely determined, up to gauge terms, by its leading order
contributions in 1/r. Since the leading order terms of all conformal group vectors are
independent of the canonical variables, it follows that δηξ

μ and δξη
μ make only

higher order contributions to ζμ in Eq. (5.3). The last term in (5.3) also will not
contribute to the leading order of ζμ, because it is a linear combination of constraints
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and their derivatives, which must decrease faster than any power of 1/r (see the
appendix). As a result, ζμ can be written to leading order as

Furthermore, the fact that the right-hand side of (5.2) is a well defined generator
insures that the non-leading order terms in Eq. (5.3) must work out in such a way
that Cμ meets the requirements of a conformal group vector to all necessary orders
in 1/r.

The final step in the demonstration that (5.2) is a central extension of the
conformal group algebra is to show that, to leading order in 1/r, the surface
deformation algebra [ζ,η~\SD coincides with the Lie algebra [£,77] for conformal
group vectors ξ and η. This can be done by first writing the surface deformation
algebra in spacetime coordinates in terms of the spacetime components of the
deformation vectors (where the superscript (3), previously used to denote spacetime
components, has been dropped):

K,

These expressions are simplified by using the asymptotic forms for the spatial metric
gtj (4.4), lapse N and shifts N* (4.9), and by using Eqs. (4.6) to relate the leading order
terms in the components of the conformal group vectors. Then the surface
deformation algebra is seen to coincide with the Lie algebra to leading order in 1/r,
and

C-[<^1 (5.4)

The preceding arguments show that the conformal group content of the
deformation vector ζ — that is, the part which is not pure gauge — is given by the Lie
bracket [£, η]. As a result, Eq. (5.2) states that the Hamiltonian generators form a
central extension of the conformal group algebra. We will now compute the central
charges K[ζ,ή] explicitly, and then show that the central extension is not trivial
because the central charges cannot be absorbed into a redefinition of the generators.

The central charges may be evaluated directly by recognizing that the Dirac
bracket {./[£], «/M}* is interpreted as the change in the charge J\_ζ] under the
surface deformation of unit magnitude generated by J[_η], so that

On the other hand, since the charges J[ξ] form a central extension of the conformal
group algebra,

Vra=J[K^]] + ̂ K^] (5.5)

The central charges K[£, η] may be obtained from Eq. (5.5), which is most easily
evaluated on the t = 0 surface of a globally anti-de Sitter spacetime, gμv. Since the
charge (4.11) has been chosen so that it vanishes for a globally anti-de Sitter
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spacetime, then </[[£, ̂ ]] = 0, and the charge J[£], before the surface is deformed, is
also zero. In this case, the central charge K[ξ, η] reduces to the value of the charge
J\_ζ] on the surface deformed by η.

To evaluate ./[£] on the deformed surface, the expression (4.11) can be greatly
simplified by specializing to r, φ coordinates and using the known asymptotic form
of the canonical variables. This gives

which may be simplified even further by recognizing that, to leading order in 1/r,
πr

φ ~ gtφ. Then all that is needed are the metric components grr, gφφ, gtφ at t = 0,
which may be easily computed from the deformed anti-de Sitter spacetime as

d μv 9 μv ' °Z ηQμv

Carrying out the above for ξ, η equaling all possible combinations of Anί Bn, Cn,
Dn (Eqs. 4.7), the only non-zero central charges are found to be

(Incidentally, if either ξ or η are pure gauge deformations, then the above argument
shows that the associated central charge vanishes, as it should [19]. When ξ is pure
guage, this is so because J\_ξ] vanishes for all admissible field configurations.
Likewise, because { J[ξ], J[_η] }* may be interpreted as — δξJ\_η], this shows that the
central charge vanishes whenever η is pure gauge.)

The Dirac bracket algebra of the charges can now be written as follows:

} = -/[[/>„, AJ],

-}}* = JllAn,Bmn

}* = J[_\_An, CJ] + 2πRm(m2 - l)<5,,, | |m|,

DJ] - 2πRm(m2 - l)ό |B,w,

Dm]]. (5.6)

It should be clear from this calculation that if the asymptotic symmetries were all
exact symmetries of anti-de Sitter space, then the central charges would vanish. As
pointed out in the introduction, for any theory whose asymptotic symmetries are
exact symmetries of some background field configuration, the central charges can be
arranged to vanish simply by adjusting the charges to zero on this background.

In the present case where the asymptotic symmetries cannot be realized as exact
symmetries of some background, it is easy to see that the central charges are not
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trivial. For instance, the Lie bracket [An,CJ from Eqs. (4.8) is realized in (5.6) as

+ 2πRn(n2 - 1). (5.7)

If the charges are redefined by J[AJ -WD4J + an and J[CJ -» J[CJ -f cπ, then
(5.7) becomes

(J[AJ, J[CJ}* - «J[A0] + nla0 + 2πR(n2 - 1)].

It is clear that the constants an, cn can never be chosen so that the central charges are
eliminated for all values of n.

It is interesting to note that the algebra (5.6) is actually a direct sum of two
Virasoro algebras. The change of basis

is invertible for An, Bn, CΠ, Dn in terms of LΠ, L_ n , Kn, K_n, and the algebra of the
associated charges becomes

{ J[LJ, J[LJ}* - (n -

This is just the familiar algebra for the canonical generators of string theory [9].
As a final comment, we briefly point out some analogies with four dimensional

gravity in the asymptotically flat case. The asymptotic symmetry group is the infinite
dimensional "Spi group" [4] as long as the behavior of the gravitational variables at
spatial infinity is not restricted by means of parity conditions as in [8]. Then it turns
out that a "central charge" appears in the canonical realization of these symmetries,
in the sense that the Spi generators transform inhomogeneously under an
asymptotic Spi transformation. However, the homogeneous part of the Poisson
bracket algebra of the generators does not yield a representation of the Spi algebra
(the bracket of two boosts contains an unwanted metric dependent, angle dependent
transformation) [20], so that the situation is actually much worse in this case. This
gives an additional motivation for imposing extra boundary conditions to eliminate
the supertranslation ambiguities [8,4].

