On weakly classical primary submodules

Hojjat Mostafanasab

Abstract

In this paper all rings are commutative with nonzero identity. Let M be
an R-module. A proper submodule N of M is called a classical primary sub-
module, if for each m € M and elementsa,b € R, abm € N implies that either
am € N or b'm € N for some t > 1. We introduce the notion of “weakly clas-
sical primary submodules”. A proper submodule N of M is a weakly classical
primary submodule if whenever a,b € R and m € M with 0 # abm € N, then
either am € N or b'm € N for some t > 1.

1 Introduction

Throughout this paper all rings are commutative with nonzero identity and all
modules are unitary. We recall that a proper ideal P (resp. Q) of a commutative
ring R is said to be prime (resp. primary) if whenever ab € P (resp. ab € Q) for
some a,b € R, thena € Porb € P (resp. eithera € Q or b € /Q). Several
authors have extended the notion of prime ideals to modules, see, for example
[11, 16, 18]. Let M be a module over a commutative ring R. A proper submodule
N of M is called prime if fora € Rand m € M, am € N implies that m € N
ora € (N:x M) ={r € R|rM C N}. Anderson and Smith [3] said that a
proper ideal P of a ring R is weakly prime if whenever a,b € R with 0 # ab € P,
thena € Por b € P. Weakly prime submodules were introduced by Ebrahimi
and Farzalipour in [13]. A proper submodule N of M is called weakly prime if for
a € Randm € M with0 # am € N, eitherm € Nora € (N ;g M). In[12],
Ebrahimi and Farzalipour said that a proper ideal Q of a commutative ring R is
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weakly primary if whenever a,b € R, then 0 # ab € Q implies that eithera € Q
or b € /Q. Also, they said that a proper submodule N of M is weakly primary if
fora € Rand m € M with 0 # am € N, eitherm € Nora € /(N g M). A
proper submodule N of M is called a classical prime submodule, if for each m € M
and a,b € R, abm € N implies that am € N or bm € N. This notion of classical
prime submodules has been extensively studied by Behboodi in [7, 8] (see also,
[9], in which, the notion of classical prime submodules is named “weakly prime
submodules”). For more information on classical prime submodules, the reader is
referred to [4, 5, 10]. In [19] the authors introduced the concept of weakly classical
prime submodules. A proper submodule N of an R-module M is called a weakly
classical prime submodule if whenever a,b € Rand m € M with 0 # abm € N, then
am € N or bm € N. Baziar and Behboodi [6] defined a classical primary submodule
in M as a proper submodule N of M such that if abm € N, where a,b € R and
m € M, then either am € N or b'm € N for some t > 1. In this paper we introduce
the concept of weakly classical primary submodules. A proper submodule N of
an R-module M is called a weakly classical primary submodule if whenever a,b € R
and m € M with 0 # abm € N, thenam € N or b'm € N for some t > 1. Clearly,
every classical primary submodule is a weakly classical primary submodule.
The annihilator of M which is denoted by Anng(M) is (0 :x M). Further-
more, for every m € M, (0 :g m) is denoted by Anng(m). When Anng(M) = 0,
M is called a faithful R-module. An R-module M is called a multiplication mod-
ule it every submodule N of M has the form IM for some ideal I of R, see [14].
Note that, since I C (N :g M) then N = IM C (N :g M)M C N. So that
N = (N :x M)M. Finitely generated faithful multiplication modules are cancel-
lation modules [22, Corollary to Theorem 9], where an R-module M is defined
to be a cancellation module if IM = JM for ideals I and | of R implies I = |. Let
N and K be submodules of a multiplication R-module M with N = 1M and
K = I, M for some ideals I; and I; of R. The product of N and K denoted by NK
is defined by NK = [;[,M. Then by [2, Theorem 3.4], the product of N and K
is independent of presentations of N and K. Clearly, NK is a submodule of M
and NK C N N K (see [2]). Let N be a proper submodule of a nonzero R-module
M. We recall from [17] that the M-radical of N, denoted by M-rad(N), is defined
to be the intersection of all prime submodules of M containing N. If M has no
prime submodule containing N, then we say M-rad(N) = M. It is shown in [14,
Theorem 2.12] that if N is a proper submodule of a multiplication R-module M,
then M-rad(N) = /(N :g M)M. In [20], Quartararo et al. said that a commuta-
tive ring R is a u-ring provided R has the property that an ideal that is contained
in a finite union of ideals must be contained in one of those ideals; and a um-ring
is a ring R with the property that an R-module which is equal to a finite union of
submodules must be equal to one of them. They show that every Bézout ring is a
u-ring. Moreover, they proved that every Priifer domain is a u-domain. Also, any
ring which contains an infinite field as a subring is a u-ring, [21, Exercise 3.63]. In
[15], Gottlieb investigated submodules covered by finite unions of submodules.
Among many results in this paper, it is shown (Theorem 2.17) that N is a
weakly classical primary submodule of an R-module M if and only if for every
pair of ideals I, | of R and m € M with 0 # IJm C N, either Im C N or
J € /(N :g m). Itis proved (Theorem 2.19) that if N is a weakly classical primary



