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Abstract

We continue investigations started by Lakeland on Fuchsian and Kleinian
groups which have a Dirichlet fundamental domain that also is a Ford
domain in the upper half-space model of hyperbolic 2- and 3-space, or which
have a Dirichlet domain with multiple centers. Such domains are called
DF-domains and Double Dirichlet domains respectively. Making use of
earlier obtained concrete formulas for the bisectors defining the Dirichlet
domain of center i ∈ H2 or center j ∈ H3, we obtain a simple condition
on the matrix entries of the side-pairing transformations of the fundamen-
tal domain of a Fuchsian or Kleinian group to be a DF-domain. Using the
same methods, we also complement a result of Lakeland stating that a cofi-
nite Fuchsian group has a DF domain (or a Dirichlet domain with multiple
centers) if and only if it is an index 2 subgroup of the discrete group G of
reflections in a hyperbolic polygon.

1 Introduction

Fundamental domains in hyperbolic spaces, or spaces of constant curvature in
general, have been studied for a long time. Together with Poincaré’s Polyhedron
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Theorem, they are often used to find presentations of discrete groups. Funda-
mental domains also are of use in the construction of discrete groups. Special
attention goes to fundamental domains in hyperbolic 2- and 3-space, as they are
strongly related to discrete subgroups of PSL2(R) and PSL2(C).

A major difficulty one encounters is the effective construction of such a
domain. The two most known and used constructions in hyperbolic space are
the Ford and Dirichlet fundamental domains. The Ford fundamental domain of
a group Γ is defined in terms of the isometric spheres of the elements of Γ. The
Dirichlet domain of Γ is based on the bisectors of some chosen center and its
images by Γ. It is well-known that in the ball model of hyperbolic 2- or 3-space,
the Dirichlet fundamental domain and the Ford fundamental domain of some
discrete group Γ are the same (see for example [4, Theorem 9.5.2]). In the upper
half-space model however, this is, in general, not the case. Hence an interesting
topic is to study when the Dirichlet and the Ford fundamental domain coincide
also in the upper half-space model. This is what we call a DF domain, i.e. a fun-
damental domain in H2 or H3 that is a Dirichlet and a Ford domain at the same
time.

One major problem in the construction of a Dirichlet fundamental domain
is the choice of an adequate center. In general changing the center, changes
the shape of the fundamental domain completely, as is nicely shown by Martin
Deraux’s animation [2]. This is different for the hyperbolic reflection groups.
Their fundamental domain is canonical and the choice of the center plays no role
at all. The fundamental domain is the same for every chosen center, see [18, Exer-
cise 7.1.1]. So one may wonder which other Dirichlet fundamental domains have
multiple centers. We call them double Dirichlet domains. In some sense charac-
terizing a group acting discontinuously on hyperbolic space by having a double
Dirichlet domain comes down to study ‘how close’ the group is to a hyperbolic
reflection group.

One of the most common examples of a discontinuous action on hyperbolic
space is the action of PSL2(Z) on hyperbolic 2-space H2. The probably best
known fundamental domain for this action is the triangle in the upper half-plane

model with vertices ∞, 1
2 +

√
3

2 i and − 1
2 +

√
3

2 i. This is in fact both a Ford domain
and a Dirichlet domain with center ti for every t > 0. So this is a first example of
a DF-domain and a double Dirichlet domain.

In this paper we continue the investigations initiated by Lakeland in [14] on
DF-domains and double Dirichlet domains. The main reason in [14] to study
these domains is answering a question raised by Agol-Belolipetsky-Storm-Whyte
in [3]: the existence of a maximal arithmetic hyperbolic reflection group which is
not congruence. The author constructs a non-congruence arithmetic group Γref

and, by using the theory of DF-domains, he proves that Γref is a maximal reflec-
tion group.

The main theorem of [14, Theorem 5.3] states that a finitely generated, finite
coarea Fuchsian group Γ admits a DF-domain if and only if Γ is an index 2 sub-
group of a reflection group. It also is proved that a Kleinian group Γ has a gener-
ating set consisting of elements whose traces are real ([14, Theorem 6.3].) We give
a new and independent criterion for the result of [14] that also applies to Kleinian
groups. Note that all the groups we are working with are non-cocompact. See



Dirichlet-Ford domains and Double Dirichlet domains 467

also Remark 2.1. Our criterion is of algebraic nature and easily can be checked
once a set of side-pairing transformations is given:

Theorem 1.1. Let Γ be a non-cocompact cofinite discrete subgroup of PSL2(C), acting
on H2, respectively H3, and P0 = i, respectively P0 = j. Suppose that the stabilizer
of P0 in Γ is trivial. Then, Γ admits a DF domain F with center P0 if and only if for

every side-pairing transformation γ =

(

a b
c d

)

∈ PSL2(C) of F we have that d = a.

