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Abstract

In this paper all rings are commutative with nonzero identity. Let M be
an R-module. A proper submodule N of M is called a classical primary sub-
module, if for each m ∈ M and elements a, b ∈ R, abm ∈ N implies that either
am ∈ N or btm ∈ N for some t ≥ 1. We introduce the notion of “weakly clas-
sical primary submodules”. A proper submodule N of M is a weakly classical
primary submodule if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N, then
either am ∈ N or btm ∈ N for some t ≥ 1.

1 Introduction

Throughout this paper all rings are commutative with nonzero identity and all
modules are unitary. We recall that a proper ideal P (resp. Q) of a commutative
ring R is said to be prime (resp. primary) if whenever ab ∈ P (resp. ab ∈ Q) for
some a, b ∈ R, then a ∈ P or b ∈ P (resp. either a ∈ Q or b ∈ √

Q). Several
authors have extended the notion of prime ideals to modules, see, for example
[11, 16, 18]. Let M be a module over a commutative ring R. A proper submodule
N of M is called prime if for a ∈ R and m ∈ M, am ∈ N implies that m ∈ N
or a ∈ (N :R M) = {r ∈ R | rM ⊆ N}. Anderson and Smith [3] said that a
proper ideal P of a ring R is weakly prime if whenever a, b ∈ R with 0 6= ab ∈ P,
then a ∈ P or b ∈ P. Weakly prime submodules were introduced by Ebrahimi
and Farzalipour in [13]. A proper submodule N of M is called weakly prime if for
a ∈ R and m ∈ M with 0 6= am ∈ N, either m ∈ N or a ∈ (N :R M). In [12],
Ebrahimi and Farzalipour said that a proper ideal Q of a commutative ring R is
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weakly primary if whenever a, b ∈ R, then 0 6= ab ∈ Q implies that either a ∈ Q
or b ∈ √

Q. Also, they said that a proper submodule N of M is weakly primary if

for a ∈ R and m ∈ M with 0 6= am ∈ N, either m ∈ N or a ∈
√

(N :R M). A
proper submodule N of M is called a classical prime submodule, if for each m ∈ M
and a, b ∈ R, abm ∈ N implies that am ∈ N or bm ∈ N. This notion of classical
prime submodules has been extensively studied by Behboodi in [7, 8] (see also,
[9], in which, the notion of classical prime submodules is named “weakly prime
submodules”). For more information on classical prime submodules, the reader is
referred to [4, 5, 10]. In [19] the authors introduced the concept of weakly classical
prime submodules. A proper submodule N of an R-module M is called a weakly
classical prime submodule if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N, then
am ∈ N or bm ∈ N. Baziar and Behboodi [6] defined a classical primary submodule
in M as a proper submodule N of M such that if abm ∈ N, where a, b ∈ R and
m ∈ M, then either am ∈ N or btm ∈ N for some t ≥ 1. In this paper we introduce
the concept of weakly classical primary submodules. A proper submodule N of
an R-module M is called a weakly classical primary submodule if whenever a, b ∈ R
and m ∈ M with 0 6= abm ∈ N, then am ∈ N or btm ∈ N for some t ≥ 1. Clearly,
every classical primary submodule is a weakly classical primary submodule.

The annihilator of M which is denoted by AnnR(M) is (0 :R M). Further-
more, for every m ∈ M, (0 :R m) is denoted by AnnR(m). When AnnR(M) = 0,
M is called a faithful R-module. An R-module M is called a multiplication mod-
ule if every submodule N of M has the form IM for some ideal I of R, see [14].
Note that, since I ⊆ (N :R M) then N = IM ⊆ (N :R M)M ⊆ N. So that
N = (N :R M)M. Finitely generated faithful multiplication modules are cancel-
lation modules [22, Corollary to Theorem 9], where an R-module M is defined
to be a cancellation module if IM = JM for ideals I and J of R implies I = J. Let
N and K be submodules of a multiplication R-module M with N = I1M and
K = I2M for some ideals I1 and I2 of R. The product of N and K denoted by NK
is defined by NK = I1 I2M. Then by [2, Theorem 3.4], the product of N and K
is independent of presentations of N and K. Clearly, NK is a submodule of M
and NK ⊆ N ∩ K (see [2]). Let N be a proper submodule of a nonzero R-module
M. We recall from [17] that the M-radical of N, denoted by M-rad(N), is defined
to be the intersection of all prime submodules of M containing N. If M has no
prime submodule containing N, then we say M-rad(N) = M. It is shown in [14,
Theorem 2.12] that if N is a proper submodule of a multiplication R-module M,

then M-rad(N) =
√

(N :R M)M. In [20], Quartararo et al. said that a commuta-
tive ring R is a u-ring provided R has the property that an ideal that is contained
in a finite union of ideals must be contained in one of those ideals; and a um-ring
is a ring R with the property that an R-module which is equal to a finite union of
submodules must be equal to one of them. They show that every Bézout ring is a
u-ring. Moreover, they proved that every Prüfer domain is a u-domain. Also, any
ring which contains an infinite field as a subring is a u-ring, [21, Exercise 3.63]. In
[15], Gottlieb investigated submodules covered by finite unions of submodules.

Among many results in this paper, it is shown (Theorem 2.17) that N is a
weakly classical primary submodule of an R-module M if and only if for every
pair of ideals I, J of R and m ∈ M with 0 6= I Jm ⊆ N, either Im ⊆ N or

J ⊆
√

(N :R m). It is proved (Theorem 2.19) that if N is a weakly classical primary
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submodule of an R-module M that is not classical primary, then (N :R M)2N = 0.
It is shown (Theorem 3.4) that over a um-ring R, N is a weakly classical primary
submodule of an R-module M if and only if for every pair of ideals I, J of R and

submodule L of M with 0 6= I JL ⊆ N, either IL ⊆ N or J ⊆
√

(N :R L). Let R
be a um-ring, M be an R-module and F be a faithfully flat R-module. It is shown
(Theorem 3.10) that N is a weakly classical primary submodule of M if and only
if F ⊗ N is a weakly classical primary submodule of F ⊗ M. Let R = R1 × R2 × R3

be a decomposable ring and M = M1 × M2 × M3 be an R-module where Mi is
an Ri-module, for i = 1, 2, 3. In Theorem 4.8 it is proved that if N is a weakly
classical primary submodule of M, then either N = {(0, 0, 0)} or N is a classical
primary submodule of M.

2 Properties of weakly classical primary submodules

Notice that for an R-module M, the zero submodule {0} is always a weakly clas-
sical primary submodule. In the following example, we give a module in which
the zero submodule is not classical primary.