On weakly classical primary submodules 745

submodule of an R-module M that is not classical primary, then (N :x M)?N = 0.
It is shown (Theorem 3.4) that over a um-ring R, N is a weakly classical primary
submodule of an R-module M if and only if for every pair of ideals I, | of R and
submodule L of M with 0 # IJL C N, either IL C Nor] C /(N :rL). LetR
be a um-ring, M be an R-module and F be a faithfully flat R-module. It is shown
(Theorem 3.10) that N is a weakly classical primary submodule of M if and only
if F ® N is a weakly classical primary submodule of F @ M. Let R = Ry X Ry X R3
be a decomposable ring and M = M; x M, x M3 be an R-module where M, is
an R;-module, for i = 1,2,3. In Theorem 4.8 it is proved that if N is a weakly
classical primary submodule of M, then either N = {(0,0,0)} or N is a classical
primary submodule of M.

2 Properties of weakly classical primary submodules

Notice that for an R-module M, the zero submodule {0} is always a weakly clas-
sical primary submodule. In the following example, we give a module in which
the zero submodule is not classical primary.

Example 2.1. Let R = Z and M = Z, D Z;D Q where p, g are two distinct
prime integers. Note that pq(1,1,0) = (0,0,0), but p(1,1,0) # (0,0,0) and
q'(1,1,0) # (0,0,0) for every t > 1. So the zero submodule of M is not
classical primary. Hence the two concepts of classical primary submodules and
of weakly classical primary submodules are different in general.

For an R-module M, the set of zero-divisors of M is denoted by Zg (M).

Theorem 2.2. Let M be an R-module, N be a submodule of M and S be a multiplicative
subset of R.

1. If N is a weakly classical primary submodule of M such that (N :x M) NS = @,
then S™IN is a weakly classical primary submodule of S~' M.

2. If STIN is a weakly classical primary submodule of S™'M such that
SNZR(N) = Qand SN Zr(M/N) = @, then N is a weakly classical primary
submodule of M.

Proof. (1) Let N be a weakly classical primary submodule of M and
(N:g M) NS = @. Suppose that ¥ # 221 ¢ G-IN for some a1,a, € R,

S§1 52 83
s1,82,83 € Sand m € M. Then there exists s € S such that sajapm € N. If

. g_la_zm_sglgzm _Q . . . . s
sajaym = 0, then S 55y = sspsas; — 104 contradiction. Since N is a weakly classi

cal primary submodule, then we have a; (sm) € N or a(sm) € N for some t > 1.
Thus {12 = F% € ST'Nor (:—;)tg = Z:é:; € S7IN. Consequently S™!N is a
weakly classical primary submodule of S~ M.

(2) Suppose that S~!N is a weakly classical primary submodule of S~!M and
SNZRr(N) = @and SNZr(M/N) = @. Leta,b € R and m € M such that
0 # abm € N. Then %%% € STIN. If %%% = %, then there exists s € S such that
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sabm = 0 which contradicts SN Zgr(N) = @. Therefore %%% # 9, and so either
t
i1T € S~IN or (%) Te S—IN for some t > 1. Assume that i1T € S—IN. So there

exists u € S such that uam € N. But SNZr(M/N) = @, whence am € N. If

t
(%) TE S~IN for somet > 1, then there exists v € S such that vbtm € N. Again

SNZr(M/N) = @ implies that b'm € N. Consequently N is a weakly classical
primary submodule of M. m

Theorem 2.3. Let M be an R-module and N a proper submodule of M.

