Translator Disclaimer
2018 Efficient high-order discontinuous Galerkin computations of low Mach number flows
Jonas Zeifang, Klaus Kaiser, Andrea Beck, Jochen Schütz, Claus-Dieter Munz
Commun. Appl. Math. Comput. Sci. 13(2): 243-270 (2018). DOI: 10.2140/camcos.2018.13.243

Abstract

We consider the efficient approximation of low Mach number flows by a high-order scheme, coupling a discontinuous Galerkin (DG) discretization in space with an implicit/explicit (IMEX) discretization in time. The splitting into linear implicit and nonlinear explicit parts relies heavily on the incompressible solution. The method has been originally developed for a singularly perturbed ODE and applied to the isentropic Euler equations. Here, we improve, extend, and investigate the so-called RS-IMEX splitting method. The resulting scheme can cope with a broader range of Mach numbers without running into roundoff errors, it is extended to realistic physical boundary conditions, and it is shown to be highly efficient in comparison to more standard solution techniques.

Citation

Download Citation

Jonas Zeifang. Klaus Kaiser. Andrea Beck. Jochen Schütz. Claus-Dieter Munz. "Efficient high-order discontinuous Galerkin computations of low Mach number flows." Commun. Appl. Math. Comput. Sci. 13 (2) 243 - 270, 2018. https://doi.org/10.2140/camcos.2018.13.243

Information

Received: 24 May 2017; Revised: 28 March 2018; Accepted: 17 April 2018; Published: 2018
First available in Project Euclid: 27 September 2018

zbMATH: 06987250
MathSciNet: MR3857875
Digital Object Identifier: 10.2140/camcos.2018.13.243

Subjects:
Primary: 35L65, 65N30

Rights: Copyright © 2018 Mathematical Sciences Publishers

JOURNAL ARTICLE
28 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.13 • No. 2 • 2018
MSP
Back to Top