Example 2.1. Let R = Z and M = Zp
⊕

Zq
⊕

Q where p, q are two distinct

prime integers. Note that pq(1, 1, 0) = (0, 0, 0), but p(1, 1, 0) 6= (0, 0, 0) and
qt(1, 1, 0) 6= (0, 0, 0) for every t ≥ 1. So the zero submodule of M is not
classical primary. Hence the two concepts of classical primary submodules and
of weakly classical primary submodules are different in general.

For an R-module M, the set of zero-divisors of M is denoted by ZR(M).

Theorem 2.2. Let M be an R-module, N be a submodule of M and S be a multiplicative
subset of R.

1. If N is a weakly classical primary submodule of M such that (N :R M) ∩ S = ∅,
then S−1N is a weakly classical primary submodule of S−1M.

2. If S−1N is a weakly classical primary submodule of S−1M such that
S ∩ ZR(N) = ∅ and S ∩ ZR(M/N) = ∅, then N is a weakly classical primary
submodule of M.

Proof. (1) Let N be a weakly classical primary submodule of M and
(N :R M) ∩ S = ∅. Suppose that 0

1 6= a1
s1

a2
s2

m
s3

∈ S−1N for some a1, a2 ∈ R,

s1, s2, s3 ∈ S and m ∈ M. Then there exists s ∈ S such that sa1a2m ∈ N. If
sa1a2m = 0, then a1

s1

a2
s2

m
s3
= sa1a2m

ss1s2s3
= 0

1 , a contradiction. Since N is a weakly classi-

cal primary submodule, then we have a1 (sm) ∈ N or at
2(sm) ∈ N for some t ≥ 1.

Thus a1
s1

m
s3

= sa1m
ss1s3

∈ S−1N or
(

a2
s2

)t
m
s3

=
sat

2m

sst
2s3

∈ S−1N. Consequently S−1N is a

weakly classical primary submodule of S−1M.
(2) Suppose that S−1N is a weakly classical primary submodule of S−1M and

S ∩ ZR(N) = ∅ and S ∩ ZR(M/N) = ∅. Let a, b ∈ R and m ∈ M such that
0 6= abm ∈ N. Then a

1
b
1

m
1 ∈ S−1N. If a

1
b
1

m
1 = 0

1 , then there exists s ∈ S such that
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sabm = 0 which contradicts S ∩ ZR(N) = ∅. Therefore a
1

b
1

m
1 6= 0

1 , and so either

a
1

m
1 ∈ S−1N or

(

b
1

)t
m
1 ∈ S−1N for some t ≥ 1. Assume that a

1
m
1 ∈ S−1N. So there

exists u ∈ S such that uam ∈ N. But S ∩ ZR(M/N) = ∅, whence am ∈ N. If
(

b
1

)t
m
1 ∈ S−1N for some t ≥ 1, then there exists v ∈ S such that vbtm ∈ N. Again

S ∩ ZR(M/N) = ∅ implies that btm ∈ N. Consequently N is a weakly classical
primary submodule of M.

Theorem 2.3. Let M be an R-module and N a proper submodule of M.

1. If N is a weakly classical primary submodule of M, then (N :R m) is a weakly
primary ideal of R for every m ∈ M\N with AnnR(m) = 0.

2. If (N :R m) is a weakly primary ideal of R for every m ∈ M\N, then N is a weakly
classical primary submodule of M.

Proof. (1) Suppose that N is a weakly classical primary submodule. Let m ∈ M\N
with AnnR(m) = 0, and 0 6= ab ∈ (N :R m) for some a, b ∈ R. Then 0 6= abm ∈ N.

So am ∈ N or btm ∈ N for some t ≥ 1, i.e., a ∈ (N :R m) or b ∈
√

(N :R m).
Consequently (N :R m) is a weakly primary ideal of R.

(2) Assume that (N :R m) is a weakly primary ideal of R for every m ∈ M\N.
Let 0 6= abm ∈ N for some m ∈ M and a, b ∈ R. If m ∈ N, then we are done. So we
assume that m /∈ N. Hence 0 6= ab ∈ (N :R m) implies that either a ∈ (N :R m) or
bt ∈ (N :R m) for some t ≥ 1. Therefore either am ∈ N or btm ∈ N, and so N is a
weakly classical primary submodule of M.

We recall that M is a torsion-free R-module if and only if for every 0 6= m ∈
M, AnnR(m) = 0. As a direct consequence of Theorem 2.3 the following result
follows.

Corollary 2.4. Let M be a torsion-free R-module and N a proper submodule of M.
Then N is a weakly classical primary submodule of M if and only if (N :R m) is a weakly
primary ideal of R for every m ∈ M\N.

Theorem 2.5. Let f : M → M′ be a homomorphism of R-modules.

1. Suppose that f is a monomorphism. If N′ is a weakly classical primary submodule
of M′ with f−1(N′) 6= M, then f−1(N′) is a weakly classical primary submodule
of M.

2. Suppose that f is an epimorphism. If N is a weakly classical primary submodule of
M containing Ker( f ), then f (N) is a weakly classical primary submodule of M′.

Proof. (1) Suppose that N′ is a weakly classical primary submodule of M′ with
f−1(N′) 6= M. Let 0 6= abm ∈ f−1(N′) for some a, b ∈ R and m ∈ M. Since
f is a monomorphism, 0 6= f (abm) ∈ N′. So we get 0 6= ab f (m) ∈ N′. Hence
f (am) = a f (m) ∈ N′ or f (btm) = bt f (m) ∈ N′ for some t ≥ 1. Thus
am ∈ f−1(N′) or btm ∈ f−1(N′). Therefore f−1(N′) is a weakly classical
primary submodule of M.
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(2) Assume that N is a weakly classical primary submodule of M. Let a, b ∈ R
and m′ ∈ M′ be such that 0 6= abm′ ∈ f (N). By assumption there exists m ∈
M such that m′ = f (m) and so f (abm) ∈ f (N). Since Ker( f ) ⊆ N, we have
0 6= abm ∈ N. It implies that am ∈ N or btm ∈ N for some t ≥ 1. Hence
am′ ∈ f (N) or btm′ ∈ f (N). Consequently f (N) is a weakly classical primary
submodule of M′.

As an immediate consequence of Theorem 2.5(2) we have the following corol-
lary.

Corollary 2.6. Let M be an R-module and L ⊂ N be submodules of M. If N is a weakly
classical primary submodule of M, then N/L is a weakly classical primary submodule of
M/L.

Theorem 2.7. Let K and N be submodules of M with K ⊂ N ⊂ M. If K is a weakly
classical primary submodule of M and N/K is a weakly classical primary submodule of
M/K, then N is a weakly classical primary submodule of M.