1. If N is a weakly classical primary submodule of M, then (N :g m) is a weakly
primary ideal of R for every m € M\N with Anng(m) = 0.

2. If (N :g m) is a weakly primary ideal of R for every m € M\N, then N is a weakly
classical primary submodule of M.

Proof. (1) Suppose that N is a weakly classical primary submodule. Let m € M\N
with Anng(m) = 0,and 0 # ab € (N :g m) for some a,b € R. Then 0 # abm € N.
Soam € N or b'm € N forsomet > 1,ie,a € (N:gm)orb € /(N :g m).
Consequently (N :g m) is a weakly primary ideal of R.

(2) Assume that (N :g m) is a weakly primary ideal of R for every m € M\N.
LetQ # abm € N forsomem € Manda,b € R. If m € N, then we are done. So we
assume that m ¢ N. Hence 0 # ab € (N :g m) implies that eithera € (N :g m) or
b' € (N :g m) for some t > 1. Therefore either am € N or b'm € N, and so N is a
weakly classical primary submodule of M. n

We recall that M is a torsion-free R-module if and only if for every 0 # m €
M, Anng(m) = 0. As a direct consequence of Theorem 2.3 the following result
follows.

Corollary 2.4. Let M be a torsion-free R-module and N a proper submodule of M.
Then N is a weakly classical primary submodule of M if and only if (N :g m) is a weakly
primary ideal of R for every m € M\N.

Theorem 2.5. Let f : M — M’ be a homomorphism of R-modules.

1. Suppose that f is a monomorphism. If N’ is a weakly classical primary submodule
of M’ with f~Y(N") # M, then f~1(N') is a weakly classical primary submodule
of M.

2. Suppose that f is an epimorphism. If N is a weakly classical primary submodule of
M containing Ker(f), then f(N) is a weakly classical primary submodule of M'.

Proof. (1) Suppose that N’ is a weakly classical primary submodule of M’ with
fUN") # M. Let0 # abm € f~'(N’) for some a,b € Rand m € M. Since
f is a monomorphism, 0 # f (abm) € N’. So we get 0 # abf(m) € N’. Hence
f(am) = af(m) € N' or f(b'm) = b'f(m) € N’ for some t > 1. Thus
am € fYN') or b'm € f~Y(N'). Therefore f~1(N’) is a weakly classical
primary submodule of M.
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(2) Assume that N is a weakly classical primary submodule of M. Leta,b € R
and m’ € M’ be such that 0 # abm’ € f(N). By assumption there exists m &
M such that m" = f(m) and so f(abm) € f(N). Since Ker(f) € N, we have
0 # abm € N. It implies that am € N or btm € N for some t > 1. Hence
am’ € f(N) or b'm’ € f(N). Consequently f(N) is a weakly classical primary
submodule of M. ]

As an immediate consequence of Theorem 2.5(2) we have the following corol-
lary.

Corollary 2.6. Let M be an R-module and L C N be submodules of M. If N is a weakly
classical primary submodule of M, then N /L is a weakly classical primary submodule of
M/L.

Theorem 2.7. Let K and N be submodules of M with K C N C M. If K is a weakly
classical primary submodule of M and N /K is a weakly classical primary submodule of
M/K, then N is a weakly classical primary submodule of M.

Proof. Leta,b € R,m € Mand 0 # abm € N. If abm € K, thenam € K C N or
for some t > 1, b'm € K C N as it is needed. Thus, assume that abm ¢ K. Then
0 # ab(m + K) € N/K, and so a(m + K) € N/K or b*(m + K) € N/K for some
t > 1. It means that am € N or b'm € N, which completes the proof. n

Proposition 2.8. Let N be a proper submodule of an R-module M. If N is a weakly
primary submodule of M, then N is a weakly classical primary submodule of M.

Proof. Assume that N is a weakly primary submodule of M. Leta,b € R and
m € M such that 0 # abm € N. Therefore either bm € N ora € /(N :g M).
In the first case we reach the claim. In the second case there exists t > 1 such
that a'M C N and so a'm € N. Consequently N is a weakly classical primary
submodule. n

Corollary 2.9. Let R be a ring and I be a proper ideal of R.