Moreover, if Γ is a cofinite Fuchsian group, then Γ̃ = 〈σ, Γ〉 is a reflection group and
Γ̂ = 〈τ, Γ〉 is a Coxeter group, where σ is the reflection in the imaginary axis and τ is

the linear operator represented by the matrix

(

i 0
0 −i

)

, and both groups contain Γ as a

subgroup of index two.

For such groups Γ, as an immediate consequence, one obtains, in the Kleinian
case, that the traces of the generating elements are real (see Corollary 4.4). More-
over, as an application, we get most of the results on DF and double Dirichlet
domains obtained in [14]. Also, some of the proofs of [14] can be simplified using
Theorem 1.1.

To prove the above theorem, we make use of concrete formulas given in [12].
In [12], the authors develop explicit formulas for the bisectors of i and γ(i) for
some γ ∈ PSL2(R) not fixing i, or j and γ(j) for some γ ∈ PSL2(C) not fixing
j. These bisectors are indeed necessary to determine the Dirichlet fundamental
domain in hyperbolic 2-space H2 and hyperbolic 3-space H3 respectively. These
fundamental domains are then used to tackle the non-trivial problem of describ-
ing units in an order of a non-commutative non-split division algebra or of a
2-by-2 matrix ring over a quadratic imaginary extension of the field Q. As the
unit groups of some of these orders may be considered as discrete subgroups of
SL2(C), fundamental domains and Poincaré’s Polyhedron Theorem are of poten-
tial use to determine these unit groups. First attempts to this were done by Pita,
del Rı́o and Ruiz in [16, 17], where the authors use Ford domains to get presenta-
tions of some small subgroups of congruence subgroups of Bianchi groups and by
Corrales, Jespers, Leal and del Rı́o in [9], where a presentation for the unit group
of a “small” non-commutative division algebra (a quaternion algebra) is given
using Dirichlet domains. As an application, one obtains a description of sub-
groups of finite index in the unit group of an integral group ring of some
finite groups. Making use of concrete formulas, the authors obtain in [12] a more
general approach than the isolated cases described above.

The outline of the paper is as follows. For the sake of completeness, we record
in Section 2 some fundamentals on hyperbolic geometry, fundamental domains
and on Fuchsian and Kleinian groups. In Section 3, we recall a result from [12]
and develop a necessary proposition to prove our main result and its corollaries.
In particular, we give conditions for an isometric sphere, in the upper half-space
(-plane) model, to be a bisector. In the last section, we consider DF domains and
double Dirichlet domains, prove Theorem 1.1 and show some corollaries.
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2 Background

We begin by recalling basic facts on hyperbolic spaces and we fix notation. Stan-
dard references are [4, 8, 10, 11, 15, 18]. By H2 and H3 we denote the upper
half-space model of hyperbolic 2- and 3-space. As is common, we identify H2

with the subset {x + ri ∈ C | x ∈ R, r ∈ R+} of the complex numbers C and H3

with the subset {z + rj ∈ H | z ∈ C, r ∈ R+} of the classical (real) quaternion

algebra H = H(−1,−1
R

). Denote by Iso+(Hi) the group of orientation-preserving

isometries of Hi for i = 2, 3. It is well known that Iso+(H2) is isomorphic with
PSL2(R) and that Iso+(H3) is isomorphic with PSL2(C).

Throughout, we will use the notation

(

a b
c d

)

both for an element of SL2(R)

or SL2(C) as well as for its natural image in PSL2(R) or PSL2(C). Moreover,
abusing notation, we use the same letter for both the matrix in SL2(R) or SL2(C)

and the Möbius transformation acting on H2 or H3 respectively. For γ =

(

a b
c d

)

in SL2(R) or SL2(C), we write a = a(γ), b = b(γ), c = c(γ) and d = d(γ) when
it is necessary to stress the dependence of the entries on the matrix γ.

We now describe the action of PSL2(R) and PSL2(C) on hyperbolic space. We
do this in detail for the 3-dimensional case, the 2-dimensional case being done in
a similar way. The action of PSL2(C) on H3 is given by

(

a b
c d

)

(P) = (aP + b)(cP + d)−1,

where (aP + b)(cP + d)−1 is calculated in H. Explicitly, if P = z + rj and

γ =

(

a b
c d

)

then

γ(P) =
(az + b)(cz + d) + acr2

|cz + d|2 + |c|2r2
+ (

r

|cz + d|2 + |c|2r2
)j.

The hyperbolic distance ρ in H3 (or H2 respectively) is determined by

cosh ρ(P, P′) = 1 + d(P,P′)2

2rr′ , where d is the Euclidean distance and P = z + rj

and P′ = z′ + r′ j are two elements of H3 (respectively P = x + ri and P′ = x′+ r′i
are two elements of H2).