Proof. Let a, b ∈ R, m ∈ M and 0 6= abm ∈ N. If abm ∈ K, then am ∈ K ⊂ N or
for some t ≥ 1, btm ∈ K ⊂ N as it is needed. Thus, assume that abm 6∈ K. Then
0 6= ab(m + K) ∈ N/K, and so a(m + K) ∈ N/K or bt(m + K) ∈ N/K for some
t ≥ 1. It means that am ∈ N or btm ∈ N, which completes the proof.

Proposition 2.8. Let N be a proper submodule of an R-module M. If N is a weakly
primary submodule of M, then N is a weakly classical primary submodule of M.

Proof. Assume that N is a weakly primary submodule of M. Let a, b ∈ R and

m ∈ M such that 0 6= abm ∈ N. Therefore either bm ∈ N or a ∈
√

(N :R M).
In the first case we reach the claim. In the second case there exists t ≥ 1 such
that at M ⊆ N and so atm ∈ N. Consequently N is a weakly classical primary
submodule.

Corollary 2.9. Let R be a ring and I be a proper ideal of R.

1. R I is a weakly classical primary submodule of RR if and only if I is a weakly primary
ideal of R.

2. Every proper ideal of R is weakly primary if and only if for every R-module M and
every proper submodule N of M, N is a weakly classical primary submodule of M.

Proof. (1) Let R I be a weakly classical primary submodule of RR. Then by Theo-
rem 2.3(1), (I :R 1) = I is a weakly primary ideal of R. For the converse, notice
that R I is a weakly primary submodule of RR if and only if I is a weakly primary
ideal of R. Now, apply Proposition 2.8.

(2) Assume that every proper ideal of R is weakly primary. Let N be a proper
submodule of an R-module M. Since for every m ∈ M\N, (N :R m) is a proper
ideal of R, then it is a weakly primary ideal of R. Hence by Theorem 2.3(2), N is
a weakly classical primary submodule of M. We have the converse immediately
by part (1).

The following example shows that the converse of Proposition 2.8 is not true.
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Example 2.10. Let R = Z and M = Zp
⊕

Z
⊕

Z where p is a prime integer. Con-

sider the submodule N = {0}⊕{0}⊕

Z of M. Notice that (0, 0, 0) 6= p(1, 0, 1) =
(0, 0, p) ∈ N, but (1, 0, 1) /∈ N. Also pt(1, 1, 1) /∈ N for every t ≥ 1, which shows
that p /∈ (N :Z M). Therefore N is not a weakly primary submodule of M. Now,
assume that m, n, z, w ∈ Z and x ∈ Zp be such that (0, 0, 0) 6= mn(x, z, w) ∈ N.

Hence mnx = 0 and mnz = 0. Therefore p|mnx and z = 0. So p|m or p|nx.
If p|m, then m(x, z, w) = (mx, 0, mw) = (0, 0, mw) ∈ N. Similarly, if p|nx, then
n(x, z, w) = (nx, 0, nw) = (0, 0, nw) ∈ N. Consequently N is a weakly classical
prime submodule and so it is a weakly classical primary submodule.

Proposition 2.11. Let M be a cyclic R-module. Then a proper submodule N of M is a
weakly primary submodule if and only if it is a weakly classical primary submodule.

Proof. By Proposition 2.8, the “only if” part holds. Let M = Rm for some m ∈ M
and N be a weakly classical primary submodule of M. Suppose that
0 6= rx ∈ N for some r ∈ R and x ∈ M. Then there exists an element s ∈ R
such that x = sm. Therefore 0 6= rx = srm ∈ N and since N is a weakly classical
primary submodule, x = sm ∈ N or rtm ∈ N for some t ≥ 1. Hence x ∈ N or

rt ∈ (N :R M). Consequently, either x ∈ N or r ∈
√

(N :R M) and so N is a
weakly primary submodule of M.

Definition 2.12. Let N be a proper submodule of M and a, b ∈ R, m ∈ M. If N

is a weakly classical primary submodule and abm = 0, am /∈ N, b /∈
√

(N :R m),
then (a, b, m) is called a classical primary triple-zero of N.

Theorem 2.13. Let N be a weakly classical primary submodule of a finitely generated
R-module M and suppose that abK ⊆ N for some a, b ∈ R and some submodule K of
M. If (a, b, k) is not a classical primary triple-zero of N for any k ∈ K, then aK ⊆ N or
btK ⊆ N for some t ≥ 1.

Proof. Suppose that (a, b, k) is not a classical primary triple-zero of N for any

k ∈ K. Assume on the contrary that aK 6⊆ N and b /∈
√

(N :R K). Then there
exists k1 ∈ K such that ak1 6∈ N, and since M is finitely generated, there exists

k2 ∈ K such that b 6∈
√

(N :R k2). If abk1 6= 0, then we have b ∈
√

(N :R k1), be-
cause ak1 6∈ N and N is a weakly classical primary submodule of M. If abk1 = 0,
then since ak1 /∈ N and (a, b, k1) is not a classical primary triple-zero of N, we con-

clude once again that b ∈
√

(N :R k1). By a similar argument, since (a, b, k2) is not

a classical primary triple-zero and b /∈
√

(N :R k2), then we deduce that ak2 ∈ N.
By our hypothesis, ab(k1 + k2) ∈ N and (a, b, k1 + k2) is not a classical primary

triple-zero of N. Hence we have either a(k1 + k2) ∈ N or b ∈
√

(N :R k1 + k2). If
a(k1 + k2) = ak1 + ak2 ∈ N, then since ak2 ∈ N, we have ak1 ∈ N, a contradic-
tion. If b ∈

√

(N :R k1 + k2), then since b ∈
√

(N :R k1), we have b ∈
√

(N :R k2),
which again is a contradiction. Thus aK ⊆ N or btK ⊆ N for some t ≥ 1.

Definition 2.14. Let N be a weakly classical primary submodule of an R-module
M and suppose that I JK ⊆ N for some ideals I, J of R and some submodule K of
M. We say that N is a free classical primary triple-zero with respect to I JK if (a, b, k)
is not a classical primary triple-zero of N for any a ∈ I, b ∈ J, and k ∈ K.
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Remark 2.15. Let N be a weakly classical primary submodule of M and suppose
that I JK ⊆ N for some ideals I, J of R and some submodule K of M such that N
is a free classical primary triple-zero with respect to I JK. Then a ∈ I, b ∈ J, and
k ∈ K implies that either ak ∈ N or btk ∈ N for some t ≥ 1.

Corollary 2.16. Let N be a weakly classical primary submodule of a finitely generated
R-module M and suppose that I JK ⊆ N for some ideals I, J of R and some submodule
K of M. If N is a free classical primary triple-zero with respect to I JK, then IK ⊆ N or

J ⊆
√

(N :R K).

Proof. Suppose that N is a free classical primary triple-zero with respect to I JK.