1. rlisaweakly classical primary submodule of g R if and only if I is a weakly primary
ideal of R.

2. Every proper ideal of R is weakly primary if and only if for every R-module M and
every proper submodule N of M, N is a weakly classical primary submodule of M.

Proof. (1) Let rI be a weakly classical primary submodule of gR. Then by Theo-
rem 2.3(1), (I :x 1) = I is a weakly primary ideal of R. For the converse, notice
that rI is a weakly primary submodule of gR if and only if I is a weakly primary
ideal of R. Now, apply Proposition 2.8.

(2) Assume that every proper ideal of R is weakly primary. Let N be a proper
submodule of an R-module M. Since for every m € M\N, (N :x m) is a proper
ideal of R, then it is a weakly primary ideal of R. Hence by Theorem 2.3(2), N is
a weakly classical primary submodule of M. We have the converse immediately
by part (1). n

The following example shows that the converse of Proposition 2.8 is not true.
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Example 2.10. Let R = Zand M = Z, P Z D Z where p is a prime integer. Con-
sider the submodule N = {0} @{0} @ Z of M. Notice that (0,0,0) # p(1,0,1) =
(0,0,p) € N,but (1,0,1) ¢ N. Also p'(1,1,1) ¢ N for every t > 1, which shows
that p ¢ (N :z M). Therefore N is not a weakly primary submodule of M. Now,
assume that m,n,z,w € Z and X € Z, be such that (0,0,0) # mn(x,z,w) € N.
Hence mnx = 0 and mnz = 0. Therefore p|mnx and z = 0. So p|m or p|nx.
If p|m, then m(%X,z,w) = (mx,0,mw) = (0,0,mw) € N. Similarly, if p|nx, then
n(x,z,w) = (nx,0,nw) = (0,0,nw) € N. Consequently N is a weakly classical
prime submodule and so it is a weakly classical primary submodule.

Proposition 2.11. Let M be a cyclic R-module. Then a proper submodule N of M is a
weakly primary submodule if and only if it is a weakly classical primary submodule.

Proof. By Proposition 2.8, the “only if” part holds. Let M = Rm for some m € M
and N be a weakly classical primary submodule of M. Suppose that
0 # rx € N for somer € R and x € M. Then there exists an element s € R
such that x = sm. Therefore 0 # rx = srm € N and since N is a weakly classical
primary submodule, x = sm € N or rtm € N for some t > 1. Hence x € N or

! € (N :x M). Consequently, either x € N orr € /(N :g M) and so N is a
weakly primary submodule of M. m

Definition 2.12. Let N be a proper submodule of M and a,b € R, m € M. If N

is a weakly classical primary submodule and abm = 0,am ¢ N, b ¢ /(N g m),
then (a, b, m) is called a classical primary triple-zero of N.

Theorem 2.13. Let N be a weakly classical primary submodule of a finitely generated
R-module M and suppose that abK C N for some a,b € R and some submodule K of
M. If (a, b, k) is not a classical primary triple-zero of N for any k € K, then aK C N or
b'K C N for some t > 1.

Proof. Suppose that (a,b,k) is not a classical primary triple-zero of N for any
k € K. Assume on the contrary that aK ¢ N and b ¢ /(N :g K). Then there
exists k; € K such that ak; ¢ N, and since M is finitely generated, there exists
ko € Ksuch thatb & /(N :r ky). If abk; # 0, then we have b € /(N :g kq), be-
cause ak; ¢ N and N is a weakly classical primary submodule of M. If abk; = 0,
then since ak; ¢ N and (a, b, kq) is not a classical primary triple-zero of N, we con-
clude once again that b € /(N :g k1). By a similar argument, since (4, b, k») is not
a classical primary triple-zero and b ¢ /(N :r k), then we deduce that ak, € N.
By our hypothesis, ab(k; + k) € N and (a,b, k1 + kz) is not a classical primary
triple-zero of N. Hence we have either a(k; +k;) € Norb € /(N g ky + ko). If

a(ky + ky) = aky + aky € N, then since ak, € N, we have ak; € N, a contradic-

tion. If b € \/N :r k1 + k), thensince b € \/(N g k1), wehaveb € /(N sz

which again is a contradiction. Thus aK C N or b'K C N for some t > 1.