Finally, recall that a group Γ is said to act discontinuously on a proper metric
space X if for every compact subset K of X, K ∩ γ(K) 6= ∅ for only finitely many
γ ∈ Γ. A well-known theorem states that if X is a proper metric space, then
a group Γ acts discontinuously on X if and only if Γ is a discrete subgroup of
Iso(X). For more details on this, see [18, Theorem 5.3.5]. A fundamental domain
for a discontinuous group action of a group Γ on a metric space X, is a closed
set F ⊆ X such that the border of F has measure 0, the union of the images of
F under Γ is the space X and the images of F ◦, the interior of F , by different
elements of Γ are pairwise disjoint. We call F a convex fundamental polyhedron,
if F is a fundamental domain that is a convex polyhedron. The group Γ is said
to be cofinite if F has finite volume. It is well-known that cofiniteness implies
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geometrical finiteness which, in dimension 2 and 3, implies that the F has finitely
many sides. For more details, we refer to [7] and [13]. If F is a fundemantal
polyhedron for a discontinuous group action Γ, then, for every side S of F , there
exists an element γS ∈ Γ such that S = F ∩ γS(F ). If for every side S the element
γS is the reflection in the hyperplane 〈S〉, then Γ is called a reflection group with
respect to F. Reflection groups are particular cases of Coxeter groups. Formally a
Coxeter group is a group 〈r1, . . . , rn | (rirj)

mij = 1〉 with mii = 1 and mij ≥ 2 for
i 6= j. Note that mij = ∞ is possible and just means that there is no relation of the
form (rirj)

m between ri and rj. More details on this may be found in [18, Section
7.1].

In this paper we work with two different constructions of fundamental poly-
hedra, known as Dirichlet and Ford fundamental domain. We recall their con-
struction and how they can be used to give a presentation for the considered
groups, the so called Poincaré method (for details see for example [4] or [18]).
Let Γ be a discrete subgroup of Iso+(H3). Let Γj be the stabilizer in Γ of j ∈ H3

and let Fj be a convex fundamental polyhedron of Γj. Put Dγ(j) = {u ∈ H3 |
ρ(u, j) ≤ ρ(u, γ(j))} and set F̃ =

⋂

γ∈Γ\Γj
Dγ(j). The border ∂Dγ(j) = {u ∈ H3 |

ρ(u, j) = ρ(u, γ(j))} is the hyperbolic bisector of the geodesic linking j to γ(j).
This is called a Poincaré bisector. Note that F̃ is stable under the action of Γj.

Moreover F̃ is a convex polyhedron such that
⋃

n γn(F̃ ) = H3, where γn are the
coset representatives of Γj in Γ. By [4, Theorem 9.6.1], the set

F = Fj ∩ F̃ = Fj ∩





⋂

γ∈Γ\Γj

Dγ(j)





is a fundamental domain of Γ, which we call the Dirichlet fundamental domain
with center j. Moreover, it may be shown that F is a convex polyhedron and
if Γ is geometrically finite then a finite set of generators for Γ consists of the
elements γ ∈ Γ such that F ∩ γ(F ) is a side of the polyhedron together with
Γj, i.e. Γ = 〈Γj, γ | γ(F ) ∩ F is a side 〉 (see [18, Theorem 6.8.3]). Let us denote

the bisector ∂Dγ−1(j) of the geodesic linking j to γ−1(j) by Σγ. It is easy to com-

pute that γ(Σγ) = Σγ−1 . From this it follows that F ∩ γ(F ) ⊆ Σγ−1 . Note that

the same construction can be done in H2, replacing the point j ∈ H3 by i ∈ H2.
Let Γ be a discrete subgroup of PSL2(C) and denote by Γ∞ the stabilizer in

Γ of the point ∞. Denote a convex fundamental polyhedron of Γ∞ by F∞. For

γ =

(

a b
c d

)

∈ Γ \ Γ∞, denote the isometric sphere of γ by ISOγ. Note that

these are the points P ∈ H3 such that |cP + d|2 = 1. Denote the set {P ∈ H3 |
|cP + d|2 ≥ 1} by ISO≥

γ . By the same reasoning as above, if Γ∞ contains a
parabolic element then

F = F∞ ∩





⋂

γ∈Γ\Γ∞

ISO≥
γ





is a fundamental domain of Γ called the Ford fundamental domain of Γ. Again, if
F is a polyhedron and if Γ is geometrically finite then Γ = 〈Γ∞, γ |
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γ(F ) ∩ F is a side 〉. And also in this case one can easily show that, for every
γ ∈ Γ \ Γ∞, γ(ISOγ) = ISOγ−1 and F ∩ γ(F ) ⊆ ISOγ−1 . Again the same con-

struction is possible in H2.

Remark 2.1. If we talk about Ford domains, we implicitly assume the discrete subgroup
Γ to have a parabolic element fixing the point ∞.

