Translator Disclaimer
september 2022 Jet schemes of quasi-homogeneous hypersurfaces and motivic monodromy conjecture for isolated quasi-homogeneous hypersurface singularities
Julien Sebag
Bull. Belg. Math. Soc. Simon Stevin 28(5): 689-708 (september 2022). DOI: 10.36045/j.bbms.210506

Abstract

Let $k$ be a field. Let $m\in\mathbf{N}_{>0}$ be a positive integer. Let $f\in k[x_1,\ldots,x_m]$ be a polynomial with degree $d\geq 1$ and associated hypersurface $H:=H(f):=\mathrm{Spec}(k[x_1,\ldots,x_m]/\langle f\rangle)$. In this article, we firstly provide a structure property of the weighted-homogeneity of $f$ in terms of the jet schemes ${\mathscr{L}_{H}}$ of $H$. As a by-product, we deduce from this property a new and very \linebreak effective method for the computation of the motivic Poincaré power series $P_H(T):=\sum_{n\geq 0} [\mathscr{L}_{n}(H)]T^n\in K_0(\mathrm{Var}_k)[[T]]$ associated with a homogeneous hypersurface $H$ with a single isolated singularity at the origin $\frak o$ (and more generally with a specific class of isolated quasi-homogeneous hypersurface singularities). With this point of view we obtain various consequences. For the considered class of varieties, our method provides a characteristic-free proof of the rationality of $P_H(T)$ which does not use motivic integration nor the existence of resolutions of singularities; we obtain a precise description of the numerator and the possible poles in the rational expression of $P_H(T)$; when the field is assumed to be of characteristic zero, this allows us to prove the validity of the motivic monodromy conjecture.

Version Information

The current version of this article supersedes the original version posted on 16 September 2022.

Citation

Download Citation

Julien Sebag. "Jet schemes of quasi-homogeneous hypersurfaces and motivic monodromy conjecture for isolated quasi-homogeneous hypersurface singularities." Bull. Belg. Math. Soc. Simon Stevin 28 (5) 689 - 708, september 2022. https://doi.org/10.36045/j.bbms.210506

Information

Published: september 2022
First available in Project Euclid: 16 September 2022

Digital Object Identifier: 10.36045/j.bbms.210506

Subjects:
Primary: 13N10 , 14B05 , 14E18 , 14J70

Keywords: Jet scheme , motivic monodromy conjecture , motivic zeta function , quasi-homogeneous hypersurface singularities

Rights: Copyright © 2022 The Belgian Mathematical Society

JOURNAL ARTICLE
20 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.28 • No. 5 • september 2022
Back to Top