Abstract
A real arithmetic function $f$ is \emph{multiplicatively monotonous} if $f(mn)-f(m)$ has constant sign for $m,n$ positive integers. Properties and examples of such functions are discussed, with applications to positive hermitian Toeplitz-multiplicative determinants.
Citation
Michel Balazard. "Fonctions arithmétiques multiplicativement monotones." Bull. Belg. Math. Soc. Simon Stevin 26 (2) 161 - 176, june 2019. https://doi.org/10.36045/bbms/1561687559
Information