3 Poincaré bisectors and isometric spheres

For completeness’ sake, we first recall in this section the authors’ result from [12]
that is needed to prove our main result. Based on this result we prove a propo-
sition that will be used later. As before, we develop the theory in dimension

3, but everything can be applied to dimension 2 as well. Let γ =

(

a b
c d

)

∈
PSL2(C) \ PSU2(C). Recall that γ ∈ PSU2(C) if and only if γ(j) = j (see [4, 10]).
As the Poincaré bisector can only exist if γ 6∈ Γj, the case γ ∈ PSU2(C) is excluded
in the following. In the ball model of the hyperbolic space, it is well-known that
the isometric sphere of γ equals the bisector of the geodesic segment linking 0
and its image by γ−1. We will not go into more details on this but refer the inter-
ested reader to [4, Section 9.5] for dimension 2. In [12, Theorem 3.1], the authors
give an independent proof of this in dimension 3 (which is of course adaptable to
dimension 2).

In the upper half-space H3, an isometric sphere is not necessarily a Poincaré
bisector. As explained in Section 2, we denote the isometric sphere of γ by ISOγ

and the Poincaré bisector of the geodesic linking j to γ−1(j) by Σγ. This bisector
may be a Euclidean sphere or a plane perpendicular to ∂H3. If it is a Euclidean
sphere, we denote its center by Pγ and its radius by Rγ.

The following result gives concrete formulas for the Poincaré bisectors in the
upper half-space model.

Proposition 3.1. [12, Proposition 3.2]

Let γ =

(

a b
c d

)

∈ PSL2(C), with γ 6∈ PSU2(C).

1. Σγ is a Euclidean sphere if and only if |a|2 + |c|2 6= 1. In this case, its center and

its radius are respectively given by Pγ = −(ab+cd)
|a|2+|c|2−1

and R2
γ =

1+|Pγ|2
|a|2+|c|2 .

2. Σγ is a plane if and only if |a|2 + |c|2 = 1. In this case Re(vz) + |v|2
2 = 0, z ∈ C

is a defining equation of Σγ, where v = ab + cd.

The next proposition gives some information on the relation between ISOγ

and Σγ, for some γ ∈ PSL2(C) \ PSU2(C) with c(γ) 6= 0. Again the case
γ ∈ PSU2(C) is excluded because otherwise Σγ does not exist. This proposition
will be useful in the study of DF domains and double Dirichlet domains.
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Proposition 3.2. Let γ =

(

a b
c d

)

∈ PSL2(C) \ PSU2(C).

1. If c 6= 0 and |a|2 + |c|2 6= 1 then ISOγ = Σγ if and only if d = a. In this case,

tr(γ) ∈ R and if b 6= 0, c = λb, with λ ∈ R.

2. If c = 0 and |a|2 = 1, we also have that a = d, tr(γ) ∈ R and c = λb, with
λ ∈ R.

Proof. First note that in 1, the case c = 0 is excluded so that ISOγ exists and,
by Proposition 3.1, the condition |a|2 + |c|2 6= 1 guarantees that Σγ is a sphere.

If we denote the center of ISOγ by P̂γ, then |P̂γ − Pγ| = | − d
c + ab+cd

|a|2+|c|2−1
| =

|d−a|
|c|(|a|2+|c|2−1)

. Hence ISOγ = Σγ implies that d = a and therefore bc = |a|2 − 1 ∈
R. The latter implies that tr(γ) = a + a ∈ R and that b = 0 or c = λb for some
λ ∈ R. To prove the converse, suppose that d = a. Then by the above Pγ = P̂γ.

Moreover if Pγ = − d
c , then, by Proposition 3.1, Rγ = 1

|c| and hence ISOγ = Σγ.

This proves the first item.
In the second item we have that the isometric sphere does not exist and Σγ is

a plane (and not a sphere). The conditions c = 0 and |a|2 = 1 imply that ad = 1

and aa = 1. Hence d = a and tr(γ) ∈ R. As c = 0, the equality c = λb, with
λ ∈ R is trivially true.

Remark 3.3. Note that Proposition 3.2 does not treat the cases c 6= 0 and |a|2 + |c|2 = 1
and c = 0 and |a|2 6= 1. In the first case the isometric sphere exists but Σγ does not have
the form of a sphere. In the second case Σγ exist in the form of a sphere, but the isometric
sphere does not exist. So in both cases it does not make sense to compare the isometric
sphere with Σγ.

4 DF Domains and Double Dirichlet Domains

The goal of this section is to prove Theorem 1.1 and give some consequences that
reprove and complement some results in [14]. The following definitions are taken
from [14].

Definition 4.1. A Dirichlet fundamental domain which is also a Ford domain in Hn

is called a DF-domain. A Dirichlet fundamental domain which has multiple centers is
called a double Dirichlet Domain.

