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Abstract. The existence of space-times representing pure gravitational radi-
ation which comes in from infinity and interacts with itself is discussed. They are
characterized as solutions of Einstein's vacuum field equations possessing a
smooth structure at past null infinity which forms the "future null cone at past
timelike infinity with complete generators." The "pure radiation problem" is
analysed where "free initial data" for Einstein's field equations are prescribed on
the null cone at past time-like infinity. It is demonstrated how the pure radiation
problem can be formulated as a local initial value problem for the symmetric
hyperbolic system of reduced conformal vacuum field equations. Its solutions
are uniquely determined by the free data.

1. Introduction

This paper is concerned with space-times representing gravitational radiation,
which falls in from infinity, interacts nonlinear! y with itself, and eventually escapes
to infinity again. It is clear that a sufficiently complete understanding of this process
and of the global structure of the resulting field is of fundamental importance for
classical as well as for quantum gravity. Due to the work of Pirani [20], Sachs
[21,22], Bondi et al [1], Newman and Penrose [12], Penrose [15-17], Geroch
[10] and others, there exists a rigorous setting in which to study the situation
described above, without having to take recourse to approximation procedures.
One will expect that the field is a solution of Einstein's vacuum field equations
which has a smooth structure at past null infinity. To make sure that the field is
indeed built up only by incoming gravitational radiation, one will require that the
null generators of past null infinity satisfy a certain completeness condition and
that past timelike infinity is represented in the conformal completion by a point
Γ. This point is required to be "regular" in the sense that the conformally rescaled
"unphysical" space-time admits a smooth extension in which i~ is a regular point
and such that the future null cone of i~ represents past null infinity for the physical
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space-time. From the work referred to above it follows that fields with these properties
have an unambiguous interpretation as representing pure gravitational radiation. If
the field completely radiates away again in the future, one will expect that the
space-time will satisfy the asymptotic conditions above, where "past" is replaced by
"future" and " Γ " by "z + ." A solution of Einstein's vacuum field equations satisfying
all the asymptotic conditions at past and future timelike and null infinity mentioned
above will be called a "purely radiative space-time." These space-times are of
interest because of their clear-cut physical interpretation. However, the question,
whether sufficiently many purely radiative space-times exist may also be considered
as a "guiding problem" in an investigation of the global propagation properties
of Einstein's field equations. It appears to be the "simplest" such problem since
no sources are involved.

Only one exact solution seems to be known at present to satisfy all the required
conditions. In a suitably conformally rescaled form its line element is given by

ds2 = 2du2 + Idudr - | s in 2 rdω\ (1.1)

where dω2 denotes the standard line element on the 2-dimensional unit
sphere and the coordinates u and r take values in the range

O^w π̂, O^r^π-u. (1.2)

The line {r = 0} corresponds to the usual coordinate singularity associated
with a radial coordinate like r. Past null infinity is given by the null surface
{u = 0,0 < r < π}, while future null infinity is given by {u + r = π, 0 < u < π}. The
points {u = 0, r = 0}, {u = 0, r = π} and {u = π} represent in that order the points
Γ, i°, which denotes spatial infinity, and i + .

Rescaling the line element (1.1) by a conformal factor Ω~ι, where Ω is given by

+ r) (1.3)

and performing in the range 0 < u < π, 0 g r < π — w the coordinate transformation

ί + r' = — ctg(u + r), t - r' = - ctg u,

one recovers the line element of Minkowski space in spherical polar coordinates

Ω~2ds2 = ds2 = dt2 - dr'2 - r'2dω2.

This state of affairs is not only deplorable because there are no exact solutions
allowing one to study and to extract for possible generalization the characteristic
features of gravitational waves, which interact with each other in a nonlinear
though smooth way. It also may leave some doubt whether the very concept of
a purely radiative space-time as depicted here is appropriate at all to model the
process described in the beginning.

Minkowski space is also the only exact solution known to satisfy the "minimal
condition" that a space-time representing pure gravitational radiation may possess
a regular cone at past timelike infinity with complete generators. The question of
the existence of solutions of Einstein's field equations satisfying these minimal
conditions will be investigated in this paper by analysing the initial value problem
where data are prescribed on the cone at past timelike infinity.
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The basis for this investigation are the results on the "conformal structure" of
Einstein's field equations given in [5] and, more recently, on their hyperbolicity,
discussed in [7]. In [5] it was shown that on the vacuum space-time Einstein's
field equations can be replaced by the "regular conformal vacuum field equations"
which govern the propagation of the conformally rescaled fields. The regular
conformal vacuum field equations constitute a slight generalization of Einstein's
equations in that they make sense also at points where the conformal factor
vanishes, i.e. where Einstein's equations are not even defined. In [7] it has been
shown that the propagational part of the regular conformal vacuum field equations
implies a symmetric hyperbolic system of evolution equations for any choice of
coordinates, frame field and Ricci scalar. Together these properties of the field
equations may be considered as the structural basis for the possibility of imposing
conditions on the asymptotic behaviour of the fields near past (or future) null
infinity in terms of requirements on the global conformal structure.

To obtain a precise formulation of the initial value problem to be investigated,
a more detailed description of the situation depicted in the beginning will be given
now.

Definition (IA). A pair (M,g) is called a "Lorentz-space with a cone-like past
boundary" if it can be obtained in the following way. There exists a strongly causal,
oriented, and time oriented Lorentz space (M*,g*) and a point i~eM* with the
property that the causal future J + (Γ,M*) of i~; i.e. the set consisting of i~ and
all points of M*, which can be joined to i~ by a future directed non-spacelike
curve in M*, is such that J + (Γ, M*) is closed in M*, and if Ir denotes the boundary
J+(Γ,M*)n(M*\I+{Γ,M*)) of this set, then I = Ir\{Γ} is a smooth
null hypersurface of M*. Now M is the set J + {i", M*) together with all the differen-
tial structures which this set inherites from M*, and g is the pull-back of g* to M.

In particular all structures like "tangent space," "metric" etc. will retain at
ΓeM the meaning they had on M*. The set 7 , - c M will be called the
(future) null cone of Γ .

Definition (1.2). A strongly causal, oriented, and time oriented Lorentz-space
(ld,g) is called a "solution of Einstein's vacuum field equations with complete
null cone at past timelike infinity Γ," if there exists a Lorentz-space (M,g) with
cone-like past boundary Ir and a function Ω on M, the "conformal factor," such
that

(i) Ω>0 on M\Ir;Ω =0 on Ir,dΩ ΦQ on /Γ\{Γ}, j „ 4 )

dΩ = 0 at Γ, but the Hessian of Ω at Γ is nondegenerate. J
(ii) By a certain diffeomorphism the manifolds M and M\Ir can be identified

such that after the identification one has

g = Ω2gonM\Ir. (1.5)

(iii) The metric g is a solution of Einstein's vacuum field equations

Ric(<?) = 0 on M \ J Γ . (1.6)

(iv) The null hypersurface I = Ir\{i~} satisfies the following completeness
conditions: If the metric g is rescaled by a positive conformal factor 0, which
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is defined near / and chosen such that the convergence of the null geodesies on
/ with respect to the metric θ2g vanishes on /, then the null geodesies are
complete.

It is easily verified that all these conditions are satisfied by the example (1.1), (1.2),
(1.3). The meaning of conditions (1.4), (1.5) has been explained in [10,15-17]. For
a discussion of the significance of the completeness condition see [11]. From (1.4)
follows

VμWvΩ = Cgμv at Γ with C > 0. (1.7)

Above it is assumed, as will be done in the following, that all manifolds,
functions etc. are of class C00.

One can now pose the "pure radiation problem": Suppose certain data are
prescribed on a cone like the one given by {u = 0, 0 g < π} of example (1.1), (1.2).
Does there exist a unique solutions of Einstein's vacuum field equations with
complete null cone at past timelike infinity Ir, which implies on /,- fields, which may
in an appropriate way be identified with the given data?

There are two main difficulties which have to be overcome to obtain a satis-
factory answer to the pure radiation problem. One has to find out whether it is
possible to construct for appropriate, though still rather general data solutions of
Einstein's vacuum field equations, which extend arbitrarily far into the past and
fall-off in past null and timelike directions in such a way as to allow a smooth
structure in the infinite past and to induce the given data there. Furthermore, data
are given on a surface which is not smooth at the vertex. Though at first sight the
last point appears to be of minor importance, it turns out that it is the non-
smoothness of the initial surface which creates all the technical problems and
prevents one from deriving an existence result in the case of low differentiability
by more or less straightforward application of standard techniques.

Initial value problems for Einstein's field equations, where data are prescribed
on a cone which is to represent the future light cone of a regular point of space-time,
have been analysed in [2,4,14], emphasizing the question which data may be
prescribed in that case. Detailed existence results referring to this situation have
not been worked out yet. There are available techniques to show the existence of
solutions for linear systems of wave-equations if data are given on a cone [3];
however there do not seem to exist in the literature similar results which will
readily apply to the present quasilinear case.

It will be shown in this paper (Propositions (9.2), (9.3)) that the pure radiation
problem can be formulated as an initial value problem for a symmetric hyperbolic
system and that, in a given choice of gauge, a solution to this problem is uniquely
determined by the free data (the "radiation field"). As a byproduct it follows that
the data determine a unique formal expansion of the fields. The basic assumption
which enters into this discussion is that not only Ω 2 gμv but also Ω ~1 Cμ

λpδ extends
to a smooth tensor field on the non-physical space-time, where Cμ

λpδ denotes the
Weyl tensor.

