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Abstract

Every numerical semigroup S admits a decomposition S = S1 ∩ · · · ∩ Sn

with Si irreducible (that is, Si is symmetric or pseudo-symmetric) for all
i. We give lower and upper bounds for the minimal number of irreducibles
in such a decomposition. We also study the problem of determining those
numerical semigroups for which all Si are symmetric, and when all Si are
pseudo-symmetric. We introduce and characterize the concept of atomic nu-
merical semigroup.

1 Introduction

A numerical semigroup is a subset S of N closed under addition, it contains the
zero element and generates Z as a group (here N and Z denote the set nonnegative
integers and the set of the integers, respectively). From (see [2] or [10]) we know
that the set N \ S is finite. We refer to the greatest integer not belonging to S as
the Frobenius number of S and denote it by g(S).

We say that a numerical semigroup is irreducible if it can not be expressed as
an intersection of two numerical semigroups containing it properly. In [7] it is show
that S is irreducible if and only if S is maximal in the set of all numerical semi-
groups with Frobenius number g(S). From [2] and [4] we can deduce that the class

∗Special thanks to P. A. Garćıa-Sánchez for his comments and suggestions.
†The first author has been supported by the project BFM2000-1469.
‡The second author has been supported by the University of Évora.
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of irreducible numerical semigroups with odd (respectively even) Frobenius number
is the same that the class of symmetric (respectively pseudo-symmetric) nu-
merical semigroups. This kind of numerical semigroups have been widely studied
in literature not only from the semigroupist point of view but also by their appli-
cations in Ring Theory. In [3] it is show that the semigroup ring associated to an
irreducible numerical semigroup is Gorestein or Kunz if the Frobenius number is
odd or even, respectively. This work continues the study begun in [7], [8] and [9]. In
particular, if S is a numerical semigroup and we denote by r(S) the least positive
integer n such that S = S1 ∩ · · · ∩ Sn with Si an irreducible numerical semigroup,
our aim is the study of r(S). The goal in Sections 2 and 3 is to give an upper bound
and lower bound for r(S). We will use these results in Section 3 for characterizing
the numerical semigroups that are intersection of symmetric numerical semigroups
and those that are intersection of pseudo-symmetric numerical semigroups. Also
we introduce and study, in this section, a kind of semigroups which we call atomic
numerical semigroups. Along this work the concept of pseudo-Frobenius number of
a numerical semigroup plays an importante role (this notation was introduced in
[9]).

2 An upper bound for r(S)

We denote by L(g) the set of all numerical semigroups with Frobenius number g.
In [7] the following result is presented.

Proposition 1. If S is a numerical semigroup, then the following conditions are
equivalent:

1) S is irreducible,
2) S is maximal in L(g(S)),
3) S is maximal in the set of all numerical semigroups that do not contain g(S).

Let S be a numerical semigroup. We say that an element x ∈ Z is a pseudo-

Frobenius number of S if x /∈ S but x + s ∈ S for all s ∈ S \ 0. We denote by
Pg(S) the set of pseudo-Frobenius numbers of S. The cardinal of Pg(S) will be
called the type of S and denoted by type(S).

In [9] we proved the following result showing the connection between the pseudo-
Frobenius number in a numerical semigroup and the Frobenius number in a sym-
metric semigroup.

Lemma 2. If S is a numerical semigroup and x ∈ Z\S, then there exists g ′ ∈ Pg(S)
such that g′ − x ∈ S.

Given n ∈ S \ {0}, let 0 = w(1) < w(2) < · · · < w(n) be the smallest elements
of S in respective congruence classes mod n. We denote by Ap(S, n) (the Apéry

set of n in S ( see [1])) the set {0 = w(1) < w(2) < · · · < w(n)}. We define in S
the following partial order:

a ≤S b if b− a ∈ S.

By [4, Proposition 7] we deduce the following result.
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Lemma 3. If S is a numerical semigroup, n ∈ S \ {0} and {wi1, . . . , wit} =
maximals≤S

Ap(S, n), then Pg(S) = {wi1 − n, . . . , wit − n}.

