Open Access
2017 Vector Inequalities For Two Projections in Hilbert Spaces and Applications
Silvestru Sever Dragomir
Commun. Math. Anal. 20(2): 8-30 (2017).

Abstract

In this paper we establish some vector inequalities related to Schwarz and Buzano results. We show amongst others that in an inner product space $H$ we have the inequality \begin{equation*} \frac{1}{4}\left[ \left\Vert x\right\Vert \left\Vert y\right\Vert +\left\vert \left\langle x,y\right\rangle -2\left\langle Px,y\right\rangle -2\left\langle Qx,y\right\rangle \right\vert \right] \geq \left\vert \left\langle QPx,y\right\rangle \right\vert \end{equation*} for any vectors $x,y$ and $P,Q$ two orthogonal projections on $H$. If $PQ=0$ we also have \begin{equation*} \frac{1}{2}\left[ \left\Vert x\right\Vert \left\Vert y\right\Vert +\left\vert \left\langle x,y\right\rangle \right\vert \right] \geq \left\vert \left\langle Px,y\right\rangle +\left\langle Qx,y\right\rangle \right\vert \end{equation*} for any $x,y\in H.$

Applications for norm and numerical radius inequalities of two bounded operators are given as well.

Citation

Download Citation

Silvestru Sever Dragomir. "Vector Inequalities For Two Projections in Hilbert Spaces and Applications." Commun. Math. Anal. 20 (2) 8 - 30, 2017.

Information

Published: 2017
First available in Project Euclid: 3 November 2017

zbMATH: 06841183
MathSciNet: MR3721799

Subjects:
Primary: 26D10 , 26D15 , 46C05

Keywords: Buzano’s inequality , inner product spaces , numerical radius , operator norm , projection , Schwarz’s inequality

Rights: Copyright © 2017 Mathematical Research Publishers

Vol.20 • No. 2 • 2017
Back to Top