The analysis requires the use of two different types of gauge conditions. To
formulate a regular initial value problem one needs smooth coordinates and frame
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fields defined in a neighbourhood of the initial cone. This will be discussed in
Chap. 9. However, the analysis near the vertex Γ of the interior equations which
are implied on the initial cone by the field equations requires the use of coordinates
and frame fields which will become singular on a timelike geodesic which passes
through the vertex i~. The initial surface will be a level surface of a null coordinate
and three of the vector fields which constitute the frame field will be tangent to
that surface.

Much of the following work is needed to develop methods which make it
possible to handle the field equations in this singular gauge. The various fields
which will be determined from the data will appear singular because of the singular
coordinates and the singular frame. The knowledge, whether the resultant solution
space-time will be smoothly extensible through the singular line has to be encoded
into the form of the initial data. This makes it necessary to study regularity
conditions on the cone near the vertex.

The natural place for such a discussion turns out to be the bundle S(M) of
spin frames. Therefore Chaps. 1-4 are concerned with the formulation of the
regular conformal vacuum field equations as equations of forms on S(M), with
the construction of a certain 5-dimensional submanifold M of S(M), which arises
naturally in the present context, and with the choice of coordinates and frame
vector fields on M. In Chap. 5 will be discussed smoothness conditions on the
cone for the various fields. Here and in Chaps. 6 and 8, which deal with the field
equations on M, it is seen that the setting provided by the manifold M allows us
in a neat way to exploit the group theoretical content of the fields and the field
equations.

One reason for the present formulation of the problem was the wish to say
more about the existence of solutions of the pure radiation problem in the case
of analytic data. If one wants to show the convergence of the formal expansion
of the fields referred to in Proposition (8.1), the field equations must be written in
a form which gives a sufficiently explicit description of the iteration procedure by
which the expansion coefficients are calculated. This form is obtained in Chaps.
6 and 8. In a subsequent paper [8] conditions will be stated under which the
formal expansion discussed in Proposition (8.1) does in fact provide an analytic
solution of the conformal vacuum field equations.

The reduction of the pure radiation problem to the initial problem formulated
in Chap. 9 leaves one with the task of proving the existence of solutions if data of
low differentiability are given. But in spite of the remaining technical problems
already the results presented in this paper show that the concept of a solution of
Einstein's vacuum field equations with complete null cone at past timelike infinity
is in perfect harmony with the conformal structure of Einsteins field equations.

In an investigation of the global behaviour of the "local solutions" near Ir

obtained from the pure radiation problem it may turn out that even with certain
restrictions on the data most of the solutions will evolve into something which looks
more exotic than a purely radiative space-time. Black holes may form or the solution
may simply fail to allow a smooth structure at future null infinity. However the final
answer will turn out, the attempt to arrive at a well-founded statement on this will
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deepen our understanding of the non-linear interaction of gravitational waves and
their propagation over large regions of space-time.

2. The Conformal Vacuum Field Equations

In the following the conformal vacuum field equations as discussed in [7]
will be written as system of equations of forms on the bundle of spinframes S(M)
over a four dimensional manifold M with conelike past boundary It-
as described in Definition (1.2). All considerations will refer to a fixed choice of
the unphysical metric g on M (sign ( + , — ,—,—)) . The notation and the formalism
will follow closely that of [5,7].

An element of the bundle S(M) is a normalized spinframe δ = (δa)a = Otί

at some point x in M, such that

where ε is the antisymmetric form on the spinor bundle. The antisymmetric
Levi-Civita symbols εab, sab satisfying ε 0 1 = ε 0 1 = 1 are used for lowering and
raising indices. The projection π: S(M)-^M maps the spinframe δ onto its base
point x in M. The group SL(2, C) of all complex 2 x 2 matrices t = (fb) satisfying
det(ta

b) = 1 acts transitively on the fibres π~1(x) of S(M) by

δ = (δa)-*{δbt
b

a) = δ't V<5eS(M), ίeSL(2,C),

such that π(<5 ί) = π(<5). Let σ*aa>9 σk

bb> be the constant matrices defined by
the map

°-l-3C3

which identifies U4 with the set of hermitian 2 x 2 matrices, and the conditions

σ

k a aa> = δk σj σ w — F
 b? b>

υ aa',υj υ jp aa'i °j ~ ba ba' •>

The twofold covering homomorphism of the group SL(2, C) onto the group Lτ

+ of all
proper Lorentz transformations (component containing the unit element) is then
realized by

SL(2, C)3ί*bΛ α ^ A P ' , V b ' = t\eL\.

The spinors δaδa, associated with a spinframe δ correspond to a null tetrad

(caa')a,a'= o,i satisfying

9\Caa' 5 Cbb') = εab ^a'b' > Caa' ~ ^aa' 5

which in turn determines an orthonormal frame ck = caa,σ
a

k

a\ k = 0,1,2,3. The map

is a twofold covering bundle morphism of the bundle of normalized spin frames onto
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the bundle of oriented and time oriented g-orthonormal frames, such that

Ψ(δ t)= Ψ(δ)'ψ(t) V(5eS(M),ίeSL(2,C).

The unknowns in the conformal vacuum field equations will be expressed
in terms of some basic 1-forms on S(M) and in terms of "spinor valued functions"
on S(M).

The basic 1-forms are:
—the solder form σaa\ which takes value in the set of hermitian 2 x 2 matrices, i.e.

σaa' = ^aa'^ I t j s obtained from the solder form σι on the bundle of orthonormal
frames as a pull-back,

σaa' = ΪΨσk)σk

aa\

or can be defined, once the relation between δj)a. and caa> is given, by

where h is a tangent vector of S(M) at the point δ. This formula shows that σaa>

supplies a basis of horizontal 1-form, i.e. of those forms which vanish on vectors
tangent to the fibres of S(M);

—the connection form ωa

b which takes values in the Lie algebra si (2, C) of all
complex traceless 2 x 2 matrices. It is obtained from the connection form ω\ on
the bundle of orthonormal frames by a pull-back operation

ma — -M Ψmι \n ad'rτk
ω b — 2\ *ωk)σi σ bd'

Each spinor field on M gives rise to a spinor valued function on S(M% which at a
point δeS(M) is given by the coefficients of the spinorfield with respect to the spin
frame (δa). If these are given by φabc..M'b c'... (<5), then under the action of SL(2, C) on
the fibres on S(M) they transform according to

Φah..,'b'Aδ't) = φcd..^Aδ)t\t\. ic\dd'h.^ (2.1)

Forms on S(M) which under fibre transformations transform in this way (if all
indices are lowered) will be called invariant. Scalar functions on M define invariant
functions on S(M) which are constant on the fibres. The following functions on S(M)
are needed to formulate the conformal vacuum field equations.
—the conformal factor Ω, the Ricci scalar JR, respectively A = j^R, and the function

s = ̂ VμV
μίλ That the functions Ω and s are constant on the fibres will follow

from the field equations, the constancy of A on the fibres will be assumed
everywhere;

— t h e s p i n o r va lued funct ions Σaa, = Σaa>, φaha,h, = φ{ab){a>bΊ = φaba>b>, φabcd = φ{abcd)

which represent, in that order, the differential of the function Ω, the traceless part
of the Ricci tensor, and the rescaled Weyl spinor Ω'1 Ψabcd.

The following horizontal forms will appear in the field equations beside σaa':

Z = ^aa'σ » Zab = ^(a σb)W >

Ψab = ~ \ Ψabcd σch' A σd

w, (2.2)

Φab= -iΦabc'd'^' A ( T / ,

Sab = SσaH' Λ σbh'
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These forms together with the solder and the connection forms are invariant, i.e.
under the pull-back implied by the fibre transformation δ->δ-t they transform
according to (2.1). Let D denote the co variant differential on S(M). If it is applied to
an invariant horizontal spinor valued form ηahc> it gives an expression

DηabC' = dηahc. - ωf

a A ηfhc, - ωf

b A ηafc. - ώf'c> A ηahf..

The conformal vacuum field equations can now be written

Dσaa> = 0, (2.3)

Dω\ = Ωa

b with Ωa

b = Ωφ\ + φa

b + Λσah> AσWi (2.4)

Dφab = 0, (2.5)

Dφab = - Σ A φab - dΛ A σa

h> A σbh., (2.6)

DΣab=-Ωφab + sah, (2.7)

DΩ = Σ9 (2.8)

DΣ=0, ( 2 9 )

Dsab = ΣAφab- 2Σf{a A φb)

f

-2AΣ A σa

h' A σw-ΩdA A σa

h> A σw, (2.10)

Ωsab + Σfa A Σ\ + ΣabAΣ + Ω2Λσa

h' A σbh> = 0. (2.11)

Using the star operator Eqs. (2.5), (2.6) may be written equivalently

*D*φab = 0, (2.13)

*D*0α& = - i*(Σ A φab + dΛ A σa

w A σhh). (2.14)

If one chooses a local section x-+{δa(x)) of S{M) over M and expresses the
pull-backs of Eqs. (2.3), (2.4), (2.7)-(2.13) by this section in terms of the tetrad field
caa{x) associated with the spinframe field δa(x\ then the conformal vacuum field
equations take the form in which they are presented in [7]. The scalar Λ is
considered here as an arbitrarily given smooth function.