Let m = min (S \ {0}). Note that if m 6= 1, then from the previous lemma with
n = m we can deduce that Pg(S) ⊆ N. Note also that if m = 1, then S = N. In
the sequel we assume that S 6= N and therefore Pg(S) ⊆ N.

Lemma 4. If S is a numerical semigroup and x ∈ N \ S, then there exists an
irreducible numerical semigroup S such that S ⊆ S and g(S) = x.

Proof. Let S ′ = S ∪ {x + 1, x + 2, . . .}. It is clear that S ′ is a numerical semigroup
with g(S ′) = x. Let S be a maximal element in L(x) such that S ′ ⊆ S. From
Proposition 1 we deduce that S is an irreducible numerical semigroup. �

Lemma 5. Let S1, . . . , Sn be numerical semigroups containing S. The following
conditions are equivalent:

1) S = S1 ∩ . . . ∩ Sn,
2) if g′ ∈ Pg(S), then there exists i ∈ {1, . . . , n} such that g ′ /∈ Si.

Proof. 1) ⇒ 2) As g′ /∈ S = S1 ∩ · · · ∩ Sn, then there exist i ∈ {1, . . . n} such that
g′ /∈ Si.

2) ⇒ 1) It is enough to prove that if x ∈ N \ S, then there exists i ∈ {1, . . . , n}
such that x /∈ Si. Suppose that x /∈ S, from Lemma 2, we obtain that there exists
g′ ∈ Pg(S) such that g′−x ∈ S. By hypothesis we can find i ∈ {1, . . . , n} such that
g′ /∈ Si and since g′ − x ∈ S ⊆ Si we obtain that x /∈ Si. �

From [4] we deduce the following result (see also [6, Proposition 3.1]).

Lemma 6. 1) If g(S) is an odd positive integer, then S is an irreducible numerical
semigroup if and only if for all h, h′ ∈ Z, such that h + h′ = g(S), we have that
h ∈ S or h′ ∈ S (that is, S is symmetric).

2) If g(S) is an even positive integer, then S is an irreducible numerical semi-

group if and only if for all h, h′ ∈ Z \ { g(S)
2
}, such that h + h′ = g(S), we have that

h ∈ S or h′ ∈ S (that is, S is pseudo-symmetric).

As a consequence of [6, Theorem 3.3] we obtain the following result.

Lemma 7. If S is a numerical semigroup , then there exist B ⊆ {x ∈ N : x > g(S)
2
}

such that S ∪B is an irreducible numerical semigroup and g(S ∪ B) = g(S).

Let S be a numerical semigroup. Define

BPg(S) = {g′ ∈ Pg(S) : g′ >
g(S)

2
}.

Theorem 8. Let S be a numerical semigroup with BPg(S) = {g1, . . . , gr}. Then
there exist S1, . . . , Sr irreducible numerical semigroups such that S = S1 ∩ · · · ∩ Sr

and g(Si) = gi for all i ∈ {1, . . . , r}.
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Proof. Suppose that g1 = g(S) and S1 is the irreducible numerical semigroup de-
scribed in Lemma 7. For each i ∈ {2, . . . , r}, let Si be an irreducible numerical
semigroup such that S ⊆ Si and g(Si) = gi ( the existence of Si is guaranteed by
Lemma 4). Now for proving that S = S1 ∩ · · · ∩ Sr we use Lemma 5. If g′ ∈ Pg(S)

and g′ ≤ g(S)
2

, then g′ /∈ S1. If g′ ∈ Pg(S) and g′ > g(S)
2

, then g′ = gi for some
i ∈ {1, . . . , r} and therefore g′ /∈ Si. �

From [4] we can deduce that if S is an irreducible numerical semigroup then

Pg(S) =




{g(S)} if g(S) is odd,

{g(S), g(S)
2
} if g(S) is even.

From this remark and Theorem 8 we obtain the following result.

Corollary 9. If S is a numerical semigroup, then the following conditions are equiv-
alent:

1) S is irreducible.
2) #BPg(S) = 1 (where #A stands for cardinality(A)).