Definition 2.14. Let N be a weakly classical primary submodule of an R-module
M and suppose that IJK C N for some ideals I, | of R and some submodule K of
M. We say that N is a free classical primary triple-zero with respect to IJK if (a, b, k)
is not a classical primary triple-zero of N foranya € I,b € J,and k € K.
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Remark 2.15. Let N be a weakly classical primary submodule of M and suppose
that IJK C N for some ideals I, | of R and some submodule K of M such that N
is a free classical primary triple-zero with respect to IJK. Thena € I,b € |, and
k € K implies that either ak € N or b'k € N for some t > 1.

Corollary 2.16. Let N be a weakly classical primary submodule of a finitely generated
R-module M and suppose that IJK C N for some ideals I, | of R and some submodule
K of M. If N is a free classical primary triple-zero with respect to I]K, then IK C N or

] € V(N g K).

Proof. Suppose that N is a free classical primary triple-zero with respect to IJK.
Assume that IK Z N and | € /(N :g K). Then there exista € [ and b € | with
aK ¢ N and b°K g N for every s > 1. Since abK C N and N is free classical
primary triple-zero with respect to IJK, then Theorem 2.13 implies that aK C N
or 'K C N for some t > 1, which is a contradiction. Consequently IK C N or

IQ\/(N:RK). ]

Let M be an R-module and N a submodule of M. For every a € R,
{m € M | am € N} is denoted by (N :p a). It is easy to see that (N :j1 a) is
a submodule of M containing N.

In the next theorem we characterize weakly classical primary submodules.

Theorem 2.17. Let M be an R-module and N be a proper submodule of M. The following
conditions are equivalent:

[}

. N is weakly classical primary;

No

. Foreverya,b € R, (N :pab) C (0:p ab) U (N :pa) U (Ups1(N 1y bY));

3. For everya € Rand m € M witham ¢ N, (N :g am) C (0 :g am) U
(N :g m);

4. For every a € Rand m € M with am ¢ N, (N :g am) = (0 :g am) or
(N :g am) C /(N :g m);

5. For every a € R and every ideal I of R and m € M with 0 # alm C N, either

am € NorI C /(N :g m);

6. For everyideal I of Rand m € Mwith I ¢ \/(N :g m), (N :g Im) = (0 :g Im)
or (N :g Im) = (N :g m);

7. For every pair of ideals I, | of R and m € M with 0 # IJm C N, either Im C N

or ] C /(N g m).

Proof. (1)=(2) Suppose that N is a weakly classical primary submodule of M.
Let m € (N :p ab). Then abm € N. If abm = 0, then m € (0 :p; ab). As-
sume that abm # 0. Hence am € N or b'm € N for some t > 1. Therefore
m € (N:yqa) or m € Up1(N :p b). Consequently, (N :pp ab) C
(0 ‘M ab) U (N ‘M LZ) U (Ut21(N ‘M bt))

(2)=(@3) Letam ¢ N for some a € R and m € M. Assume that x € (N :g am).
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Then axm € N, and so m € (N :j ax). Since am ¢ N, then m ¢ (N :p a).
Thus by part (2), m € (0 :p ax) or m € U1 (N :p x'), whence x € (0 :g am) or
x € /(N :g m). Therefore (N :g am) C (0 :g am) U /(N :g m).

(3)=>(4) By the fact that if an ideal (a subgroup) is the union of two ideals (two
subgroups), then it is equal to one of them.

(4)=(5) Suppose that for some a € R, anideal I of Rand m € M, 0 # alm C N.
Hence I C (N :g am)and I € (0:g am). If am € N, then we are done. So, assume
that am ¢ N. Therefore by part (4) we have that I C /(N :g m).

(5)=(6) Assume that I is an ideal of R and m € M such that I ¢ /(N :g m).
Let x € (N :g Im). Thus xIm C N. If xIm = 0, then x € (0 :gx Im). If
xIm # 0, then by part (5) we have xm € N and so x € (N :x m). Hence
(N :g Im) = (0 :g Im)U (N :g m). Consequently (N :g Im) = (0 :g Im) or
(N ‘R Im) = (N ‘R m)

(6)=(7) Let 0 # IJm C N for some ideals I, | of R and m € M with
J € /(N :g m). Therefore I C (N :g Jm). On the other hand part (6) implies
that either (N :g Jm) = (0 :g Jm) or (N :g Jm) = (N :g m). The former cannot
hold, because I]Jm # 0. Hence the second case implies that Im C N.

