Abstract
Let $A$ and $B$ be bounded linear operators in a Banach space. We consider the following problem: if $\Sigma_{k=0}^{\infty} || A^{k} |||| B^{k} || \lt\infty$, under what conditions $\Sigma_{k=0}^{\infty} || (AB)^{k} || \lt \infty$?
Citation
Michael Gil’. "Norm Estimates for Powers of Products of Operators in a Banach Space." Commun. Math. Anal. 20 (2) 1 - 7, 2017.