Open Access
september 2017 Density by moduli and Wijsman statistical convergence
Vinod K. Bhardwaj, Shweta Dhawan, Oleksiy A. Dovgoshey
Bull. Belg. Math. Soc. Simon Stevin 24(3): 393-415 (september 2017). DOI: 10.36045/bbms/1506477689

Abstract

In this paper, we have generalized the Wijsman statistical convergence of closed sets in metric space by introducing the $f$-Wijsman statistical convergence of these sets, where $f$ is an unbounded modulus. It is shown that the Wijsman convergent sequences are precisely those sequences which are $f$-Wijsman statistically convergent for every unbounded modulus $f$. We have also introduced a new concept of Wijsman strong Cesàro summability with respect to a modulus $f$, and investigate the relationship between the $f$-Wijsman statistically convergent sequences and the Wijsman strongly Cesàro summable sequences with respect to $f$.

Citation

Download Citation

Vinod K. Bhardwaj. Shweta Dhawan. Oleksiy A. Dovgoshey. "Density by moduli and Wijsman statistical convergence." Bull. Belg. Math. Soc. Simon Stevin 24 (3) 393 - 415, september 2017. https://doi.org/10.36045/bbms/1506477689

Information

Published: september 2017
First available in Project Euclid: 27 September 2017

zbMATH: 1382.40012
MathSciNet: MR3706809
Digital Object Identifier: 10.36045/bbms/1506477689

Subjects:
Primary: 40A35 , ‎40G15‎ , 46A45

Keywords: modulus function , natural density , statistical convergence , strong Cesàro summability , Wijsman convergence

Rights: Copyright © 2017 The Belgian Mathematical Society

Vol.24 • No. 3 • september 2017
Back to Top