Throughout this section, we work in H2 and H3 and we assume, without
loss of generality, that the stabilizer of i, or j respectively, in Γ, is trivial. The
latter is possible by conjugating, if needed, the group Γ by an adequate affine
subgroup of PSL2(R), or PSL2(C) respectively. Indeed, denote by A the subgroup
of PSL2(R), or PSL2(C) consisting of upper triangular matrices. Consider the
conjugated group τΓτ−1 of Γ for some τ ∈ A and let P0 ∈ {i, j}, according to the
space being H2 or H3 respectively. Then (τΓτ−1)P0

= τΓτ−1(P0)
τ−1 and thus if

the stabilizer of τ−1(P0) is trivial in Γ, the stabilizer of P0 is trivial in τΓτ−1. Let F
be some fundamental domain for Γ. By definition every point in the interior of F
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has trivial stabilizer. As A acts transitively on the upper half-plane, there exists
τ ∈ A such that Γτ−1(P0)

is trivial. Moreover, if Γ contains a parabolic element of

the form 1 6=
(

1 b
0 1

)

, then the conjugate τΓτ−1 also contains such a parabolic

element. So, instead of proving the results for Γ, we will prove them for a group
conjugated to Γ with trivial stabilizer of P0. It is easy to see that if τΓτ−1 has a
double Dirichlet domain, Γ has a double Dirichlet domain. Similarly if τΓτ−1 has
a DF domain, Γ has a DF domain.

We first give two lemmas on Fuchsian groups.

Lemma 4.2. The following properties are equivalent for 1 6= γ ∈ PSL2(R).

1. a(γ) = d(γ).

2. γ = σ ◦ σγ, where σ denotes the reflection in the imaginary axes, i.e., σ(z) = −z
and σγ is the reflection in Σγ.

3. Σγ is the bisector of the geodesic linking ti and γ−1(ti), for all t > 0 .

4. There exists 0 < t0 6= 1 such that Σγ is the bisector of the geodesic segment linking
t0i and γ−1(t0i).

Proof. We first prove that 1 implies 2. Suppose that a(γ) = d(γ) and suppose
first that c(γ) = 0. Without loss of generality, we may take a(γ) = d(γ) =

1. By Proposition 3.1, Σγ is the line given by the equation x = − b
2 and thus

σγ(z) = σ(z + b(γ)) = σ(γ(z)). If c(γ) 6= 0, by Proposition 3.2, we have
that Σγ = ISOγ. Hence the reflection σγ in Σγ is given by σγ(z) = Pγ − (|c|2σ
(z − Pγ))−1 = σ(γ(z)). In either case, we have that γ = σ ◦ σγ.

Suppose now that γ = σ ◦ σγ and let u ∈ Σγ. Then ρ(u, γ−1(ti)) = ρ(u, σγ ◦
σ(ti)) = ρ(u, σγ(ti)) = ρ(σγ(u), ti) = ρ(u, ti) and hence Σγ is the bisector of the
geodesic linking ti and γ−1(ti). This proves that 2 implies 3. Obviously 3 implies
4.

We now prove that 4 item implies 1. Let u ∈ Σγ. Then we have that ρ(u, t0i) =
ρ(u, γ−1(t0i)) and hence ρ(u, t0i) = ρ(γ(u), t0i). Since γ is a Möbius transforma-
tion we have that Im(γ(z)) = |γ′(z)|Im(z). Using this and the explicit formula of
the hyperbolic distance in the upper half-plane model (see Section 2), we obtain
that |γ′(u)||t0i − u|2 = |t0i − γ(u)|2. It follows that Re(u)2|γ′(u)| − Re(γ(u))2

= (1 − |γ′(u)|)t2
0 + (|γ′(u)| − 1)|γ′(u)|Im(u)2. We may write this as an equation

of the type αt2 = β having t = t0 as a solution. However as u ∈ Σγ, by definition
ρ(u, i) = ρ(u, γ−1(i)) and hence also t = 1 is also solution of the given equation.
Thus we have that α = β and α(t2

0 − 1) = 0. It follows that α = 0 and thus
|γ′(u)| = 1, for all u ∈ Σγ, i.e. Σγ = ISOγ. Applying Proposition 3.2, we obtain
that a(γ) = d(γ).

Recall that one says that an angle α is a submultiple of an angle β if either
there is a positive integer n such that nα = β or α = 0.

Lemma 4.3. Let Γ be a cofinite discrete subgroup of PSL2(R). Suppose that i ∈ H2

has trivial stabilizer and let F be its Dirichlet fundamental polygon with center i. Let
γk be the side-pairing transformations of F for 1 ≤ k ≤ n. If, for every 1 ≤ k ≤ n,
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a(γk) = d(γk), then Γ is the subgroup of the orientation-preserving isometries of a
discrete reflection group.

