june 2019 Fonctions arithmétiques multiplicativement monotones
Michel Balazard
Bull. Belg. Math. Soc. Simon Stevin 26(2): 161-176 (june 2019). DOI: 10.36045/bbms/1561687559

Abstract

A real arithmetic function $f$ is \emph{multiplicatively monotonous} if $f(mn)-f(m)$ has constant sign for $m,n$ positive integers. Properties and examples of such functions are discussed, with applications to positive hermitian Toeplitz-multiplicative determinants.

Citation

Download Citation

Michel Balazard. "Fonctions arithmétiques multiplicativement monotones." Bull. Belg. Math. Soc. Simon Stevin 26 (2) 161 - 176, june 2019. https://doi.org/10.36045/bbms/1561687559

Information

Published: june 2019
First available in Project Euclid: 28 June 2019

zbMATH: 07094822
MathSciNet: MR3975822
Digital Object Identifier: 10.36045/bbms/1561687559

Subjects:
Primary: 11C20 , 11N37
Secondary: 15A15 , 15B05

Keywords: logarithmic density , Sets of multiples , Toeplitz-multiplicative determinants

Rights: Copyright © 2019 The Belgian Mathematical Society

Vol.26 • No. 2 • june 2019
Back to Top