Assume that IK 6⊆ N and J *
√

(N :R K). Then there exist a ∈ I and b ∈ J with
aK 6⊆ N and bsK * N for every s ≥ 1. Since abK ⊆ N and N is free classical
primary triple-zero with respect to I JK, then Theorem 2.13 implies that aK ⊆ N
or btK ⊆ N for some t ≥ 1, which is a contradiction. Consequently IK ⊆ N or

J ⊆
√

(N :R K).

Let M be an R-module and N a submodule of M. For every a ∈ R,
{m ∈ M | am ∈ N} is denoted by (N :M a). It is easy to see that (N :M a) is
a submodule of M containing N.

In the next theorem we characterize weakly classical primary submodules.

Theorem 2.17. Let M be an R-module and N be a proper submodule of M. The following
conditions are equivalent:

1. N is weakly classical primary;

2. For every a, b ∈ R, (N :M ab) ⊆ (0 :M ab) ∪ (N :M a) ∪
(

∪t≥1(N :M bt)
)

;

3. For every a ∈ R and m ∈ M with am /∈ N, (N :R am) ⊆ (0 :R am) ∪
√

(N :R m);

4. For every a ∈ R and m ∈ M with am /∈ N, (N :R am) = (0 :R am) or

(N :R am) ⊆
√

(N :R m);

5. For every a ∈ R and every ideal I of R and m ∈ M with 0 6= aIm ⊆ N, either

am ∈ N or I ⊆
√

(N :R m);

6. For every ideal I of R and m ∈ M with I *
√

(N :R m), (N :R Im) = (0 :R Im)
or (N :R Im) = (N :R m);

7. For every pair of ideals I, J of R and m ∈ M with 0 6= I Jm ⊆ N, either Im ⊆ N

or J ⊆
√

(N :R m).

Proof. (1)⇒(2) Suppose that N is a weakly classical primary submodule of M.
Let m ∈ (N :M ab). Then abm ∈ N. If abm = 0, then m ∈ (0 :M ab). As-
sume that abm 6= 0. Hence am ∈ N or btm ∈ N for some t ≥ 1. Therefore
m ∈ (N :M a) or m ∈ ∪t≥1(N :M bt). Consequently, (N :M ab) ⊆
(0 :M ab) ∪ (N :M a) ∪

(

∪t≥1(N :M bt)
)

.
(2)⇒(3) Let am /∈ N for some a ∈ R and m ∈ M. Assume that x ∈ (N :R am).
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Then axm ∈ N, and so m ∈ (N :M ax). Since am /∈ N, then m /∈ (N :M a).
Thus by part (2), m ∈ (0 :M ax) or m ∈ ∪t≥1(N :M xt), whence x ∈ (0 :R am) or

x ∈
√

(N :R m). Therefore (N :R am) ⊆ (0 :R am) ∪
√

(N :R m).
(3)⇒(4) By the fact that if an ideal (a subgroup) is the union of two ideals (two
subgroups), then it is equal to one of them.
(4)⇒(5) Suppose that for some a ∈ R, an ideal I of R and m ∈ M, 0 6= aIm ⊆ N.
Hence I ⊆ (N :R am) and I * (0 :R am). If am ∈ N, then we are done. So, assume

that am /∈ N. Therefore by part (4) we have that I ⊆
√

(N :R m).

(5)⇒(6) Assume that I is an ideal of R and m ∈ M such that I *
√

(N :R m).
Let x ∈ (N :R Im). Thus xIm ⊆ N. If xIm = 0, then x ∈ (0 :R Im). If
xIm 6= 0, then by part (5) we have xm ∈ N and so x ∈ (N :R m). Hence
(N :R Im) = (0 :R Im) ∪ (N :R m). Consequently (N :R Im) = (0 :R Im) or
(N :R Im) = (N :R m).
(6)⇒(7) Let 0 6= I Jm ⊆ N for some ideals I, J of R and m ∈ M with
J *

√

(N :R m). Therefore I ⊆ (N :R Jm). On the other hand part (6) implies
that either (N :R Jm) = (0 :R Jm) or (N :R Jm) = (N :R m). The former cannot
hold, because I Jm 6= 0. Hence the second case implies that Im ⊆ N.
(7)⇒(1) Is trivial.

Theorem 2.18. Let N be a weakly classical primary submodule of M and suppose that
(a, b, m) is a classical primary triple-zero of N for some a, b ∈ R and m ∈ M. Then the
following conditions hold:

1. abN = 0.

2. a(N :R M)m = 0.

3. b(N :R M)m = 0.

4. (N :R M)2m = 0.

5. a(N :R M)N = 0.

6. b(N :R M)N = 0.

Proof. (1) Suppose that abN 6= 0. Then there exists n ∈ N with abn 6= 0. Hence
0 6= ab(m + n) = abn ∈ N, so we conclude that a(m + n) ∈ N or bt(m + n) ∈ N
for some t ≥ 1. Thus am ∈ N or btm ∈ N, which contradicts the assumption that
(a, b, m) is classical primary triple-zero. Thus abN = 0.

(2) Let axm 6= 0 for some x ∈ (N :R M). Then a(b + x)m 6= 0, because
abm = 0. Since xm ∈ N, a(b + x)m ∈ N. Then am ∈ N or (b + x)tm ∈ N for some
t ≥ 1. Hence am ∈ N or btm ∈ N, which contradicts our hypothesis.

(3) The proof is similar to part (2).
(4) Assume that x1x2m 6= 0 for some x1, x2 ∈ (N :R M). Then by parts (2)

and (3), (a + x1)(b + x2)m = x1x2m 6= 0. Clearly (a + x1)(b + x2)m ∈ N. Then
(a + x1)m ∈ N or (b + x2)

tm ∈ N for some t ≥ 1. Therefore am ∈ N or btm ∈ N
which is a contradiction. Consequently (N :R M)2m = 0.

(5) Let axn 6= 0 for some x ∈ (N :R M) and n ∈ N. Therefore by parts (1)
and (2) we conclude that 0 6= a(b + x)(m + n) = axn ∈ N. So a(m + n) ∈ N
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or (b + x)t(m + n) ∈ N for some t ≥ 1. Hence am ∈ N or btm ∈ N. This
contradiction shows that a(N :R M)N = 0.

(6) Similart to part (5).

A submodule N of an R-module M is called a nilpotent submodule if
(N :R M)kN = 0 for some positive integer k (see [1]), and we say that m ∈ M
is nilpotent if Rm is a nilpotent submodule of M.

Theorem 2.19. If N is a weakly classical primary submodule of an R-module M that is
not classical primary, then (N :R M)2N = 0 and so N is nilpotent.