Proof. First note that, as a(γk) = d(γk), we have by Lemma 3.2 that Σγk
= ISOγk

.
This means that Σγ−1

k
has the same radius as Σγk

and their centers are the same

in absolute value, but have opposite sign, and this for every 1 ≤ k ≤ n. Hence
F is symmetric with respect to the imaginary axis Σ. Consider the polygon P,
whose sides are Σ and the Σγk

’s with Pγk
≥ 0. We claim that all the dihedral

angles of P are submultiples of π. First we prove this statement for the dihedral
angles between two sides of F . For this, consider a vertex Ek ⊆ Σγk

∩ Σγl
for

1 ≤ k 6= l ≤ n. By the symmetry of F , {Σγk
, Σγ−1

l
} is a finite sequence of sides

of F determined by Σγk
and Ek, according to the definition of [18, Chapter 6.8].

By [18, Theorem 6.8.7] the dihedral angle at the vertex Ek is a submultiple of π
and this is true for every 1 ≤ k ≤ n. Let Σγ0 be the side of F with Pγ0 ≥ 0
and such that Σγ0 ∩ Σ is a vertex of P and consider the angle θ between Σ and
Σγ0 . If Pγ0 > 0, then the side Σγ−1

0
has the same radius but Pγ−1

0
< 0. Hence,

if Σγ0 intersects the imaginary axis Σ, then so does Σγ−1
0

and θ is half the the

angle between Σγ0 and Σγ−1
0

, which is a submultiple of π by the previous. If

Pγ0 = 0, then Σ is perpendicular to Σγ0 . Thus in both cases the angle between Σ

and the adjacent side in P is a submultiple of π. This proves the claim. Finally, by
[18, Theorem 7.1.3], the group Γ̃ = 〈σ, σγk

| Pγk
≥ 0〉, where σk denotes the

reflection in Σγk
, is a discrete reflection group with respect to P. The result then

follows by Lemma 4.2.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let F be a DF domain, in H2 or H3 respectively, for Γ with
center P0 ∈ {i, j}. Let Φ0 be a set of side-pairing transformations. Consider

γ =

(

a b
c d

)

∈ Φ0 with c 6= 0. As F is a Ford domain, F ∩ γ−1(F ) ⊆ ISOγ. As F
is a also a Dirichlet domain, F ∩ γ−1(F ) ⊆ Σγ. Thus ISOγ = Σγ and, as ISOγ is a
sphere, Σγ is a sphere and hence |a|2 + |c|2 6= 1. Thus, by Proposition 3.2, d = a.
We now consider the case when c = 0. Then, as F is a Ford domain, F ∩ γ(F ) is
a plane coming from the convex fundamental polyhedron of Γ∞. As F is a also
a Dirichlet domain, Σγ is a plane and hence |a|2 = |a|2 + |c|2 = 1 and thus the
second item of Proposition 3.2 allows to conclude.

We now prove the converse. Let F be a Dirichlet or Ford fundamental do-
main and let Φ0 be a set of side-pairing transformations, such that for every

γ =

(

a b
c d

)

∈ Φ0, d = a. Suppose first that c 6= 0, i.e. the isometric sphere

associated to γ exist. We claim that |a|2 + |c|2 6= 1. By contradiction, sup-
pose the contrary. As d = a and det(γ) = 1, we have that b = −c. Hence
‖γ‖2 = 2|a|2 + 2|c|2 = 2. By [4, Theorem 2.5.1], γ ∈ PSU2(C) which is in contra-
diction with the fact that the stabilizer of P0 is trivial. Hence by Proposition 3.2,
ISOγ = Σγ. Suppose now that c = 0. Then F ∩ γ(F ) is a plane coming from
the convex fundamental polyhedron of Γ∞. The facts that d = a and det(γ) = 1
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imply that |a|2 = 1 and thus Σγ is a plane given by the equation Re(abz) = − |b|2
2 .

By choosing the fundamental polyhedron of Γ∞ well, one of its sides coincides
with Σγ.

To prove the last part of Theorem 1.1, suppose that Γ is Fuchsian.
By Lemma 4.3 we have that Γ̃ = 〈σ, Γ〉 is a reflection group containing Γ as a
subgroup of index 2. Consider finally the group Γ̂ := 〈τ, Γ〉. It is clear that τ2 = 1
and by computation (τγ)2 = 1 for all γ ∈ Φ0. Moreover, it is easy to compute
that (τγ)(τγ′) has order at least 2. It thus follows that Γ̂ is a Coxeter group with
[Γ̂ : Γ] = 2.

Note that a presentation of Γ̃ and Γ̂ can be obtained using [10, Theorem II.7.5].
Also this result simplifies a lot the proof of [14, Theorem 3.1], i.e. it easily follows
that the orbifold of Γ is a punctured sphere in the Fuchsian case. Moreover, as is
shown by the next corollary, [14, Theorem 7.3] follows easily from Theorem 1.1.

Corollary 4.4. Let Γ < PSL2(C) be a cofinite discrete group and suppose Γ admits a DF
domain F . Then, for every side-pairing transformation γ, tr(γ) ∈ R and the vertical
planes bisecting Σγ and Σγ−1 (for γ 6∈ Γ∞) all intersect in a vertical axis.