The Eqs. (2.3), (2.4) are just the structure equations with the torsion form
required to vanish and the curvature form decomposed into its irreducible parts.
Equation (2.5) is the vacuum Bianchi identity expressed in terms of the rescaled
Weyl spinor and the structures derived from the non-physical metric g. Equation
(2.6) is obtained from the Bianchi identity for the curvature form Ωa

b by taking
into account the decomposition of the curvature form and Eq. (2.5). Equation (2.7)
is the traceless part of Einstein's vacuum field equations Ric(Ω~2g) = 0. Equation
(2.8) is the definition of Σ and (2.9) a trivial consequence. Equation (2.10) is obtained
by applying the covariant differential to (2.7) and using (2.3)-(2.9). Finally the trace
of the equation Ric(ί2~2^) = 0 is given by (2.11).

If one defines

τab = Ωsab + Σfa A Σfb + ΣabAΣ+ Ω2Λ σa

h' A σw
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and assumes that only Eqs. (2.3)-(2.10) are satisfied, then from these equations
one deduces

Dτab = 0. (2.15)

Because τab is of the form τab = τσa

b> A σw with

τ = f = Ωs - \Σaa,Σ
aa> + Ω 2Λ,

Eq. (2.15) can in view of (2.3) be written

dτ A σa

h' A σw = 0.

Since the σa

h> A σw together with their complex conjugates form a basis of
the horizontal 2-form, one concludes dτ = 0, i.e.

Ωs - \Σaa>Σ
aa> + Ω2Λ = :Λ = const

on any connected component of S(M). For this constant one has λ = j$R.
On the subset of M where Ω Φ 0 R is the Ricci scalar of the space-time given by
Ω ~ 2gμv. This metric is required to be a solution of Einstein's vacuum field equations
(with vanishing cosmological constant). If the data for the initial value problem
for Eqs. (2.3)-(2.10) are given such that they satisfy the condition (1.4), then Λ
vanishes at i~ and Eq. (2.11) will be satisfied as a consequence of the other Eqs.
(2.3M2.10).

3. The Manifold M

For given x = (xΛ)e[R4 and u = (ua

b)es\(2,C) the horizontal vector field Hx

and the vertical vector field Zu are defined on S(M) by the conditions

< σaa\δ\ Hx(δ) > = xaa>- < ω\(δ\ Hx(δ) > = 0;

<<r"'(<5),ZM(<5)> = 0; <ω'b(δ)9Zu{δ)> = u\; (3.1)

At δeS(M) the tangent vector Hx(δ) is the unique horizontal vector with
projection T(π)Hx(δ) = xaa' caa{δ). In the following Haa, will denote that horizontal
vector field which satisfies (σbb\Haa,} = εa

bε/\ or equivalently T(π)Haa{δ) =
caa{δ). For δeS(M) consider the geodesic through π(δ) with tangent vector
T(π)Hx{δ). Then the integral curve of Hx through δ is given by the spinframe field
obtained by parallel transport of the spinframe δ along that geodesic. The integral
curves of the vector field Zu are the orbits of the 1-parameter subgroup of SL(2, C)
generated by u.

The horizontal vector fields may be used to give a simple description of the
construction of the manifold M and of a coordinate system on it. Let (δa) be an
arbitrarily chosen normalized spin frame at i~ and δaa> be such that

Denote by SU(2) the subgroup of all t = (φeSL(2, C) satisfying

δaa-t\ra'b' = δbb,. (3.3)



44 H. Friedrich

Furthermore denote by δ(t) the spinframe (δafb) with ίeSU(2) and let u-+δ(u,t)
the integral curve of the vector field H00, + HίV through the point δ(t\ where
the parameter u of this curve is chosen such that (5(0, t) = δ(ή. Finally let r -> δ(u, r, ί)
denote the integral curve of the vector field Hoo. through δ(u, t\ where the para-
meter r satisfies δ(u, 0, t) = δ(u, t).

The points δ{u, r, t) of S(M) with u ^ 0, r ^ 0 sweep out a smooth five-dimensional
submanifold M of S(M), which has a boundary and an edge and which is diffeo-
morphic to SU(2) x R 0

+ x R 0

+ . I t is smoothly parametrized by u, r, and ίeSU(2)
and any coordinate system zΛ = zΛ(t) on SU(2) implies a coordinate system on M.
In such a coordinate system the vector fields du9 dr are defined and their definition
is independent of the choice of coordinates zA on SU(2).

One has

dr = H00. onMl,du = H00, + Hlv on {r = 0},[δ r,3J = 0 on M, (3.4)

which may also be taken as the definition of the vector fields du9 dr. The
boundary of M is formed by the sets {u = 0} and {r = 0}, which are both diffeo-
morphic to SU(2) x R£ and intersect at the edge {u = 0,r = 0} ^ SU(2). Here, of
course, only the manifold structure of SU(2) is referred to, the group structure has
no meaning on the manifold M. However some relics of the action of SU(2) on
S(M) are transferred to M. The sets {r = 0, u = const} are contained completely in
the fibres of S(M) and are invariant under the action of SU(2). The action implies
various structures on the sets {r = 0, u = const}, which may be dragged along with
the vector field // 0 ( r and thus be defined on all the 3-spheres {r = const, u = const}.
Let (7(1) denote the subgroup of SU(2) given by the elements of the form

Since the vector field Hoo> is invariant under the transformations of S(M)
implied by the elements of U(\) (see (4.4)), the group (7(1) acts not only on the
subsets {r — 0, u = const} but everywhere on M. The restriction of the projection
π to M defines a smooth map ft of M into M. The image of π may cover M to
a large extent but for the present purpose it is sufficient that π(M) contains a
neighbourhood of /,- in M. Let caa<(u9r9t) denote the null tetrad asso-
ciated with the spinframe δa(μ9r9t). The vector δaa'caa{u9ΰ9t) is independent of
£eSU(2) and it is the tangent vector to a time-like geodesic y = y{u) with affine
parameter u such that y(0) = i~. The point set {y} c M o f points run through by
the geodesic y is the image under ft of the set {r = 0} c M. For fixed ίeSU(2) the
frame caa{u9 0, ί) is parallely transported along y. The set of null vectors {cOQ{u9 0, t)/
ί£SU(2)} ^ S2 contains all future-directed null vectors / at y(u) satisfying g(l9 y'(u)) =
1. For seSU(2) one has cooiu909t) = cOOf(u909t's) = caa>(u909t)s^^9 if and only
if se(7(1). Thus the map π' which maps δ(u9θ9t) onto cOO'(w,0,ί) for all ίeSU(2)
may be identified with the Hopf-fibration SU(2)->SU(2)/(7(1)^S2. Of particular
interest are the smooth 4-dimensional submanifolds NUo

 = {u = uo} °f ^» which
are generated by the integral curves r-• <5(u, r, ί), ίeSU(2), of ifOo These curves
project onto the null geodesies starting with tangent vector coo.(u,0,t) at y{u\
such that r is an affine parameter which vanishes at y(u). Two such curves r -> δ(u, r, ί),
r-+δ(u9.r9t-s) project onto the same null geodesic if and only if se 1/(1). For fixed
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u and t the frame caa{u9 r, t) is obtained by parallel transport of caa{u, 0, t) along
this geodesic such that in particular c 0 0 (u, r, t) coincides with its tangent vector.
It ensues that Nu projects onto the null cone Ny{u) generated by the future directed
null geodesies emanating from y{u). In particular one has π(N0) = Ir = Ny(0). The
action of (7(1) on M, which is reflected in the frame caa{u, r, t) by a rotation in the
cov — c1(y-plane, induces a factorization of the map π in the form

The maps π l 5 π 2 are smooth and the map π1 has rank equal to 4 everywhere.
The manifold M/U(l) may be identified with the Lagrange manifold (see [9]

for this notion and a general discussion of the behaviour of this Lagrange manifold
near caustics in the present setting), which is swept out in the tangent bundle of
M by the null vectors coo>(u,r,t\ while π 2 is the corresponding Lagrange map.
There exists neighbourhoods U of π 2

 1({y}) and V of {y}, the latter containing
a neighbourhood of/,.-, such that π 2 maps t/\π2~

1({y}) diffeomorphically onto
F\{y}. The surface Ny(u)n(V\{y}) is a smooth null hypersurface such that δ(u\ r, ί) is
mapped by π into this surface only if u' = w. Thus t/ may be considered as a smooth
function on F\{}>}, with the above null hypersurface being a level surface of u.
Similarly r may be considered as a smooth function on KXjγ}. Following the null
geodesies which generate Ny(u) further out, one may encounter caustics and u and r
cannot be used as coordinates on M any longer. The set {<5eM/rank(T (π)) < 4} will
be called the "caustic set" of M. It contains in particular the set {r = 0}. The image of
the caustic set under π is the set of points in M where the null geodesies generating
the sets Ny{u) develop envelopes, the null cones on y being particular degenerate
cases.

4. The Construction of the Frame on M

Taking the pull-back to M of a smooth form on S(M) yields a smooth form
on M which will be denoted by the same symbol as the original form. Thus the
field equations are obtained on M as they are represented by Eqs. (2.3)—(2.11).
These will be expressed later with respect to a certain frame on M which will be
constructed now.