Let S be a numerical semigroup. Recall that r(S) is the smallest positive integer
n such that S = S1 ∩ · · · ∩ Sn with Si irreducible numerical semigroups for all
i ∈ {1, . . . , n}. As a consequence of Theorem 8 we have the following result.

Corollary 10. If S is a numerical semigroup, then r(S) ≤ #BPg(S).

The decomposition given in Theorem 8 is not minimal as the following example
illustrates.

Example 11. Let S = 〈5, 7〉∩〈5, 8〉 = 〈5, 21, 24, 28, 32〉. Then Ap(S, 5) = {0, 21, 24, 28, 32},
using Lemma 3 we get Pg(S) = {16, 19, 23, 27} and so #BPg(S) = 4. Note that
a numerical semigroup generated by two elements is symmetric (see [5]) and thus
S = 〈5, 7〉 ∩ 〈5, 8〉 is a decomposition of S as an intersection of irreducibles.

Corollary 12. If S is a numerical semigroup such that #BPg(S) = 2, then r(S) =
2.

Proof. If #BPg(S) = 2, then by Corollary 9 we have that S is not an irreducible
numerical semigroup and thus r(S) ≥ 2. Besides, applying Corollary 10 we get that
r(S) ≤ 2. Hence we have that r(S) = 2. �

Note that, from Example 11, we can see that the converse of Corollary 12 is not
true. But there are many semigroups verifying the hypothesis of Corollary 12 as we
see in the following example.

Example 13. Let m a positive integer greater than or equal to 3 and let S = ({x ∈
N : x ≥ m} \ {2m− 2, 2m− 1}) ∪ {0}. The reader can prove that S is a numerical
semigroup and Pg(S) = {2m − 2, 2m − 1}. Applying Corollary 12 we get that
r(S) = 2.
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3 A lower bound for r(S)

Along this section we suppose that S is a numerical semigroup and BPg(S) =
{g1, . . . , gr}. For each i ∈ {1, . . . , r}, define

ξ(gi) = {gi + x : x ∈ N and gi + x /∈ 〈S, x〉}.

Theorem 14. Let gi ∈ {g1, . . . , gr}. If S is an irreducible numerical semigroup
such that S ⊆ S and gi /∈ S, then g(S) ∈ ξ(gi). Conversely, if gi + x ∈ ξ(gi) then
there exists an irreducible numerical semigroup S such that S ⊆ S, gi /∈ S and
g(S) = gi + x.

Proof. If gi /∈ S, then by Lemma 6 we get that g(S)−gi ∈ S (note that g(S) ≤ g(S)

and that gi > g(S)
2

and therefore gi 6=
g(S)

2
). Since gi + (g(S) − gi) = g(S) /∈ S ⊇

〈S, g(S)− gi〉 we obtain that g(S) ∈ ξ(gi).
Conversely, if gi + x ∈ ξ(gi), then gi + x /∈ 〈S, x〉. Let S be an irreducible

numerical semigroup such that 〈S, x〉 ⊆ S and gi + x = g(S) (the existence of S
is guaranteed by Lemma 4). Since x ∈ S and gi + x = g(S) /∈ S, we obtain that
gi /∈ S. �

Corollary 15. If S = S1∩· · ·∩Sn with S1, . . . , Sn irreducible numerical semigroups,
then for each i ∈ {1, . . . , r} there exists j ∈ {1, . . . , n} such that g(Sj) ∈ ξ(gi).

Proof. If i ∈ {1, . . . , r}, then gi /∈ S = S1 ∩ · · · ∩ Sn and therefore there exists
j ∈ {1 . . . , n} such that gi /∈ Sj. Using Theorem 14 we get that g(Sj) ∈ ξ(gi). �

Corollary 16. Let x1, . . . , xr ∈ N such that gi + xi ∈ ξ(gi) for all i ∈ {1, . . . , r}.
Then there exist irreducible numerical semigroups S1, . . . , Sr such that S = S1∩· · ·∩
Sr and {g(S1), . . . , g(Sr)} ⊆ {g1 + x1, . . . , gr + xr}.