Proof. Without loss of generality, we may assume that Γ admits a DF domain with
center j (see the beginning of the section). That tr(γ) ∈ R, for γ a side-pairing
transformation, is a direct consequence of Theorem 1.1 or of Proposition 3.2.

If γ 6∈ Γ∞, Σγ and Σγ−1 are Euclidean spheres with center − a(γ)
c(γ)

and a(γ)
c(γ)

respectively. A simple computation then shows that the Euclidean bisector of
these two points contains the point 0 and hence the vertical plane bisecting Σγ

and Σγ−1 contains the point j. Hence all these vertical planes intersect in a vertical
line through j.

We now consider when a fundamental domain is a double Dirichlet domain.
The next two corollaries of our main Theorem give an alternative way to
[14, Section 4] to treat such domains.

Corollary 4.5. Let Γ be a cofinite Fuchsian group with trivial stabilizer of i ∈ H2. Then
the following properties are equivalent.

1. Γ is the subgroup of orientation-preserving isometries of a Fuchsian reflection group
containing the reflection in the imaginary axis.

2. Γ has a DF domain with center i.

3. Γ has a Dirichlet fundamental domain F with center i such that, for every side-
pairing transformation γ, a(γ) = d(γ).

4. Γ has a Dirichlet fundamental domain F with i and t0i as centers, for some
1 6= t0 > 0.

5. Γ has a Dirichlet fundamental domain F such that all the points of the geodesic
through i and ti, for t > 0, are centers of F .
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Proof. Theorem 1.1 shows that 2 and 3 are equivalent. The equivalence of 3, 4 and
5 is given by Lemma 4.2. Moreover, by Lemma 4.3, 3 implies 1. We show that 1
implies 4. Fix a polygon P for the reflection group such that one of the sides is
the imaginary axis Σ and denote the reflection in Σ by σ. Let Σk be a side of P.
Denote by σγk

the reflection in Σk and let γk = σ ◦ σγk
. Then the result follows

from Lemma 4.2.

The previous result can be generalized, by conjugating the group Γ. We then
get the following result, where the Dirichlet fundamental domain has arbitrary
center P ∈ H2. However, in that case, the third item has to be dropped. We also
regrouped parts 4 and 5.

Corollary 4.6. Let Γ be a cofinite Fuchsian group with trivial stabilizer of P ∈ H2. The
following properties are equivalent.

1. Γ is the subgroup of orientation-preserving isometries of a Fuchsian reflection group
containing the reflection in the vertical line through P.

2. Γ has a DF domain with center P.

3. Γ has a Dirichlet fundamental domain F such that all the points of the geodesic
through P and P + i are centers of F .

From Corollary 4.4, it follows that that all examples given in Section VII.3
in the book of Elstrodt, Grunewald and Mennicke [10] are groups whose Ford
domain is also a Dirichlet domain. Note that this does not follow immediately
from the results of [14].

Hence an interesting question is to analyse when the Bianchi groups have a
DF domain. This question can be linked to the following result by Belolipetsky

and Mcleod [5, Theorem 2.1]: for the ring of integers O in Q(
√
−d) (with d a

positive square free integer), the Bianchi group PSL2(O) extended by two reflec-
tions is a reflection group if and only if d ≤ 19 and d 6= 14, 17. To make a link to
Belilopetsky’s and Mcleod’s result, we next show the following lemma.

Lemma 4.7. Let d be a positive square free integer and let O be the ring of integers of
Q(

√
−d). Assume d 6= 1, 3 and let Γ denote the Bianchi Group PSL2(O). Denote by σx

and σy the reflections in the hyperplanes x = 0 and y = 0 in H3, i.e. for P = z + rj ∈
H3, σx(P) = −P and σy(P) = z + rj. Suppose that Γ has a DF domain and, moreover,
that here is a set of side-pairing transformations γ for Γ that have lower left matrix entry
real or purely imaginary. Then 〈Γ, σx, σy〉 is a reflection group.

Proof. First note that the side-pairing transformations of a Dirichlet domain of
center j in the case of a Bianchi group are not uniquely determined, as the group

has a non-trivial stabilizer of j, namely

(

0 1
−1 0

)

. Nevertheless, if the Bianchi

group Γ has a DF domain, it is possible to choose the side-pairing transforma-
tions in such a way that the isometric sphere equals the bisector, i.e. d = a by
Proposition 3.2. Moreover, in this lemma we suppose the matrix entry c of each
side-pairing transformation to be real or purely imaginary.
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Let F be the Dirichlet domain of Γ as described in [12]. Suppose moreover F
is a DF domain and let γ =

(

a b
c a

)

be a side-pairing transformation of F that

does not fix ∞ with c ∈ R or c ∈ iR. We first note that F is symmetric with
respect to the hyperplane x = 0. Indeed if γ ∈ Γ \ Γ∞, then ISOγ and ISOγ−1

have the same radius and σx(Pγ) = Pγ−1 . Moreover, if

(

a b
c a

)

∈ Γ \ Γ∞ then also
(

a b
c a

)

∈ Γ \ Γ∞. Thus we also have symmetry with respect to the hyperplane

y = 0. Let σγ be the reflection in the isometric sphere ISOγ of γ. Note that ISOγ

has center − a
c and radius 1

|c| . We compute γσγ(P) for P = z + rj ∈ H3.