The action xaa>->ta

hϊ
a'h,χ

w of SL(2,C) on [R4 implies an action
xaa> ->ua

h x
ba> + ΰa\. xab> = φ(u)'X on the Lie-algebra si(2, C) on (R4. It is important

to note that the map

sl(2,C)9u-xp(u)eEnd((R4)

is IR-linear but not C-linear. This may create difficulties if sl(2, C) is considered
as the complexification of su(2). Hence sl(2, C) must in the following relations (4.1)
be treated as a real 6-dimensional Lie-algebra with real 3-dimensional subalgebra
su(2). In most of the following considerations only the group SU(2) and its Lie-
algebra will be involved so that no problems will arise.

From the structure Eqs. (2.3), (2.4), the relations (3.1), and the fact that the
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curvature form Ωa

b is horizontal, one concludes

[ZU,HX~\ = Hφ)x,

[TΉ 15 Z U 2 ] = Z [ u j M 2 ] , (4.1)

<o"',[H J (Λ/ί,]>=0,

<«%,[//, Λ H,]> = - <fl%,ίίx Λ ff,>,

Vu,u1,u2esl(2,C),x,y6R4,

where [ui,«2] denotes the commutator of uί,u2 in sl(2,C). If ££x is the
Lie-derivative in the direction of Hx, one obtains from (4.1), (3.1),

From similar calculations where Hy is replaced by Zu and then σaa by ωa

b

one obtains on S(M),

> V > = < « " * , # * Λ >. (4.2)

No particular field equations have been used in the derivation of these
relations, it is only assumed that the torsion form vanishes.

A basis of the Lie algebra of SU(2) is given by

Since h is a generator of the group (7(1), defined by (3.5), which acts on M,
the complex vector field S = —2i Zh on S(M) is "tangent" to M. The kernel of
the map T(π) contains the space U-Zh and coincides with that space for r > 0 , r
not too large. From (3.1), (4.1) one finds

furthermore

[H00. + H1V9S] = 0on {r = 0}, whence [3u,S] = 0 o n M . (4.5)

The vector fields ZM l, ZU2 are tangent to M in general only at the points of {r = 0}. Of
particular interest here will be the complex vector fields Z + = — (ZU2 + iZUί), Z_ =
— (ZU2 — ίZUι). Since H o o . is tangent to M, complex vector fields X + , X _ can be

defined on M by the condition

where the commutators of complex vector fields and later the evaluation of
forms on complex vector fields is defined by requiring complex linearity. From
(4.1), (4.3)-(4.6) one finds

(4.7)
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There are different useful ways to look at the vector fields X+, X_. If
considered as fields on M c S(M) they are fields which are vertical at {r = 0}, pick
up a non-vanishing horizontal component for r > 0 , r not too large (see (4.10))
and possibly become vertical again for sufficiently large r. In fact, in the case of
example (1.1), (1.2) the fields X+9 Z _ approach the fields — Z + , — Z_ near the
point i°. In the parametrization of M by u, r and t the fields S, X + , X- may be
regarded as complex linear combinations of the left invariant vector fields on SU(2)
determined by the generators (4.3). By the Hopf map π' of SU(2) onto S2 they are
related to the "edth-operator" and its complex conjugate of Newman and Penrose

[13].
Any vector field on M can now be represented as a linear combination of the

fields du, dr, X+, X_, S. On M one has

<ώ f l,,I+) = <ωVI_>,<d)fl,,I.) = <ωVI+), (4.8)

and in particular at {r = 0}

<σββ',X+> = 0,<ω%,X+> = ε o V ϊ

((j
flfl'j_>=0}<ωV^>=-fii%0. (4.9)

From (4.2), (4.6), (4.8), (3.4) and the fact that the curvature form is horizontal
ensues

<σaa',X+)=-rε0

aεv

a' + O(r2),

<σ-', X- > = - rεW + O(r2), (4.10)

By construction the subspaces of the tangent spaces of M which are spanned
by the fields dU9 dr, X + , X- are Lie propagated in the direction of <3r. From the
definition of w, r and from (4.10) follows that at a point peM where r > 0 but r
is not too large, the tangent space T~{p) M of M is the image under T(π) of the 4-
dimensional subspace of TpM spanned by du9 dr, X + , X_. This implies that this
subspace contains four uniquely determined vectors eaa., α, a' = 0,1, satisfying eaa<
= eaa, and

Formally the fields eaa, are fixed uniquely by (4.11) and the requirements

e00, = Hoo> = dr o n M ,

elv = H1V = du — dr at {r = 0}, eίV smooth on M,

eov +-X+, elo> +-X_ are smooth on M and vanish at {r = 0}, (4.12)

{β^ ^aaΛ = c O O ' W ' β β '^^ for r > 0, not too large. (4.13)

The conditions (4.12), motivated by the construction of M and by (4.10), imply the
correct limiting behaviour of the fields when approaching {r = 0}, while (4.13), which
requires that the commutators involve the fields eaa, but not S, ensures that the fields
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eaa. are in fact in the subspace spanned by dU9 dr, X + , X _. Thus one has an expansion
of the form

eaa> = - - ( e Λ / X + &aX>°'X-) + bM.X+ + 5αfl,X_

+ εβ V ' 3 « + (εfl°ε«'0# ~ ^ V X + raa'dr (4.14)

with smooth functions baa, (not necessarily satisfying the reality condition) and

= 0, r o o , = 0, baa, = O{r\ raa, = O(r). (4.15)

raa = raa' such that

Equation (4.11) implies that for u9 r9 t with r > 0, r not too large, one has

T(π)ebb,(u, r9 ί) = cw(u, r, ί). (4.16)

The fields eflα,, S constitute a frame near the set {r = 0} u {u = 0}, the points of {r = 0}
excluded, with respect to which the field equations will be expressed.

The "connection coefficients" are obtained by applying the connection form to
the fields eaa,. Because of (4.10), (4.12), (3.1) they are of the form

< ω % , ^ > = - - Γ * Λ + Γ C Λ (4.17)

with smooth functions Γcc.
a

b and

Γ * α _ p Op 1'p «e 1 p i e ° ' p «p °i cc'fe ~ bc bc' b0 bb bc bc' bl bb 9

Γ o o Λ = 0 , Γ c Λ = O(r). (4.18)

It may be pointed out here that the meaning of the quantities Γaa\ used here
differs from that of the quantities denoted in [5,7] by the same symbols.

5. The Dependence of the Fields on the Angular Coordinates

To describe the regularity conditions on the fields near {r = 0}, i.e. of their
behaviour near the vertices of the cones Nγiu)9 a thorough analysis of their depend-
ence on the variable teSU(2) is required. By choosing a local trivialization of the
Hopf fibration π': SU(2)->S2, as realized by δ(u909t)-+coo.(u909t) and by intro-
ducing coordinates on the base space S2 and a parametrization of 1/(1) of the form
Usφ ->exp(</> /ι), h as in (4.3), a local coordinate system is obtained on SU(2).

The dependence of the fields on M on the fibre coordinate φ reflects their
transformation properties on the fibres of 5(M). It is readily described by their
behaviour under the action of the vector field S. A complex-valued function
/ = / ( M , r, t) on M (respectively f=f(t) on SU(2)) will be called to be of spin weight 5,
if

Sf=2sf W G S U ( 2 ) . (5.1)

As will be seen later, all unknown which appear in the fields equations if they are
expressed with respect to the frame eaa.9 S possesses a well defined integer spin-
weight.
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The dependence of a spinor field on the variable r and the coordinates on S2, i.e.
on the angular coordinates on Nγ{u)9 may be studied by introducing normal
coordinates based on the point y(u) and an orthonormal frame at γ(u) with a timelike
vector proportional to δaa'caa{u, 0, t). The coefficients of the Taylor expansion of a
field in terms of the normal coordinates are given by the covariant derivatives of the
field at y(u). Restriction of this expansion to Ny{u) yields an expansion in terms of r
with expansion coefficients, which reflect the dependence on the angular variables
[14]. By suitable contractions with δa

a' and decomposition into irreducible parts, the
expansion coefficients on Ny(M) are finally obtained as complicated sums of spinors of
the type

Φaι...an ~ Φ{a^...an)'>

which are contracted with Q 'ty ta

ίJ
+1--ta

ι

2j for some appropriate j ^ n. In the
following a somewhat similar expansion will be studied on M and it will be seen that
it amounts to expanding functions on M in terms of a complete function system on
SU(2) which arises naturally in the present setting.