Proof. Assume that g1 = g(S). Note that ξ(g1) = {g1} and thus x1 = 0. Let S1 be
the numerical semigroup S ∪B described in Lemma 7. Now, for each i ∈ {2, . . . , r}
let Si be an irreducible numerical semigroup such that S ⊆ Si, gi /∈ Si and g(Si) =
gi + xi (the existence of Si is guaranteed by Theorem 14). Applying Lemma 5 we
can deduce that S = S1 ∩ · · · ∩ Sr. �

Let A be a subset of N. We say that S is an A−semigroup if S can be expressed as
an intersection of irreducible numerical semigroups whose Frobenius numbers are in
A (that is, S = S1∩· · ·∩Sn with Si irreducible numerical semigroups and g(Si) ∈ A
for all i ∈ {1, . . . , n}). Denote by h(S) = min{#A : S is an A− semigroup}.

Corollary 17. If A is a subset of N, then the following conditions are equivalent:
1) S is an A-semigroup,
2) there exist (a1, . . . , ar) ∈ ξ(g1)× · · · × ξ(gr) such that {a1, . . . , ar} ⊆ A.

Proof. 1) ⇒ 2) This is a consequence of Corollary 15.
2) ⇒ 1) Follows from Corollary 16. �
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Corollary 18. If S is a numerical semigroup, then r(S) ≥ h(S) = min{#{a1, . . . , ar} :
(a1, . . . , ar) ∈ ξ(g1)× · · · × ξ(gr)}.

Proof. As a consequence of Corollary 17 we get that

h(S) = min{#{a1, . . . , ar} : (a1, . . . , ar) ∈ ξ(g1)× · · · × ξ(gr)}.

Now we see that r(S) ≥ h(S). In fact, if S1, . . . , Sn are irreducible numerical
semigroups such that S = S1 ∩ · · · ∩ Sn, then S is a {g(S1), . . . , g(Sn)} − semigroup
and thus n ≥ #{g(S1), . . . , g(Sn)} ≥ h(S). Hence r(S) ≥ h(S). �

Note that if we take again S = 〈5, 7〉 ∩ 〈5, 8〉 = 〈5, 21, 24, 28, 32〉 (see Example
11) we know that r(S) = 2. Remember that BPg(S) = {16, 19, 23, 27} and so
ξ(16) = {16, 23}, ξ(19) = {19, 27}, ξ(23) = {23} and ξ(27) = {27}. Applying
Corollary 18, we obtain that h(S) = 2 and therefore h(S) = r(S). Note that there
are many examples for which the previous equality does not hold. Observe that if S1

and S2 are irreducible numerical semigroups with g(S1) = g(S2), then r(S1∩S2) = 2
and h(S1 ∩ S2) = 1.

4 Some remarks

We say that a numerical semigroup is odd (respectively even) if it can be expressed
as an intersection of irreducible numerical semigroups with odd (respectively even)
Frobenius numbers. Note that odd (respectively even) numerical semigroups are
the numerical semigroups that are intersection of symmetric (respectively pseudo-
symmetric) numerical semigroups. If S, S1, . . . , Sn are numerical semigroups and
S = S1 ∩ · · · ∩ Sn, then g(S) = max{g(S1), . . . , g(Sn)} and therefore if S is an odd
(respectively even) numerical semigroup, then g(S) is odd (respectively even). Note
also that every numerical semigroup is odd, even, or an intersection of an odd and
an even numerical semigroup.

As a consequence of Corollary 17 we get the following result that is a general-
ization and an improvement of Theorem 15 of [9].

Corollary 19. If S is a numerical semigroup and BPg(S) = {g1, . . . , gr}, then the
following conditions are equivalent:

1) S is an odd (respectively even) numerical semigroup,
2) ξ(gi) contains at least an odd (respectively even) element for all i ∈ {1, . . . , r}.

Note that a numerical semigroup is a {g} − semigroup if S = S1 ∩ · · · ∩ Sn with
Si an irreducible numerical semigroup and g(Si) = g for all i ∈ {1, . . . , n}. Observe
that S is an {g} − semigroup if only if h(S) = 1.

As an immediate consequence of Corollary 17 we obtain the following result.