γσγ(P) = (aσγ(P) + b) (cσγ(P) + a)−1

= c−1 (acσγ(P) + bc) (cσγ(P) + a)−1

= c−1
(

a(cσγ(P) + a)− (|a|2 − bc)
)

(cσγ(P) + a)−1

=
a

c
− c−1 · 1 ·

(

c

(

− a

c
+

P + a
c

|c|2|P + a
c |2

)

+ a

)−1

=
a

c
− c−1

(

cP + a
)

= −c−1Pc

= − c

c
z + c−1rjc

Suppose now that c ∈ R or c ∈ iR. Then γσγ(P) = −P or γσγ(P) = z + rj and
hence γ = σxσγ or γ = σyσγ. We now have to distinguish two cases. Suppose
first that d ≡ 1, 2 mod 4. Then, by [12, Lemma 4.9], the vertical hyperplanes of

F are given by x = ± 1
2 and y = ±

√
d

2 . Define

F̃ = F ∩ {z + rj | Re(z) ≥ 0, Im(z) ≥ 0}.

Then the hyperplanes and spheres defining the border of F̃ are the four hyper-

planes given by x = 0, x = 1
2 , y = 0 and y =

√
d

2 , the spheres ISOγ having center
in {z + rj | Re(z) ≥ 0, Im(z) ≥ 0} and the unit sphere having center in 0. This

sphere comes from the unique stabilizer of j, given by the matrix

(

0 1
−1 0

)

. By

the above, σxγ or σyγ is the reflection in ISOγ if γ does not fix ∞. If γ fixes infinity
then it is easy to see that σxγ or σyγ gives reflection in the vertcial hyperplanes. If
γ(j) = j, then σxγ = σyγ = γ. As F is symmetric with respect to x = 0 and y = 0,

F̃ has finite volume. We now show that all dihedral angles are submutliples of
π. Similar as in the proof of Lemma 4.3, by the symmetry of F and [18, Theorem
6.8.7], the dihedral angles of F̃ are all submultiples of π. Hence, by [18, Theorem
7.1.3], 〈Γ, σx, σy〉 is a reflection group with respect to F̃ .

Suppose now that d ≡ 3 mod 4. Then, again by Lemma 4.3, the vertical
hyperplanes of F form a hexagon. This is not suited for a reflection polyhedron.
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Therefore we define F̃ in the following way.

F̃ = (F ∪ θ(F )) ∩ {z + rj | 0 ≤ Re(z) ≤ 1

2
, 0 ≤ Im(z) ≤ (d + 1)

√
d

4d
},

where θ is the translation given by

(

1 1+
√
−d

2
0 1

)

. In this way, the vertical planes

forming the border of F̃ form a rectangle. Again, similar as above, the dihedral
angles of F̃ are all submultiples of π and hence 〈Γ, σx , σy〉 is a reflection group

with respect to F̃ .

Using Aurel Page’s package KleinianGroups [1] and the algorithm described
in [12], we determine the side-pairing transformations for the Dirichlet funda-
mental domain with center j for the Bianchi groups with d ≤ 19. This yields the
following result.

Lemma 4.8. Let d and O be as in Lemma 4.7. The Bianchi group PSL2(O) has a DF
domain if and only if d ∈ {1, 2, 3, 5, 6, 7, 11, 15, 19}.

Combining Lemma 4.8 and Lemma 4.7, we thus get a part of [5, Theorem 2.1].
Indeed for all the values of d stated in Lemma 4.8, the condition that the matrix
entry c is real or purely imaginary is fulfilled and hence for these d the Bianchi
group is a subgroup of a reflection group. Note that we excluded d = 1 and
d = 3 from Lemma 4.7 because in that case the stabilizer of j is more complicated.
Nevertheless it can be easily verified, that also in these two cases, the Bianchi
group PSL2(O) is a subgroup of index 4 of a reflection group. This coincides in
fact with a much earlier result of Bianchi. In [6], Bianchi showed already that
the Bianchi groups extended by two reflections are reflection groups for d ≤ 19
and d 6= 14, 17. For d = 10 and d = 13, Bianchi states that the group is gener-
ated by a so-called improper reflection, see [6, Paragraph 17]. This is reflected in
Lemma 4.8, which shows that the Bianchi group does not have a DF domain for
these values of d.
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Rua Arlindo Béttio, 1000, Ermelindo Matarazzo, São Paulo,
CEP 03828-000 - Brasil
email: acsouzafilho@usp.br