Proof. Suppose that N is a weakly classical primary submodule of M that is not
classical primary. Then there exists a classical primary triple-zero (a, b, m) of N
for some a, b ∈ R and m ∈ M. Assume that (N :R M)2N 6= 0. Hence there
are x1, x2 ∈ (N :R M) and n ∈ N such that x1x2n 6= 0. By Theorem 2.18,
0 6= (a + x1)(b + x2)(m + n) = x1x2n ∈ N. So (a + x1)(m + n) ∈ N or
(b + x1)

t(m + n) ∈ N for some t ≥ 1. Therefore am ∈ N or btm ∈ N, a con-
tradiction.

Remark 2.20. Let M be a multiplication R-module and K, L be submodules of M.
Then there are ideals I, J of R such that K = IM and L = JM. Thus KL = I JM =
IL. In particular KM = IM = K. Also, for any m ∈ M we define Km := KRm.
Hence Km = IRm = Im.

Corollary 2.21. If N is a weakly classical primary submodule of a multiplication
R-module M that is not classical primary, then N3 = 0.

Proof. Since M is multiplication, then N = (N :R M)M. Therefore by Theorem
2.19 and Remark 2.20, N3 = (N :R M)2N = 0.

Definition 2.22. ([17]) Let N be a proper submodule of a nonzero R-module M.
Then the M-radical of N, denoted by M-rad(N), is defined to be the intersec-
tion of all prime submodules of M containing N. If M has no prime submodule
containing N, then we say M-rad(N) = M.

Let M be an R-module. Assume that Nil(M) is the set of all nilpotent ele-
ments of M. If M is faithful, then Nil(M) is a submodule of M and if M is faithful
multiplication, then Nil(M) = Nil(R)M =

⋂

Q (= M-rad({0})), where the inter-
section runs over all prime submodules of M, [1, Theorem 6].

We recall from [14, Theorem 2.12] that if N is a proper submodule of a multi-

plication R-module M, then M-rad(N) =
√

(N :R M)M.

Theorem 2.23. Let N be a weakly classical primary submodule of M. If N is not classical
primary, then

1.
√

(N :R M) =
√

AnnR(M).

2. If M is multiplication, then M-rad(N)=M-rad({0}). If in addition M is faithful,
then M-rad(N) = Nil(M).
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Proof. (1) Assume that N is not classical primary. By Theorem 2.19, (N :R M)2N =
0. Then

(N :R M)3 = (N :R M)2(N :R M)

⊆ ((N :R M)2N :R M)

= (0 :R M),

and so (N :R M) ⊆
√

(0 :R M). Hence, we have
√

(N :R M) =
√

(0 :R M) =
√

AnnR(M).
(2) Suppose that M is multiplication. Then, by part (1) we have that

M-rad(N) =
√

(N :R M)M =
√

(0 :R M)M = M-rad({0}).

Now, if in addition M is faithful, then M-rad(N) = M-rad({0}) = Nil(M).

Regarding Remark 2.20 we have the next proposition.

Proposition 2.24. Let R be a Noetherian ring, M a multiplication R-module and N be
a proper submodule of M. The following conditions are equivalent:

1. N is a weakly classical primary submodule of M;

2. If 0 6= N1N2m ⊆ N for some submodules N1, N2 of M and m ∈ M, then either
N1m ⊆ N or Nt

2m ⊆ N for some t ≥ 1.

Proof. (1)⇒(2) Let 0 6= N1N2m ⊆ N for some submodules N1, N2 of M and
m ∈ M. Since M is multiplication, there are ideals I1, I2 of R such that N1 = I1M
and N2 = I2M. Therefore 0 6= N1N2m = I1 I2m ⊆ N, and so by Theorem 2.17

either I1m ⊆ N or I2 ⊆
√

(N :R m). In the first case we have N1m = I1m ⊆ N.
Notice the fact that every ideal of a Noetherian ring contains a power of its radi-

cal. So, in the second case, there exists some t ≥ 1 such that It
2 ⊆

(

√

(N :R m)
)t

⊆
(N :R m). Therefore Nt

2m = It
2m ⊆ N.

(2)⇒(1) Suppose that 0 6= I1 I2m ⊆ N for some ideals I1, I2 of R and some m ∈ M.
In part (2) set N1 := I1M and N2 := I2M. Therefore N1m = I1m ⊆ N or
Nt

2m = It
2m ⊆ N for some t ≥ 1. Consequently N is a weakly classical primary

submodule of M.

3 Weakly classical primary submodules of modules over spe-

cific rings

First, we recall the two concepts of u-rings and um-rings and then investigate
weakly classical primary submodules over these rings.

Definition 3.1. ([20]) A commutative ring R is a u-ring provided R has the prop-
erty that an ideal that is contained in a finite union of ideals must be contained in
one of those ideals; and a um-ring is a ring R with the property that an R-module
which is equal to a finite union of submodules must be equal to one of them.
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Proposition 3.2. Let M be an R-module and N be a weakly classical primary submodule
of M.Then

1. For every a, b ∈ R and m ∈ M,

(N :R abm) = (0 :R abm) ∪ (N :R am) ∪
(

∪t≥1(N :R btm)
)

;

2. If R is a u-ring, then for every a, b ∈ R and m ∈ M, (N :R abm) = (0 :R abm) or
(N :R abm) = (N :R am) or (N :R abm) = (N :R btm) for some t ≥ 1.

Proof. (1) Let a, b ∈ R and m ∈ M. Suppose that r ∈ (N :R abm). Then
ab(rm) ∈ N. If ab(rm) = 0, then r ∈ (0 :R abm). Therefore we assume that
ab(rm) 6= 0. So, either a(rm) ∈ N or bt(rm) ∈ N for some t ≥ 1. Thus, either
r ∈ (N :R am) or r ∈ (N :R btm) for some t ≥ 1. Consequently (N :R abm) =
(0 :R abm) ∪ (N :R am) ∪

(

∪t≥1(N :R btm)
)

.
(2) Apply part (1).

Lemma 3.3. A ring R is a um-ring if and only if M ⊆
n
⋃

i=1
Mi, where Mi’s are some

R-modules and n is a positive integer implies that M ⊆ Mi for some 1 ≤ i ≤ n.

Proof. (⇐) It is clear.

(⇒) Suppose that R is a um-ring. Let M ⊆
n
⋃

i=1
Mi for some R-modules M1, M2, . . .

, Mn. Then M =
n
⋃

i=1
(Mi ∩ M) and so M = Mi ∩ M for some 1 ≤ i ≤ n. Therefore

M ⊆ Mi for some 1 ≤ i ≤ n.