Let t -• ta

b denote as before the 2-dimensional standard representation of the
group SL(2, C) and set tm

a = t(^ tb

a^ such that α, β denote multi-indices of length m
and (β) symmetrization of the indices indicated by β. Furthermore let ak for some fe,
0 ^ k ̂  m, denote the evaluation of the multi-index α by setting the first k indices
equal to 1 and the last m — k indices equal to 0. In the following spinor valued func-
tions φ" = φaι-a™ = φ{ai-arn) with "essential components" φk = φak will be
considered. Identifying a certain point peS(M) (this will later be the point δ(u,0,1), 1
the unit element in SU(2)) with the unit element in SL(2, C), the function implied by
φa on the fibre π1^/?)) can be written in a unique way as a linear combination with
constant coefficients of the functions

l/2 / \ l / 2

( ^ j f%, j , k = 0,...,m (5.2)

on SL(2, C). The factors of tiβ\ are suggested by the following consideration. To the
transformation (2.1) of a spinor-valued function under the action of SL(2, C) on the
fibres of S(M) corresponds a representation SL(2,C)9ί-»T(ί)eEnd(Sm) with

T{t):φ*-*ύ*βφ» (5.3)

of the group SL(2, C) on the linear space Sm of spinors of valence m. On this space a
hermitian scalar product is defined by

(Φ,ψ) = φai"'am^"ίδaιaV..δ(^. (5.4)

An orthonormal basis for this scalar product is given by the spinors

\112

) ^ / 0 < 5 5 )

The matrix elements of the transformation T(t) with respect to this basis are given by
the functions Tjk(t) of (5.2). Because of (3.3) the restriction of the representation T of
SL(2, C) to SU(2) leaves invariant the scalar product (5.4). Thus (5.2) provides the
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matrix elements with respect to an orthonormal basis of a (m + l)-dimensional
continuous unitary representation

SU(2)9ί -+ TJt) = (T,Λ(ί))eSU(m + 1), (5.6)

where To denotes the trivial representation. It is well known that the set of
representations Tm,meN constitutes a complete set of irreducible unitary represent-
ations of the group SU(2). By the Peter-Weyl theorem the functions y/m+ 1 Tjk(t)
with meN, z,k = 0,...,m, form a complete orthonormal set in the space L 2 (μ,
SU(2)), where μ is the normalized Haar measure on SU(2). Thus an expansion in
terms of these functions will be quite general. All the other properties of the functions
Tm\ used in this paper and in the investigation of the analytic case can be deduced
from the explicit expression (5.2) and from the fact that (5.6) constitutes an analytic
representation. As an example one gets the relations

Tm

i

k(t)=(-l)i+kTnr-i

m.k(t) VίeSU(2) (5.7)

from (3.3), and the relation εab t
a

ct
b

d = εcd which is satisfied by all ίeSU(2). Setting
p = (S(w,0,1) and identifying the fields X + 9 X_, S on π " 1 ^ ) ) with left invariant
vector vector fields on SU(2), one finds on that set

X+Tm

kj = βmJTm

kj_u VmeM, * J = 0,..., (5.8)

X-Tm

kj=-βnJ + 1Tm

k

J+l9 with βmJ={j(m-j+l)}1/2.

In the parametrization of M by w, r, t these relations hold everywhere on M, if the
functions Tm

kj are defined for r > 0 by dragging them along with dr.
Let / be a smooth function on π~ί(y(u)) such that

Sf= 25/, X\f=0 Vw^no + l, (5.9)

and assume that seZ, since only this case will be considered later. From (5.8) follows
that the expansion of/ in terms of Tm

k

t can only contain those functions for which
m — 2l = 2s and lf^n0. Unless/ vanishes identically, one must thus have no^\s\ — s
and the expansion of / must be of the form

no + s-\s\2(n + \s\)

/ = Σ Σ /»Λ+,Sι>*..+ι,ι-, ( 5 1 0 )
H=0 k=0

with fHfkeC.

Suppose φaβr = φia)iβΊ = φai...apbΊ...b'q i
s a spinor valued function on S(M) and

denote by φjk = φajβk,0 :g j ' ^ p, 0 ̂  k ̂  q, the essential components. The purpose of
the following discussion is to exhibit the analogue of the expansion (5.10) for the
functions obtained on π " 1 ^ ^ ) ) by restricting Hoo

ι,φjk, IGN, to this set.
Defining φjk to be equal to zero if j , k < 0 or j > p or k> q, the relations

Sφjk = (p-q + 2(j-k))φjk, (5.11)

Z+φJk =jφj-1,k ~(q- k)φjtk + u (5.12)

Z-Φjk= -(p-J)Φj+i,k^kΦik-i (5 1 3 )
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hold everywhere on S(M). They may be derived in a similar way as (5.8) by using an
expansion in terms of the functions Tm

fc

f and using (5.7). Specializing to the set
π~1(γ(u)) one finds that there the relations (5.11)—(5.13) hold with Z + , Z_ being
replaced by X+, X_. In particular it follows from these relations that the functions
φjk can be calculated on π~1(y(u)) by X + 9 ^.-operations if φ00 is given there.

By iterated application of Z + to the first of Eqs. (5.12) one finds

Z\φjk = 0 Vn^no=j-q-k+l (5.14)

and in general n0 is the smallest such integer. Again Z+ may be replaced by X+ on
π " 1 ^ ) ) . From (4.1), (4.3) ensues

[Z+>#oo'] = — Hov, [ Z + , i f o r ] = O,

[Z + ,iίoo' + H i r ] = 0 onS(Aί), l * j

whence by induction

+ " (5.16)

for 1,ΠEN with / ^ 1, n ^ O . Here Ht denotes some operator on S(M), c a non-
vanishing real number, both depending on /, n. Using (5.14), (5.16) one concludes that

fc+1. (5.17)

Furthermore (4.4) gives

S(dr

ιφjk) = HoolSφjk = (p-q-2(j-k))φjk VJ ^ 0. (5.18)

Comparison with (5.9), (5.10) yields the expansion for dr

ιφjk on π~ 1(y(u)). It follows
that the restriction of φjk to M must have a Taylor expansion at {r = 0} of the form

N

Φjk= Σ Φjk iγl + O(rN+ *) for iVef^j, w i t h
ι = o
l + dΆn + \s\) f (5.19)

n = O t = 0 ' ' ' >

w i t h s = j(p — q) — (j — k)9 d =j + q — k + s — \s\9 a n d coefficients φjkj,nj, w h i c h a r e

smooth functions of w. The last of Eqs. (5.15) implies as to be expected, that there is
no particular relation between the dependence on u and on t. The remark following
(5.12) shows that the quantities φjkt0 can be calculated by X +, ^--operations from

Φoo,o

The expansion (5.19) is characterized by two numbers: the spin weight s and the
integer d. For the frame coefficients raa.9 baa. and the connection coefficients Γaa\ on
M near {r = 0} expansions in terms of r and the Tm\ cannot be discussed in this way.
However, it can be shown that the field Eqs. (6.4)-(6.7) together with the conditions
on the data imply expansions for these coefficients which are of the same form as
(5.19) and again characterized by s and d. For the unknowns in the field Eqs.
(6.4)-(6.7) the numbers s and d can be read off from the following table:
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Table 1. It is here understood that in (5.19) coefficients φjktlίHti are defined to be zero if / or n are negative.
For the definition of caa>, yaa- and the discussion of the spin weight see the next chapter

s =

s =

s =

s =

- 2

- i

0

1

d == — 1

10' ' / 10'

>Ίo

Γoi

Γ o ,oo

«i =

Λc

r01

o

r
.'01 ' i 1 ΓOO'

d = l d

φ

= 2

6. The Field Equations on M

The equations of forms implied by (2.3)—(2.11) on M have to be expressed
in terms of a suitably chosen frame to obtain a representation of the equation as
a system of partial differential equations. Since the frame du, dr, X+9 X-, S is
globally defined and smooth on M, one may wonder whether it is necessary at
all to introduce the fields eaa>, which become singular on the caustic set. The reason
is that the symmetry requirements φabcd = φ(abcd), <\>ahaΎ = Φ{abua>b>)form a n essential
part of the content of the field equations. If these symmetries are not made explicit
in some formalism, Eq. (2.5) does not contain more information than the Bianchi
identity DΩa

b = 0 for the curvature form.
Expressing Eqs. (2.3)—(2.11) in terms of the frame eaa>, S one obtains two seta

of equations. Evaluations involving the vector field S simply give relations which
determine the spin weights of the unknowns, while evaluations involving only the
fields eaa, give the propagation equations.

Equation (2.3) evaluated on S A ew gives

< σ ^ ' , [ S , ^ ] > = <ω f l

b,S>ε,/ + < ώ V S > ε b

a . (6.1)

By (4.4), (4.7), (4.13) the commutator [S,e w J can be expressed in terms of the
fields eaa>. Therefore (4.4), (6.1) imply

b.-] = 2(εb°εb,
veov - ε^ε^'e^).

For the coefficients of eaa, in the expression (4.14) this entails spin weights
as given in Table 1. Evaluation of (2.4) on S A ecc> gives

S < ω % , ^ > - < ω f l , , [ S , ^ ] > = < ω f l

d , 5 > < ω d

b ? ^ > + <ω f l

d ,^><ω d

ί , ,5>. (6.2)

Observing (4.17), (4.18) one finds that all the terms Γ*a\ drop out of this
equation, which reduces to a relation giving the spin weights of the functions Γaa,

b

c

as listed in Table 1. In a similar way one obtains the spin weights for the other
fields from the remaining equations in accordance with formula (5.11).

Only that part of the propagation equations will be derived here by evaluation
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of (2.3)—(2.11) on the fields eaa,, which is essential for the following argument. It
turns out that the structure of the singular part of the equations becomes parti-
cularly simple if the following new unknowns are introduced:

Caa' = Ka' + Γ^.1'Q.\ Ίaa. = Γflfl,°\ + Γββ,°\.. (6.3)

Furthermore it is convenient to use the notation

eaa' = ~(εa°εa.
vX+ + ββ V * - ) + *£'

to display clearly the singular part of the equations.