Appendix: The Initial Value Problem

In the main text, we have shown that a spacetime metric obeying the boundary
conditions (4.3,4.4) is asymptotically invariant under spacetime changes of coordi-
nates (or "diffeomorphisms") which become asymptotically elements of the two
dimensional conformal group in the sense of (4.5). We have also shown that in such a
spacetime, the spatial metric and its canonical momentum fall off as in (4.4, 4.10) on
the appropriate spacelike sections.

Then consider the following initial value problem: suppose that on an initial
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surface t = 0, data (gij9 πij) are given which have the asymptotic behavior (4.4, 4.10).
Can appropriate lapse and shift functions be found such that these initial data can be
developed, by means of Hamilton equations, into a spacetime metric obeying
(4.3,4.4)?

This question is not the true converse of the analysis of Sect. IV, because Lie and
Hamiltonian transports only coincide on shell. The difference between them is
measured by the dynamical components (3)G0 of the Einstein tensor. These
components turn out to decrease too slowly at infinity, so that they can only be
neglected under stronger boundary conditions on the initial data (see below). This
phenomenon also occurs in 3 -I- 1 gravity [15].

In order to derive these stronger conditions, first note that the initial data cannot
simply be propagated by means of the generator H[ξ(4dS), ̂ ads)], since this generator
does not preserve the boundary conditions. Here ξ^ds) and <^ads) are the components
in the adS orthogonal frame adapted to the surfaces t = constant of a generic
"conformal vector field,"

—
S(adS) —

_ (3)£fc
)— C

To preserve the boundary conditions, the deformation vector components ξL and ξk

must include "correction terms" of order

(A.2)

(A.3)

(A.4)

and these are not "pure gauge" (except ξr — ξr

(adS) which will no longer be of interest).
From the spacetime point of view, the necessity of (A.2, A.4) could have been
anticipated by noticing that such terms are precisely induced by taking into account
the difference between the actual lapse and shift, and the anti-de Sitter ones in the
formulas

(See the discussion at the end of Sect. IV.)
For defmiteness, consider the case of an asymptotic time translation ((3)ξ* =

1, (3)<f = 0). It is easy to see that ξφ - ξ f a d s } is entirely determined up to the
appropriate order by the condition that {grφ, #[ξ] } be of the same order as grφ (i.e.,
0(l/r3)). Once this is done, all the brackets {#0 , H[£] } behave correctly at infinity so
that only the πij equations remain to be analyzed.

Elementary computations show that {πrφ, H[ξ] } is of the same order as πrφ, but
that (πrr, //[£]} and (π00, //[£]} generically decrease too slowly unless ξ1 is
properly adjusted. By using the Ricci identity for second co variant derivatives of
vectors, then the two conditions

(A.6a)

) (A.6b)
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admit a solution for ξλ — ξ^ΛdS) if and only if the curvature (2)R of the spatial sections
approaches 2/1 at infinity as

). (A.7)

What would naively be expected from (4.4) is (2)# — 2Λ= 0(l/r2), which is the reason
why the boundary conditions (4.4,4.10) at infinity must be strengthened.

When (A.7) holds, the general solution to Eqs. (A.6) is given by

ί1 ~ &1S) =/(0y> fly,*, θijti) + 0(l/r3), (A.8)

where/ = 0(1 /r) is a given local function of the metric and its derivatives, and whose
explicit form will not be of interest here. The 0(l/r3) term is arbitrary and
corresponds to a pure gauge transformation.

This is not the end of the story, for the compatibility condition (A.7) must be
preserved in time by the Hamiltonian equations. This problem is most conveniently
analyzed by noticing that (A.7) is equivalent to

tfL = 0(l/r4), (A.9)

whose bracket with the generator H[ζ] is easy to evaluate. This naturally leads to
the additional conditions that the constraint functions should decrease faster than
any power of 1/r.

tfμ = 0(l/ι") for all n. (A. 10)

These conditions are obviously preserved under asymptotic transformations by
the conformal group and hence, form a closed set. Accordingly, when the initial data
obey (4.4,4.10) and solve the constraints in the neighborhood of the surface at
infinity, they can be propagated in a manner compatible with the requirement that
the resulting spacetime be asymptotic to anti-de Sitter. This answers the question
raised in the beginning of the appendix. Also note that under these conditions, Lie
and Hamiltonian evolution are equivalent and the spacetime evolved from the
initial data obeys all of Einstein's equations in the vicinity of infinity.

As a final point, we remark that the ξμ dependence on the canonical variables has
no influence on the expression of the charges (which follows from varying //[£]). This
is because the surface term which arises upon taking (A.8) into account is equal to
zero, since it is proportional to the constraint functions J^μ.
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Note added. Cocycles have recently become very popular in view of their connection with anomalies
[21]. Cocycles also appear in the field of a monopole [22], and arise in other areas of physics as well [23].
Our paper shows the existence of possibly non-trivial two-cocycles (central charges) in the canonical
realization of the asymptotic symmetry algebra.
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