Theorem 3.4. Let R be a um-ring, M be an R-module and N be a proper submodule of
M. The following conditions are equivalent:

1. N is weakly classical primary;

2. For every a, b ∈ R, (N :M ab) = (0 :M ab) or (N :M ab) = (N :M a) or
(N :M ab) = (N :M bt) for some t ≥ 1;

3. For every a, b ∈ R and every submodule L of M, 0 6= abL ⊆ N implies that
aL ⊆ N or btL ⊆ N for some t ≥ 1;

4. For every a ∈ R and every submodule L of M with aL * N, (N :R aL) =

(0 :R aL) or (N :R aL) ⊆
√

(N :R L);

5. For every a ∈ R, every ideal I of R and every submodule L of M, 0 6= aIL ⊆ N

implies that aL ⊆ N or I ⊆
√

(N :R L);

6. For every ideal I of R and every submodule L of M with I *
√

(N :R L),
(N :R IL) = (0 :R IL) or (N :R IL) = (N :R L);

7. For every pair of ideals I, J of R and every submodule L of M, 0 6= I JL ⊆ N

implies that IL ⊆ N or J ⊆
√

(N :R L).
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Proof. Similar to that of Theorem 2.17.

Remark 3.5. The zero submodule of the Z-module Z6, is a weakly classical pri-
mary submodule (weakly primary ideal) of Z6. Notice that 2 · 3 ∈ 6Z, but neither

2 ∈ 6Z nor 3 ∈
√

6Z = 2Z ∩ 3Z. Therefore (0 :Z Z6) = 6Z is not a weakly pri-
mary ideal of Z.

Proposition 3.6. Let R be a um-ring, M be an R-module and N be a proper submodule
of M. If N is a weakly classical primary submodule of M, then (N :R L) is a weakly
primary ideal of R for every faithful submodule L of M that is not contained in N.

Proof. Assume that N is a weakly classical primary submodule of M and L is a
faithful submodule of M such that L * N. Let 0 6= ab ∈ (N :R L) for some
a, b ∈ R. Then 0 6= abL ⊆ N, because L is faithful. Hence Theorem 3.4 implies

that aL ⊆ N or btL ⊆ N for some t ≥ 1, i.e., a ∈ (N :R L) or b ∈
√

(N :R L).
Consequently (N :R L) is a weakly primary ideal of R.

Lemma 3.7. Let R be a ring and Q be a proper ideal of R. The following conditions are
equivalent:

1. Q is a weakly primary ideal of R;

2. For every element a ∈ R\Q, either (Q :R a) = (0 :R a) or (Q :R a) ⊆
√

Q;

3. For every a ∈ R and every ideal I of R, 0 6= aI ⊆ Q implies that either a ∈ Q or
I ⊆

√
Q;

4. For every ideal I of R with I *
√

Q, either (Q :R I) = (0 :R I) or (Q :R I) = Q;

5. For every pair of ideals I, J of R, 0 6= I J ⊆ Q implies that either I ⊆ Q or J ⊆ √
Q.

Proof. (1)⇒(2) Assume that Q is a weakly primary ideal of R. Let a ∈ R\Q and
x ∈ (Q :R a). Then ax ∈ Q. If ax = 0, then x ∈ (0 :R a). Suppose that ax 6= 0. So
x ∈

√
Q. Hence (Q :R a) ⊆ (0 :R a) ∪

√
Q. Therefore either (Q :R a) = (0 :R a) or

(Q :R a) ⊆ √
Q.

(2)⇒(3) Suppose that for some a ∈ R and ideal I of R, 0 6= aI ⊆ Q. Thus
I ⊆ (Q :R a). Since aI 6= 0, then (Q :R a) 6= (0 :R a). Then, part (2) implies
that I ⊆ (Q :R a) ⊆ √

Q.
(3)⇒(4) Suppose that I *

√
Q for some ideal I of R. Let x ∈ (Q :R I). Then

xI ⊆ Q. If xI = 0, then x ∈ (0 :R I). If xI 6= 0, then by part (3) we have that
x ∈ Q. Hence (Q :R I) = (0 :R I) ∪ Q. Consequently (Q :R I) = (0 :R I) or
(Q :R I) = Q.
(4)⇒(5) Assume that I, J are ideals of R such that 0 6= I J ⊆ Q. Then I ⊆ (Q :R J).
Suppose that J *

√
Q. Thus part (4) implies that (Q :R J) = (0 :R J) or

(Q :R J) = Q. Since I J 6= 0, then we have only (Q :R J) = Q, and so I ⊆ Q.
(5)⇒(1) is straightforward.

Theorem 3.8. Let R be a Noetherian um-ring, M be a faithful multiplication R-module
and N be a proper submodule of M. The following conditions are equivalent:

1. N is a weakly classical primary submodule of M;
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2. If 0 6= N1N2N3 ⊆ N for some submodules N1, N2, N3 of M, then either
N1N3 ⊆ N or Nt

2N3 ⊆ N for some t ≥ 1;

3. If 0 6= N1N2 ⊆ N for some submodules N1, N2 of M, then either N1 ⊆ N or
Nt

2 ⊆ N for some t ≥ 1;

4. N is a weakly primary submodule of M;

5. (N :R M) is a weakly primary ideal of R.

Proof. (1)⇒(2) Let 0 6= N1N2N3 ⊆ N for some submodules N1, N2, N3 of M. Since
M is multiplication, there exist ideals I1, I2 of R such that N1 = I1M and N2 =
I2M. Therefore 0 6= I1 I2N3 ⊆ N. Since R is Noetherian, Theorem 2.24 implies
that I1N3 ⊆ N or It

2N3 ⊆ N for some t ≥ 1. Thus, either N1N3 ⊆ N or Nt
2N3 ⊆ N.

(2)⇒(3) is easy.
(3)⇒(4) Suppose that 0 6= IK ⊆ N for some ideal I of R and some submodule K
of M. It is sufficient to set N1 := K and N2 := IM in part (3).
(4)⇒(1) By Proposition 2.8.
(1)⇒(5) By Proposition 3.6.
(5)⇒(4) Let 0 6= IK ⊆ N for some ideal I of R and some submodule K of M.
Since M is multiplication, then there is an ideal J of R such that K = JM. Hence
0 6= J I ⊆ (N :R M) which by Lemma 3.7 implies that either J ⊆ (N :R M) or

I ⊆
√

(N :R M). If I ⊆
√

(N :R M), the we are done. If J ⊆ (N :R M), then
K = JM ⊆ N.

Proposition 3.9. Let R be a Noetherian um-ring. Let M be a faithful multiplication
R-module and N a submodule of M. Then the following conditions are equivalent:

1. N is a weakly classical primary submodule;

2. (N :R M) is a weakly primary ideal of R;

3. N = IM for some weakly primary ideal I of R.

Proof. (1) ⇔ (2) . By Theorem 3.8.
(2) ⇒ (3) Since (N :R M) is a weakly primary ideal and N = (N :R M) M, then
condition (3) holds.
(3) ⇒ (2) By the fact that every multiplication module over a Noetherian ring
is a Noetherian module, M is Noetherian and so finitely generated. Suppose
that N = IM for some weakly primary ideal I of R. Since M is a multiplication
module, we have N = (N : M) M. Therefore N = IM = (N : M) M and so
I = (N : M), because by [22, Corollary to Theorem 9] M is cancellation.