The following interior equations are implied by (2.3)—(2.11) on the hypersurfaces
Nu of M:

^ rUrraa' ^ \εa εa' r01' ~^~ £a ^a

~ ^aa'0Ό'r01' "f" * aa'00rl0' ~~ •*• αα'10 ~ -* βfl'l'O'j

Γcc'OO + ~ { ε c ε c' ^01ΌO + Sc £c' ^lO'OO + ̂ cc'Oo}

= •« cc'0'0'* 01Ό0 "ί" *CC>OQ1 I O Ό O ~ ^ΨcOOO^c'O' ~ 0OOc'O'εcO»

c ε c ' ^ 0 Γ 0 1 " ^ £c ε c'

-« ccΌΌ'-* 01Ό1 + ̂ cc'OOMO

- +-{εα°εί,
 1Vor + εa

1εα.°'y

^flfl'OΌ'7θl' + ̂ αα'θθ7lθ' ~

~~ Φlla'0'εa0 + ΦaOOΌ'εa'O'

drΨabcl + -{X-(<Pabco

~ * io'

d'v +-{x+(ΦbcdΌ') + εd'°'ΦbciΌ' + </Wr

= ~~ ̂ Oί'e(bΦc)ed'O' ~ ^Ol'6 d'Φbce'O'

~ Γov

e'o>φbcd,e> - φOhcfΣ
f

d, + 2ε

drΣw = — ΩφObO,b, + sεObεOΊ),,

drs = — ΦobO'b'Σ
hh' — 2Λ Σoo, -f ΩdrA,

(6.4)

(6.6)
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2Ωs - Σaa,Σ
aa> + 2Ω2Λ = 0. (6.8)

Of those equations which involve derivatives in the direction of eίV transverse
to the hypersurfaces JVH, only the following are needed.

» IΓΦOOOO ~ί ι ^ + (Φoooi) ~~ Φooooj ~~ ̂ oi

(6.9)

OΌ' + ~{X-(ΦθOOΌ') + 2ΦθlO'V - ΦθOO'0'} ~

= -2Γ ί Q . e

o φ O e O > v — ΓΊo'eΌ'Φooe'v - Ac/VΦooov + ΨooίfΣfo' + 2V00Λ, (6.10)

(6.11)vΣcc' = -ΩφlcVc> + sεlcεVc.9

Vlvs=-φlbvb,Σ
bb'-2ΛΣlv-ΩVlvΛ.

3. Discussion of the Remaining Gauge Freedom

The construction of the manifold M was based on two arbitrary choices. From
a class of conformally related metric field on M which are compatible with the
conditions (1.4), (1.5), (1.6) has been picked one particular field g and in the fibre
over Γ of the bundle of normalized spin frames with respect to g has been chosen
arbitrarily the spin frame (δa). Therefore it is of interest to know how the structures
introduced so far change under a rescaling of the metric and a rotation of the
spin frame. Particularly important is to understand the transformation behaviour
of the initial data for the initial value problem which will be discussed in the next
chapter.

Assume the metric g has been chosen and the spin frame δa is transformed
according to

with some /%eSL(2,C). Denote by M\ M;,...etc. all manifolds, functions etc.
constructed with respect to δ'a as described in Chap. 3. Both the hypersurface No

as well as the hypersurface N'o are mapped by the projection of S(M) onto the
cone Ir. The point δ(0,r9t)eNo, r > 0 , is mapped onto the point on the
null geodesies through Γ with tangent vector cO(r(0,r,ί) with afline parameter
distance r from i~. A similar remark holds for the quantities marked with a stroke.
In order that (5(0, r, t) and δ'(0, r\ t') are in the same fibre of S(M) one must have

l\tb

c = t\db

c (7.2)

with some dα

beSL(2, C). Since both points project onto the same null geodesic
it holds

l\i\ = λt\ (7.3)

with λeC*. This implies

c'0c,(0,r\t') = \λ\2c0ΛO,r,t). (7.4)
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Because of the fibre structure of M and M' there is still the freedom of re-
placement λ-+eiφλ with some φeU. This can be removed by requiring
that not only the image points of <5(0, r, t\ <5'(0, r\ t') under the projection π are the
same, but that also the null flags [18] determined by the spinors δo(0,r,t).
<5'0(0, r\ t') coincide and that the transformation da

b = da

b(t, I) depends continuously
on t and / and approaches the unit element of SL(2, C), if / does. Then da

b must
be of the form

o \-ή> λeu+> zeC (7 5)

From (7.3), (7.4) ensue the transformation laws t! — t'(t, r\ r' = r(t,r\ given by

r' = λ~2r t"0 = λΓla

b1*0 with A = | | Γ l β Λ l Γ 1 . (7.6)

Here the norm is that implied by the product (5.4) and it may be noted that the
transformation ίfl

beSU(2) is uniquely determined by ta

Oi since ta

1 = — δa

Γl
f'0>. The

function z is also fixed uniquely, but will not be needed in the following. The
coordinate transformation (7.6) and the fibre transformation (7.5) allow one to write
down the relation between the functions implied on No and JV'O by the functions
φabcd, Φaba'b' o n S(M). The only components of those fields which have homogeneous
transformation laws under (7.5) are φOooo a n ( 3 ΦOOOΌ'> which provide the initial data
for the pure radiation problem. The corresponding functions on No and N'o are
related by

<P'oooo(0, *", t') = λ4(ήφoooo(0, r, t\

ΦΌOOΌ'(0> r'> 0 = I WΦooo'θ'(0, r, t). (7.7)

To end the discussion of the transformations implied by (7.1) it may be remarked
that the fibre structure of the bundle S(M) does not imply a globally defined bijection
of M onto M' which commutes with the action of the group 1/(1) on these two
manifolds. However, there exists a neighbourhood W of N0\{r = 0, u = 0} in M,
having empty intersection with the caustic set of M, on which such a map / onto a
similar neighbourhood W of N'0\{u' = 0, r' = 0} can be defined. The map/ i s fixed
uniquely by the requirement that it extends the map of No onto N'o constructed
above and that T(f)S = S", T{f)eaa, = ef

bbs
b

a^
f

a/, with suitable functions s\ which
take values in SL(2, C).

Under a rescaling

gμv~+θ2gμv = g*μv (7.8)

of the metric field by a positive function θ on M, the function A = A (g) is
transformed into the function /I* = A(θ2g) according to

μ -Θ3Λ*)9 (7.9)

where Vμ denotes the torsion free co variant derivative determined by g. If/I* is now
an arbitrarily given function on M, then (7.9) provides a wave equation for 0, which
for suitable data on some initial surface may be solved locally to yield a positive
function θ with A (θ2g) = A *. If A * is to be given on M it must be made sure that it
will define a smooth function on M. In particular at {r = 0} the function A * must
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allow an expansion as described in (5.19). The simplest way to avoid problems
arising from questions of smoothness is to assume that the conformal factor has been
chosen such that the Ricci scalar is constant near / Γ ,

A =Λ0 = const. (7.10)

The construction of the submanifold M' of the bundle S(M) of all spin frames which
are normalized with respect to the antisymmetric form ε* = θε, may be started at the
spin frame δ*a — θo~

ll2δa, where θ0 = θ(ί~). With this choice a simple transform-
ation law ί* = ί*(ί) is obtained. One finds

δ*(0, r*, ί*) = <5α(0, r, t)sa

b(r) with t* = t and

Φ(

{ 0

(7.11)

where φ is some function which will not be needed in the following and the entries of
the matrix have to be evaluated at π(<5α(0, r, ί)) This relation implies

cU0 > r*, ί ) = θ o r 2 c o o , (0 , r , ί ) , r* = θ^\θ2dr. (7.12)
0

The initial data for the field equations transform under (7.8), (7.11), (7.12)
according to

0, r*, 0 = ΘO

2Θ->oooo(0, r, t\

ΦSOOΌ' = O ' W O O O Ό ' + 2(HOO,Θ)2 - ΘHO

2

Ό.Θ). (7.13)

The second of these equations is derived from the transformation law under (7.8)

s*v = sμv + 2θ-\ΘJ^-kgμββyp)-θ-%μv-^gμvθ.Mg^\ (7.14)

where sμv = \{Rμv — iRgμv) and Rμv is the Ricci-tensor oϊgμv. Finally the transform-
ation of the value of the function s at the point i~ under (7.8) is needed. Since by (1.4)
the function Ω as well as its differential vanish at i~, one finds

s*(Γ) = 0o1s(Γ). (7.15)

If Eq. (7.9) is to be solved near Ir to determine the function θ for given Λ*9 one is free
to prescribe the function θ on Ir. The relation (7.15) may be used to fix θ at i~ by
assigning some appropriate value to the function s at i~. This number must be
positive because of (1.7). Reading the second of Eqs. (7.13) as an ordinary differential
equation for θ along the integral curves of Hoo>, one finds that it may be used to fix θ
on No near {r = 0} by prescribing a suitable value for ΦQOOΌ' there. This leaves open
the choice oϊH00> θ at {r = 0} or, in the notation of (7.14), the value of θμ at Γ . In the
case of the regular initial value problem with data being given on a null cone with
respect to a space-time point p, this freedom may be used to give Σaa, any
preassigned value. Since, however, by (1.4) one has Σaa> — 0 at {r = 0}, there is no
natural way to fix H00>θ in the present case by a local condition. This leaves the
freedom of a rescaling on Ir by a function θ which is obtained by solving on No the
initial value problem (where (7.12) has to be taken into account),

^ 0 O O O Ό ' ~ θ ^ O '
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with

Θ(r = 0)= l,H00.θ(r = 0) = α + f α f cΓ 2\, (7.16)
k = O

where the numbers α, αfe are only subject to the reality conditions α = α, αk = (— l)k

ά2-k but otherwise arbitrary. In addition to this 4-parameter freedom one has the 6-
parameter freedom to perform transformations of the type (7.1), which have to be
followed up by a transformation (7.8) with (7.16) to restore the given value of 0OOOΌ'
on JV0.