Corollary 20. If S is a numerical semigroup and BPg(S) = {g1, . . . , gr}, then the
following conditions are equivalent:

1) S is an {g(S)} − semigroup,
2) g(S) ∈ ξ(gi) for all i ∈ {1, . . . , r}.
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Let g a positive integer and

L̂(g) = {S : S is a numerical semigroup with g(S) ≤ g}.

Note that (L̂(g),∩) is a semigroup and, as a consequence of Theorem 8, the set of

irreducible numerical semigroups of L̂(g) is a minimal system of generators for it.
Recall that

L(g) = {S : S is a numerical semigroup with g(S) = g}.

Note that L(g) is a subsemigroup of (L̂(g),∩). An element in L(g) is an atom if it
is not an intersection of two elements of L(g) containing it properly. Note that an
irreducible numerical semigroup of L(g) is an atom, but in general the converse is
not true (see Example 26).

Lemma 21. Let S and S be two elements in L(g) such that S ⊆ S and let x =
max (S \ S). Then S ∪ {x} ∈ L(g).

Proof. From the definition of x we obtain that 2x ∈ S and x+s ∈ S for all s ∈ S\{0}.
Hence S ∪ {x} is a numerical semigroup. Since x ∈ S, then x 6= g(S) = g and thus
g(S ∪ {x}) = g. �

Lemma 22. If S ∈ L(g) and S is not an atom of L(g), then there exist x1, x2 ∈ N\S
such that x1 6= x2 and S ∪ {x1} and S ∪ {x2} are elements of L(g).

Proof. If S is not an atom, then there exist S1, S2 ∈ L(g) such that S ⊂ S1 and
S ⊂ S2 and S = S1 ∩ S2. Assume that xi = max(Si \ S) for i = 1, 2. Applying
Lemma 21 we obtain that S ∪ {x1}, S ∪ {x2} ∈ L(g). Note that x1 6= x2 because
otherwise we would have x1 = x2 ∈ S1 ∩ S2 = S, which contradicts x1 /∈ S. �

Lemma 23. Let S be a numerical semigroup and x ∈ N \ S. Then S ∪ {x} is a
numerical semigroup if only if x ∈ Pg(S) and 2x /∈ Pg(S).

Proof. If S ∪ {x} is a numerical semigroup, then x + s ∈ S for all s ∈ S \ {0} and
thus x ∈ Pg(S). Furthermore 2x ∈ S and whence 2x /∈ Pg(S).

Conversely, if x ∈ Pg(S), then x + s ∈ S for all s ∈ S \ {0}. If 2x /∈ Pg(S)
then, since x ∈ Pg(S), we can deduce that 2x ∈ S. Hence S ∪ {x} is a numerical
semigroup. �

Proposition 24. If S ∈ L(g), then the following conditions are equivalent:
1) S is not an atom of L(g),
2) there exist x1, x2 ∈ Pg(S)\{g} such that x1 6= x2 and {2x1, 2x2}∩Pg(S) = ∅.

Proof. 1) ⇒ 2) By Lemma 22 we know that there exist x1, x2 ∈ N such that x1 6= x2

and S ∪{x1} and S ∪{x2} are elements of L(g). Using Lemma 23 and the fact that
g /∈ S ∪ {x1} and g /∈ S ∪ {x2}, we deduce that xi ∈ Pg(S) \ {g} and 2xi /∈ Pg(S)
for i = 1, 2.

2) ⇒ 1) From Lemma 23 we deduce that S ∪ {x1}, S ∪ {x2} ∈ L(g). Since
S = (S ∪ {x1}) ∩ (S ∪ {x2}), we have that S is not an atom of L(g) �
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As an immediate consequence of the previous proposition we get the following
result.

Corollary 25. If S is an numerical semigroup and type(S) ∈ {1, 2}, then S is an
atom of L(g(S)).

Example 26. Let S = 〈4, 5, 11〉. Then Pg(S) = {6, 7} (see Example 13) and therefore
type(S) = 2. Applying the previous corollary, we get that S is an atom of L(7).
Note also that S is not irreducible because, using Lemma 23, we have that S ∪ {6}
and S ∪ {7} are numerical semigroups and S = (S ∪ {6}) ∩ (S ∪ {7}).
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