Theorem 3.10. Let R be a um-ring and M be an R-module.

1. If F is a flat R-module and N is a weakly classical primary submodule of
M such that F ⊗ N 6= F ⊗ M, then F ⊗ N is a weakly classical primary
submodule of F ⊗ M.

2. Suppose that F is a faithfully flat R-module. Then N is a weakly classical
primary submodule of M if and only if F ⊗ N is a weakly classical primary
submodule of F ⊗ M.
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Proof. (1) Let a, b ∈ R. Then by Theorem 3.4, either (N :M ab) = (0 :M ab) or
(N :M ab) = (N :M a) or (N :M ab) =

(

N :M bt
)

for some t ≥ 1. Assume that
(N :M ab) = (0 :M ab). Then by [5, Lemma 3.2],

(F ⊗ N :F⊗M ab) = F ⊗ (N :M ab) = F ⊗ (0 :M ab)

= (F ⊗ 0 :F⊗M ab) = (0 :F⊗M ab) .

Now, suppose that (N :M ab) = (N :M a). Again by [5, Lemma 3.2],

(F ⊗ N :F⊗M ab) = F ⊗ (N :M ab) = F ⊗ (N :M a)

= (F ⊗ N :F⊗M a) .

With a similar argument we can show that if (N :M ab) =
(

N :M bt
)

for some
t ≥ 1, then (F ⊗ N :F⊗M ab) =

(

F ⊗ N :F⊗M bt
)

. Consequently by Theorem 3.4
we deduce that F ⊗ N is a weakly classical primary submodule of F ⊗ M.

(2) Let N be a weakly classical primary submodule of M and assume that

F ⊗ N = F ⊗ M. Then 0 → F ⊗ N
⊆→ F ⊗ M → 0 is an exact sequence. Since F

is a faithfully flat module, 0 → N
⊆→ M → 0 is an exact sequence. So N = M,

which is a contradiction. So F ⊗ N 6= F ⊗ M. Then F ⊗ N is a weakly classical
primary submodule by (1). Now for the converse, let F ⊗ N be a weakly classi-
cal primary submodule of F ⊗ M. We have F ⊗ N 6= F ⊗ M and so N 6= M. Let
a, b ∈ R. Then by Theorem 3.4, (F ⊗ N :F⊗M ab) = (0 :F⊗M ab) or
(F ⊗ N :F⊗M ab) = (F ⊗ N :F⊗M a) or (F ⊗ N :F⊗M ab) =

(

F ⊗ N :F⊗M bt
)

for
some t ≥ 1. Suppose that (F ⊗ N :F⊗M ab) = (0 :F⊗M ab). Hence

F ⊗ (N :M ab) = (F ⊗ N :F⊗M ab) = (0 :F⊗M ab)

= (F ⊗ 0 :F⊗M ab) = F ⊗ (0 :M ab) .

Thus 0 → F ⊗ (0 :M ab)
⊆→ F ⊗ (N :M ab) → 0 is an exact sequence. Since F is

a faithfully flat module, 0 → (0 :M ab)
⊆→ (N :M ab) → 0 is an exact sequence

which implies that (N :M ab) = (0 :M ab). With a similar argument we can de-
duce that if (F ⊗ N :F⊗M ab) = (F ⊗ N :F⊗M a) or (F ⊗ N :F⊗M ab) =
(

F ⊗ N :F⊗M bt
)

for some t ≥ 1, then (N :M ab) = (N :M a) or (N :M ab) =
(

N :M bt
)

. Consequently N is a weakly classical primary submodule of M by
Theorem 3.4.

Corollary 3.11. Let R be a um-ring, M be an R-module and X be an indeterminate. If
N is a weakly classical primary submodule of M, then N[X] is a weakly classical primary
submodule of M[X].

Proof. Assume that N is a weakly classical primary submodule of M. Notice that
R[X] is a flat R-module. Then by Theorem 3.10, R[X] ⊗ N ≃ N[X] is a weakly
classical primary submodule of R[X] ⊗ M ≃ M[X].
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4 Weakly classical primary submodules in direct products of

modules

Let R be a ring and M1, M2 be two R-modules. Then M = M1 × M2 is an R-
module, and for R-submodules N1 of M1 and N2 of M2, N = N1 × N2 is an
R-submodule of M.

Theorem 4.1. Let M1, M2 be R-modules and N1 be a proper submodule of M1. Then the
following conditions are equivalent:

1. N = N1 × M2 is a weakly classical primary submodule of M = M1 × M2;

2. N1 is a weakly classical primary submodule of M1 and for each r, s ∈ R and
m1 ∈ M1 we have

rsm1 = 0, rm1 /∈ N1, s /∈
√

(N1 : m1) ⇒ rs ∈ AnnR(M2).

Proof. (1)⇒(2) Suppose that N = N1 × M2 is a weakly classical primary submod-
ule of M = M1 × M2. Let r, s ∈ R and m1 ∈ M1 be such that 0 6= rsm1 ∈ N1.
Then (0, 0) 6= rs(m1, 0) ∈ N. Thus r(m1, 0) ∈ N or st(m1, 0) ∈ N for some
t ≥ 1, and so rm1 ∈ N1 or stm1 ∈ N1 for some t ≥ 1. Consequently N1 is a
weakly classical primary submodule of M1. Now, assume that rsm1 = 0 for some

r, s ∈ R and m1 ∈ M1 such that rm1 /∈ N1 and s /∈
√

(N1 : m1). Suppose that
rs /∈ AnnR(M2). Therefore there exists m2 ∈ M2 such that rsm2 6= 0. Hence
(0, 0) 6= rs(m1, m2) ∈ N, and so r(m1, m2) ∈ N or st(m1, m2) ∈ N for some t ≥ 1.
Thus rm1 ∈ N1 or stm1 ∈ N1 for some t ≥ 1, which is a contradiction. Conse-
quently rs ∈ AnnR(M2).
(2)⇒(1) Let r, s ∈ R and (m1, m2) ∈ M = M1 × M2 be such that (0, 0) 6= rs(m1, m2)
∈ N = N1 × M2. First assume that rsm1 6= 0. Then by part (2), rm1 ∈ N1 or
stm1 ∈ N1 for some t ≥ 1. So r(m1, m2) ∈ N or st(m1, m2) ∈ N, and thus we
are done. If rsm1 = 0, then rsm2 6= 0. Therefore rs /∈ AnnR(M2), and so part (2)
implies that either rm1 ∈ N1 or stm1 ∈ N1 for some t ≥ 1. Again we have that
r(m1, m2) ∈ N or st(m1, m2) ∈ N which shows N is a weakly classical primary
submodule of M.