8. Determining the Constrained Data from the Free Data

The set of functions which may be prescribed freely in an initial value problem for the
conformal vacuum field equations with initial data on No consists of

(i) the "gauge dependent data" Λ9 s, Φoooo It will be assumed here that they
take the values

A —\ in a neighbourhood of N θ 5

at{r = 0,w = 0}, (8.1)

0oooΌ' = l on N o .

This choice is motivated by the fact that for vanishing free data (8.2) the
solution of the initial value problem in the gauge (8.1) yields the Minkowski
space in the conformally rescaled form (1.1), (1.2), (1.3). Independent of the
chosen free data the convergence of the null geodesies on Ir will be given in
the gauge (8.1) by

p= - < ω 1

o , e i o ' > = - c t g r .

If one wants the completeness condition of Definition (1.2), (iv) to be
satisfied, the free data have to be given such that they are smooth for values of
r in the range 0 ^ r < π.

(ii) the "free data," represented by the complex-valued function of spin-weight 2

Ψo = Φoooo(0, r, t) on No. (8.2)

This function has to be given as a smooth function of r, t for 0 ^ r < π,
ίeSU(2) and such that it allows an expansion of the type (5.19), which in the
present case takes the form,

Ψo= Σ <Po,Pr
P + Q(rN+1) forNeM, with

V1 V T1 ι ίP

π = 0 ί = 0

The proof of the following proposition will show how from the data (8.1), (8.2) can be
determined by integration of ordinary differential equations the constrained data on
No and a formal-expansion-type solution of the conformal vacuum field equations
on M.
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Proposition (8.1). Suppose that the "unknown"

U = Φaa > raa>> Γaa'bc', Ψabcd> Φaba'b' > Q Σaa'> S)>

ί/ie manifold M, the functions w, r,tonM etc. have been constructed from a metric g and
a function Ω satisfying (1.4) on a manifold M with cone-like boundary Ir as
described before. Assume that the gauge dependent data take the values (8.1) and that
the conformal vacuum field equations Ric(ί2 ~ 2g) = 0 are satisfied on M\IΓ near l-Af
the free data φ0 are known on Nθ9 then:

(i) since the gauge and the regularity conditions are satisfied, on {r = 0, u = 0} the
unknown U can be uniquely determined from φ0,

(ii) on No the unknown U =U0 can be determined uniquely from φ0 by solving
systems of (singular) ordinary differential equations along the lines
{t= const}. From the structure of the equations and from the fact that φ0 allows
the expansion (8.3), it follows that all quantities given by Uo are smooth in the
usual sense and allow expansions of the type (5.19) characterized by the values
of s and d given in Table 1.

(iii) in a similar way all the derivatives dk

uU = {dk

ubaa.,...,d
k

us}, keN, of the
unknown U are uniquely determined on No by the gauge and regularity
conditions at {r = 0} and by the field Eqs. (6.4)-(6.11).

To obtain U on iV0 one has to integrate Eqs. (6.4)-(6.7). Their most important
feature in the present context is the singularity at {r = 0}. The smoothness
requirement for the tensor fields and (6.5), (6.6) imply

X-(ψabco) + 3ε ( α °φ b c ) 0 1 + φabcl = 0 ,

XΛΦbcd'o') + εd'°'Φbcvo' + Φbcd'v -^Φcwo' = 0 at {r = O}.

These equations are part of Eqs. (5.12) at {r = 0}. They allow one to determine φabcd,
Φaba'b' at {r = 0} from φ 0 0 0 0 , φooo.o,. Thus by (8.4), (4.15), (4.18), (1.4), (8.1) the
unknown U may be obtained on {r = 0, u = 0} if φOooo i s known there.

To discuss Eqs. (6.4)-(6.7) on JV0 it is convenient to group them together and to
write them as equations for the unknowns:

Xj_ =(£29ΣOQi9 Γ I O ' O O J -* o i Ό O ί c o r > c i o ' >

complex conjugates of these functions),

X2 ~ C ί o i ' ί * 1 0 Ό 1 5 * o i ' O l ' - l l ' O O > C l l ' > r O l ' > ' O O O Ί ' ~ Φ o O O ' Γ

l ^ Ί l ' ί S? VlO'J Voi'J * H O I J r\\' >

0 0 0 1 Ί ' + ^ + (0OOOΊ')> ^ O l O Ί '

*̂ Ol l ' l = 0O11Ί ' ~~ 0OOOΊ' ~~ X + \Ψ010'\'h

= ^OIII+1^-(^OOIIXC.C),

Ί' = Φlll'V - 20O1OΊ' + X ΛΦllO'l')*
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Assuming that φ0 is given on JV0, (8.1) holds, and the xA have been determined for
1 ̂ A <B, Be{l,... ,5}, then for xB = (x\... ,xp) is obtained from (6.4)-(6.7) a system
of ordinary differential equations of the following type:

d^A^fXx^rl i=l , . . . ,p . (8.5)

Here no summation is intended in the second term on the left. The functions / ' are
polynomials in the xj of order at most 2 with smooth r-dependent coefficients which
are determined from the xA,A<B. The crucial property of Eqs. (8.5) is that the nt are
non-negative integers, 0 ̂  n{ ^ 4. This allows one to prove

Lemma (8.2). There exists unique smooth functions x\r\ i = 1,... ,p, defined for r ^ 0,
which satisfy (8.5) for r > 0 and vanish at r = 0.

The solution of (8.5) whose existence is asserted in the Lemma may be obtained
by solving an integral equation. This is derived in the following way: Considering the
right-hand side of (8.5) for a moment as a known continuous function of r, the
solution of (8.5) for r > 0 may be obtained by the standard solution formula for linear
first order differential equations. The arbitrary constants in this formula are
determined uniquely if x\r) is required to satisfy lim x\r) = 0. The resulting

r-»+0

formula for r > 0 is

x\r) = r-n>] (rTf\*j, r')dr''. (8.6)

Finding solutions of (8.5) with lim xι(r) = 0 is thus seen to be equivalent to finding

solutions of (8.6), which are continuous for r ^ 0. The latter problem may be solved
by an iteration procedure.

p

For xeUp set |x| = £ \χi\ For chosen positive numbers a, r0 there exists a

Lipschitz constant L > 0 such that

An operator T which maps the functions x\r) which are continuous on [0, r0] onto
functions (Tx)ι(r) which are continuous on [0, r0] and vanish at r = 0 is defined by

(Tx)\r) = r-ni](rTf(xj, r')dr' for 0 < r ̂  r0,
o

Let r1 > 0 be such that rx ^ min (r0,1/2L, α/X), where K is the maximum of |/(x, r)\
on the set 0 ^ r ^ r0, |x| ^ α, and define a Banach norm on the set (C[0,rί])p of
continuous functions χ(r) = (x\r)) on [0,rJ by setting ||x|| = max \x(r)\. Since

^f \f\x\r')\dr\
o
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the choice oϊr1 implies that T maps the closed ball at the origin of (C[0,r 1])p with
radius a into itself and that T is contractive. From this ensures the existence of a
unique solution x(r)e{C[0,r1'])p with Tx = x; i.e. of unique continuous functions
xι(r) on [0, r j which satisfy (8.6) for r > 0 and vanish at r = 0. It is clear that these
functions are smooth for r > 0. Using (8.6) one finds for lim {x\r)/r) the value

(nt 4-1)~ V^OjO) which coincides with the value lim drx%r) obtained from (8.5) using

(8.6). Thus x J 'eC1([0,r1]). Assuming an expansion

*'M = Σ aVfc + JV(r) (8.7)
fc=l

fcfor N G N , with a\eC, RN\r) = O(rN+1), one finds from (8.5) that the coefficients aj

ι

are uniquely defined and that Rj

N satisfies an integral equation of the type (8.6). This
allows one to show that Rj

N{r) is N-times continuously differentiable. The unknown
U is thus obtained and smooth for 0 ^ r < π, ίeSU(2).

A straightforward though detailed inspection of the Taylor coefficients a\ in
(8.7), which involves the Clebsch-Gordon expansion of the products of the functions
Tm\9 shows that the property (8.3) of φ0 implies the correct expansion type of all
functions. This will be discussed in more detail in [8]. The values of d given in Table 1
for the frame and connection coefficients have been determined this way.

A discussion of Eqs. (5.12), (5.13) shows that the coefficients

of \jr in Eqs. (6.9), (6.10) must vanish at {r = 0, u = 0} since the φabcd, Φaba-b' have been
determined there from (8.4). Thus Eqs. (6.9), (6.10) may be used to calculate duφ0000,
duΦOOOΌ' a s smooth functions on iV0 while duΩ, duΣaa,, dus are obtained on {r = 0}
from (6.11). Taking now the formal derivative of (6.4)-(6.7) by dU9 one finds that δuU
can be found on JV0 by integrating again equations of the type (8.5). Repeating this
process du

kU is obtained for all ksM. Since the equation obtained by formal
differentiation of (6.4)-(6.7) lead to linear systems of ordinary differential equations,
the quantities dkJJ will be smooth for all values of r, 0 ^ r < π.

