Translator Disclaimer
2020 Some Norm Integral Inequalities for Analytic Functions in Banach Algebras
Silvestru Sever Dragomir
Commun. Math. Anal. 23(1): 63-81 (2020).

Abstract

Let $\mathcal{B}$ be a unital Banach algebra, $a\in \mathcal{B}$, $G$ be a convex domain of $\mathbb{C}$ with $\sigma \left( a\right) \subset G$ and $\gamma \subset G$ is a piecewise smooth path parametrized by $\lambda\left( t\right)$, $t\in \left[ 0,1\right]$ from $\lambda \left( 0\right)=\alpha$ to $\lambda \left( 1\right) =\beta$, with $\beta \neq \alpha$. If $f:G\rightarrow \mathbb{C}$ is analytic on $G$, then by using the analytic functional calculus we obtain among others the following result $\begin{multline*} \left\Vert f\left( a\right) -\int_{0}^{1}f\left( \left( 1-t\right) \lambda +ta\right) dt\right\Vert \leq \left\Vert a-\lambda \right\Vert \int_{0}^{1}t\left\Vert f^{\prime }\left( ta+\left( 1-t\right) \lambda \right) \right\Vert dt \\ \leq \left\Vert a-\lambda \right\Vert \left\{ \begin{array}{l} \frac{1}{2}\sup_{t\in \left[ 0,1\right] }\left\Vert f^{\prime }\left( ta+\left( 1-t\right) \lambda \right) \right\Vert , \\ \\ \frac{1}{\left( q+1\right) ^{1/q}}\left( \int_{0}^{1}\left\Vert f^{\prime }\left( ta+\left( 1-t\right) \lambda \right) \right\Vert ^{p}dt\right) ^{1/p}, \\ \\ \int_{0}^{1}\left\Vert f^{\prime }\left( ta+\left( 1-t\right) \lambda \right) \right\Vert dt,% \end{array} \right. \end{multline*}$ for all $\lambda \in G$. Some example for the exponential function of elements in Banach algebras are also provided.

Citation

Download Citation

Silvestru Sever Dragomir. "Some Norm Integral Inequalities for Analytic Functions in Banach Algebras." Commun. Math. Anal. 23 (1) 63 - 81, 2020.

Information

Published: 2020
First available in Project Euclid: 19 June 2020

MathSciNet: MR4103525

Subjects:
Primary: 47A63, 47A99

Rights: Copyright © 2020 Mathematical Research Publishers

JOURNAL ARTICLE
19 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.23 • No. 1 • 2020
Back to Top