The following two propositions have easy verifications.

Proposition 4.2. Let M1, M2 be R-modules and N1 be a proper submodule of M1. Then
N = N1 × M2 is a classical primary submodule of M = M1 × M2 if and only if N1 is a
classical primary submodule of M1.

Proposition 4.3. Let M1, M2 be R-modules and N1, N2 be proper submodules of M1, M2,
respectively. If N = N1 × N2 is a weakly classical primary (resp. classical primary) sub-
module of M = M1 × M2, then N1 is a weakly classical primary (resp. classical primary)
submodule of M1 and N2 is a weakly classical primary (resp. classical primary) submod-
ule of M2.
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Example 4.4. Let R = Z, M = Z × Z and N = pZ × qZ where p, q are two
distinct prime integers. Since pZ, qZ are prime ideals of Z, then pZ, qZ are
weakly classical primary Z-submodules of Z. Notice that (0, 0) 6= pq(1, 1) =
(pq, pq) ∈ N, but p(1, 1) /∈ N and qt(1, 1) /∈ N for every t ≥ 1. So N is not a
weakly classical primary submodule of M. This example shows that the converse
of Proposition 4.3 is not true.

Let Ri be a commutative ring with identity and Mi be an Ri-module, for
i = 1, 2. Let R = R1 × R2. Then M = M1 × M2 is an R-module and each submod-
ule of M is in the form of N = N1 × N2 for some submodules N1 of M1 and N2 of
M2.

Theorem 4.5. Let R = R1 × R2 be a decomposable ring and M = M1 × M2 be an R-
module where M1 is an R1-module and M2 is an R2-module. Suppose that N = N1 × M2

is a proper submodule of M. Then the following conditions are equivalent:

1. N1 is a classical primary submodule of M1;

2. N is a classical primary submodule of M;

3. N is a weakly classical primary submodule of M.

Proof. (1)⇒(2) Let (a1, a2)(b1, b2)(m1, m2) ∈ N for some (a1, a2), (b1, b2) ∈ R and
(m1, m2) ∈ M. Then a1b1m1 ∈ N1 so either a1m1 ∈ N1 or bt

1m1 ∈ N1 for some
t ≥ 1, which shows that either (a1, a2)(m1, m2) ∈ N or (b1, b2)

t(m1, m2) ∈ N.
Consequently N is a classical primary submodule of M.
(2)⇒(3) It is clear that every classical primary submodule is a weakly classical
primary submodule.
(3)⇒(1) Let abm ∈ N1 for some a, b ∈ R1 and m ∈ M1. We may assume that
0 6= m′ ∈ M2. Therefore 0 6= (a, 1)(b, 1)(m, m′) ∈ N. So either (a, 1)(m, m′) ∈ N
or (b, 1)t(m, m′) ∈ N for some t ≥ 1. Therefore am ∈ N1 or btm ∈ N1. Hence N1

is a classical primary submodule of M1.

Proposition 4.6. Let R = R1 × R2 be a decomposable ring and M = M1 × M2 be an
R-module where M1 is an R1-module and M2 is an R2-module. Suppose that N1, N2 are
proper submodules of M1, M2, respectively. If N = N1 × N2 is a weakly classical primary
submodule of M, then N1 is a weakly prime submodule of M1 and N2 is a weakly prime
submodule of M2.

Proof. Suppose that N = N1 × N2 is a weakly classical primary submodule of
M. By hypothesis, there exist x ∈ M1\N1 and y ∈ M2\N2. First, we show that
N1 is a weakly prime submodule of M1. Let 0 6= am1 ∈ N1 for some a ∈ R1

and m1 ∈ M1. Then 0 6= (1, 0) (a, 1) (m1, y) ∈ N1 × N2 = N. Notice that if
(a, 1) (m1, y) ∈ N1 × N2 = N, then y ∈ N2 which is a contradiction. So we get

(1, 0)t (m1, y) ∈ N1 × N2 = N for some t ≥ 1. Thus m1 ∈ N1. Hence N1 is a
weakly prime submodule of M1. A similar argument shows that N2 is a weakly
prime submodule of M2.

The following example shows that the converse of Proposition 4.6 is not true
in general.
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Example 4.7. Let R = M = Z × Z and N = pZ × qZ where p, q are two distinct
prime integers. Since pZ, qZ are prime ideals of Z, then pZ, qZ are weakly pri-
mary (weakly classical primary) Z-submodules of Z. Notice that
(0, 0) 6= (p, 1)(1, q)(1, 1) = (p, q) ∈ N, but (p, 1)(1, 1) /∈ N and (1, q)t(1, 1) /∈ N
for every t ≥ 1. So N is not a weakly classical primary submodule of M.

Theorem 4.8. Let R = R1 × R2 × R3 be a decomposable ring and M = M1 × M2 × M3

be an R-module where Mi is an Ri-module, for i = 1, 2, 3. If N is a weakly classical pri-
mary submodule of M, then either N = {(0, 0, 0)} or N is a classical primary submodule
of M.

Proof. Since {(0, 0, 0)} is a weakly classical primary submodule in any module,
we may assume that N = N1 × N2 × N3 6= {(0, 0, 0)}. We assume that N is not
a classical primary submodule of M and reach a contradiction. Without loss of
generality we may assume that N1 6= 0 and so there is 0 6= n ∈ N1. We claim that
N2 = M2 or N3 = M3. Suppose that there are m2 ∈ M2\N2 and m3 ∈ M3\N3. Get
r ∈ (N2 :R2

M2) and s ∈ (N3 :R3
M3). Since

(0, 0, 0) 6= (1, r, 1)(1, 1, s)(n, m2, m3) = (n, rm2, sm3) ∈ N,

then (1, r, 1)(n, m2, m3) = (n, rm2, m3) ∈ N or (1, 1, s)t(n, m2, m3) = (n, m2, stm3)
∈ N for some t ≥ 1. Therefore either m3 ∈ N3 or m2 ∈ N2, a contradiction.
Hence N = N1 × M2 × N3 or N = N1 × N2 × M3. Let N = N1 × M2 × N3. Then
(0, 1, 0) ∈ (N :R M). Clearly (0, 1, 0)2N 6= {(0, 0, 0)}. So
(N :R M)2N 6= {(0, 0, 0)} which is a contradiction, by Theorem 2.19. In the
case when N = N1 × N2 × M3 we have that (0, 0, 1) ∈ (N :R M) and similar to
the previous case we reach a contradiction.
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