9. The Pure Radiation Problem as an Initial Value Problem for a
Symmetric Hyperbolic System

To formulate a regular initial value problem the field equations have to be expressed
with respect to a smooth coordinate system xμ and a smooth local section
MBχ\-+{ιa{x))a = 0ΛeS(M\ defined in a neighbourhood of Ir. Let eaa> be the null
tetrad associated with ιaΐa.y eμ

aa. = eaa{xμ) the frame coefficients, and ώa

b the pull-
back of the connection form on S(M) by that local section. Define the connection
coefficients by
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and introduce the notation

^ - i f e'f(a p b) . ~ab _ l p f(a p b)
Ycd — 21 (c ι d)e' f •> ϊc'd' — l 1 (e' l d ' ) e /•

Denote by Vaa> the covariant derivative in the direction eaa, and let Vaa>ΓWcd be the
expression which one would obtain \iΓWcd were the components of a spinor field. It
has been shown in [7] that the conformal vacuum field equations in the gauge Λ = \
imply for the unknown

U = {eμ

aa',Γaa>bc, φabcd, φaba,b,,Ω, Σaa>,s)

the following system of "reduced conformal vacuum field equations" (where for
lucidity the tilde is dropped now):

μ i v

o' + V i r)eμor -

er ~ Victor ~ 2F" = °'

o l ^ o o ~ VorΛr = 0,
i' - V 0 1 ^ 1 0 , -2F^ = 0,

~ V1O'^orflb ~ fio " fvo

0 0 + ε0 ε0 —φ

2V i r Γ 0 0

 ab -

- Vfo <Pabo/ + VfvΨάbίf = 0 in the order αb = 11, 10, 00,

'Γ = ~ ΨθbcfΣf

v,

Vif'Φbciτ= -ψobcfΣf

O' + ψxbcfΣ
f

v,

(9.1)

(9.2)

(9.3)

(9.4)

b. = -Ω(φObOΎ + φlbyb) + s(εObεo.b. + εlbεVb,), (9.5)

The system is symmetric hyperbolic if in the expression for Vαα. the coefficients eμ

aa.
are replaced by \{eμ

aa. + eμ

aa). The function Fμ, F\ are given by

V V W = 2F", δώ\=-F\,

where δ denotes the codifferential. These functions may be prescribed arbitrarily in
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an initial value problem for Eqs. (9.1)—(9.5). Together with the initial conditions they
fix the coordinate system and the frame uniquely.

In the following the choice of coordinate system and frame field will be specified
and the unknown 0 with respect to the new gauge will be calculated on Ir.

Let δa = <5α(0,0,1) be the spin frame at i~ which was chosen as the starting point
for the construction of M and caa> = cflα,(0,0,1) the corresponding null tetrad.
Moreover, let xμ' be the normal coordinate system centered at i~ such that cμ'k =
caa'(χμ')σaa'k==δμk = δμ'k a t i~- The coordinate system xμ is fixed near Ir by the
following conditions

," = 2F" = 0 n e a r / Γ . 1 ( 9 - 6 )

The new spin frame field ιa{x) is required to satisfy

(9.7)
ιa is parallely propagated along the null geodesies on /.-,

δώa

b= - F\ = 0 near /,-.

The pull-back of the functions xμ on M by ft defines smooth functions

near No. The spin frame ιa is described near No by a smooth map

such that

ιb(π(u,r,t)) = δa(u,r,t)sa

b(u,r,t). (9.8)

From (9.6), (9.7) it follows on No

xμ(0,r,t) = rδμ

kσ
k

aa,t
a

of
a'o,.

sβ

b(0,r,ί) = r l β

b . (9.9)

This implies the relation on No

$ab..,'b'Jxμ(0, r, t)) = φcd...c.d.J09 r, t)Γu

aΓ
ld

bJ- u' a.Γ ™ h.

between the expression $ab_aΎ_ of a spinor field in the new spin frame ιa and the
restriction φab...a'b'... (w

?

 r? 0 of the corresponding spinor valued function on S(M) to
M. Thus the functions φabcd, $aba'b^ A Σaa,9 s can be calculated on l r immediately
from C/o on No.

For fixed μ the differential dxμ defines a spinor-valued function eμ

aa, on S(M). On
the section defined by ιa it is given by eμ

aa, = eaa> (xμ). Its restriction to M is given by
the function eμ

aa{u, r, t\ which can be obtained by applying the vector fields eaa, on M
to the function xμ(u, r, ί). By (9.9) one has

eμ

aa{x\^ r, t)) = Γlb

aΓ
 lb'a>eμ

bb,(0, r, t). (9.10)

To determine the functions eμ

bb'(O,r,t) on Nθ9 the equation VvV
vxμ = 0 may be
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expressed in terms of these functions and the vector fields eaa> on M to obtain

(de\b - ω\e\b, - ώd

ve\c,,e\,> = 0. (9.11)

From (9.9), (4.14) one has on JV0,

eV(0,r,0 = n^A^o' (9.12)

With (4.14), (4.17), (4.18), Eqs. (9.11) for cί = 0 take the form

dre\b, + \{XΛe

(9.13)

By (5.12) the factors of 1/r must vanish at {r = 0} and allow one to determine eμ

aa>
there from (9.12). Introducing these factors as new unknowns in Eqs. (9.13) one is
again led to equations of the type (8.5). Hence (9.13) has unique smooth solutions on
No which together with (9.10) determine the functions eμ

aa, on /.-.
Relation (9.8) and the transformation law for connection forms imply the

equation

Taa.
b

c{x»{u, r, ί)) = E ^ Λ > (9-14)

with

ω\sc

e, edd.}εahs
h

f. (9.15)

The terms in brackets is the covariant derivative of sa

b in the direction of ecc., if for
fixed lower index sa

b is considered as a spinor-valued function. Furthermore for fixed
indices of the quantity scc>ef transforms on {r = 0, u = 0} under SU(2) like a spinor-
valued function. By (9.9) one has soo>ef = 0 on No, thus by (5.12)

Saa'ef = 0 at {v = 0, u = 0}. (9.16)

Since the fields eoo>, eQV are tangent to iV0 and sa

b is given on No by (9.9), the new
connection coefficients will be known on It- from (9.14) as soon as slvbc has been
determined on No. The equation δωa

b = 0 can be written on M as equation for sα α e /,

ids^-ωW ef-όFc'Sck'es* <?''> = 0. (9.17)

Using that by (9.15) Eq. (9.17) involves twofold covariant differentials and that
these can be expressed in terms of the original form and the curvature form, Eq.
(9.17) can be written as equation for sίVab which is of the type

drSll'ab+-Sll'ab=fab(Sll'abΛ ( 9 1 8 )

The function fab is a smooth function determined from sa

b, saaΊ)C with ad Φ 1Γ,
known directional derivatives of these functions and from U on JV0. By Lemma (8.2)
Eq. (9.18) has a unique smooth solution sίVef satisfying (9.16).

Collecting results one arrives at

Proposition (9.1). Let free data φo(0, r, ί) satisfying (83) be given arbitrarily but
smooth for 0 ̂  r < π, ίeSU(2), and assume that the gauge dependent data satisfy (8.1).
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Then the initial data set

for the reduced conformal vacuum field Eqs. (9.1)-(9.5) in the gauge (9.6), (9.7) can be
determined uniquely as smooth functions on /,-, such that

φQ(0, r, t) = φahcd(xψ, r, t))ta

ot
b

ofot
d

o,

with xμ(0, r, t) being given by (9.9).
The significance of the data set Uo and the reduced equation follows from

Proposition (9.2). A solution C near /.- of the reduced conformal vacuum field Eqs.
(9.1)-(9.5) in the gauge (9.6), (9.7), which coincides on Ir with the value Uo referred to in
Proposition (9.1), is a solution of the conformal vacuum field equations. It provides a
solution of Einstein's vacuum field equations with complete null cone at past timelike
infinity i~.

The proof of this proposition follows the same pattern as in the case where data
are described on two intersecting null hypersurfaces [5] or on a space-like
hypersurface [5,7]. The only difference between those cases and the present
situation is that in the latter one has occasionally to switch back and forth between
the two types of gauge conditions to show that the way the data Uo have been
determined and the fact that Ό is a solution of (9.1)-(9.5) with (9.6), (9.7) imply that
the field equations are satisfied on /,-. Here again equations of the type (8.5) turn up.
The subsidiary system used to show that the field equations are indeed satisfied near
Ir is derived in the same way as discussed in [5,7]. Furthermore the local
uniqueness theorem for the subsidiary equations with data on /.- is proved by the
techniques discussed in [6]. The details will not be reproduced here. The uniqueness
property of the system (9.1)-(9.5) allows one to state

Proposition (9.3). A solution of Einstein's vacuum field equations with complete null
cone at past timelike infinity i~ in the gauge (8.1) is uniquely determined by the free
data φo(0, r,t% if the functions r, t and the frame with respect to which φ0, φ00 are
expressed have the meaning discussed before.

By Propositions (9.1)—(9.3) the pure radiation problem has been reduced to the
task of showing the existence of a solution of the reduced Eqs. (9.1)-(9.5) with (9.6),
(9.7) for the initial data Όo provided in Proposition (9.1).

Acknowledgements. I should like to thank the members of the relativity groups in Hamburg and Munich

for discussions.
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