(7)=(1) Is trivial. [ |

Theorem 2.18. Let N be a weakly classical primary submodule of M and suppose that
(a,b,m) is a classical primary triple-zero of N for some a,b € R and m € M. Then the
following conditions hold:

1. abN = 0.
a(N :x M)m
b(N ‘R M)ﬂ’l

a(N :g M)N

S

=0
=0
(N :g M)?m = 0.
=0
=0

b(N :x M)N

Proof. (1) Suppose that abN # 0. Then there exists n € N with abn # 0. Hence
0 # ab(m +n) = abn € N, so we conclude that a(m +n) € Norb'(m+n) € N
for some t > 1. Thus am € N or b'm € N, which contradicts the assumption that
(a,b,m) is classical primary triple-zero. Thus abN = 0.

(2) Let axm # 0 for some x € (N :x M). Then a(b+ x)m # 0, because
abm = 0. Since xm € N, a(b+ x)m € N. Thenam € N or (b + x)'m € N for some
t > 1. Hence am € N or b'm € N, which contradicts our hypothesis.

(3) The proof is similar to part (2).

(4) Assume that x1x,m # 0 for some x1,x, € (N :g M). Then by parts (2)
and (3), (a + x1)(b + x2)m = x1xom # 0. Clearly (a + x1)(b + x2)m € N. Then
(a+ x1)m € N or (b+ x3)'m € N for some t > 1. Therefore am € N or b'm € N
which is a contradiction. Consequently (N :x M)*m = 0.

(5) Let axn # 0 for some x € (N :g M) and n € N. Therefore by parts (1)
and (2) we conclude that 0 # a(b+ x)(m +n) = axn € N. Soa(m+n) € N
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or (b+ x)!(m+n) € N for some t > 1. Hence am € N or b'm € N. This
contradiction shows that a(N :g M)N = 0.
(6) Similart to part (5). [ |

A submodule N of an R-module M is called a nilpotent submodule if
(N :g M)*N = 0 for some positive integer k (see [1]), and we say that m € M
is nilpotent if Rm is a nilpotent submodule of M.

Theorem 2.19. If N is a weakly classical primary submodule of an R-module M that is
not classical primary, then (N :x M)2N = 0and so N is nilpotent.

Proof. Suppose that N is a weakly classical primary submodule of M that is not
classical primary. Then there exists a classical primary triple-zero (a,b, m) of N
for some a,b € Rand m € M. Assume that (N :g M)?’N # 0. Hence there
are x1,x, € (N :g M) and n € N such that xyxon # 0. By Theorem 2.18,
0 # (a+x1)(b+x2)(m+n) = xyxon € N. So (a+x1)(m+mn) € N or
(b+ x1)!(m +n) € N for some t > 1. Therefore am € N or b'm € N, a con-
tradiction. n

Remark 2.20. Let M be a multiplication R-module and K, L be submodules of M.
Then there are ideals I, ] of R such that K = IM and L = JM. Thus KL = I|]M =
IL. In particular KM = IM = K. Also, for any m € M we define Km := KRm.
Hence Km = IRm = Im.

Corollary 2.21. If N is a weakly classical primary submodule of a multiplication
R-module M that is not classical primary, then N> = 0.

Proof. Since M is multiplication, then N = (N :g M)M. Therefore by Theorem
2.19 and Remark 2.20, N*> = (N :x M)?N = 0. m

Definition 2.22. ([17]) Let N be a proper submodule of a nonzero R-module M.
Then the M-radical of N, denoted by M-rad(N), is defined to be the intersec-
tion of all prime submodules of M containing N. If M has no prime submodule
containing N, then we say M-rad(N) = M.

Let M be an R-module. Assume that Nil(M) is the set of all nilpotent ele-
ments of M. If M is faithful, then Nil(M) is a submodule of M and if M is faithful
multiplication, then Nil(M) = Nil(R)M = N Q (= M-rad({0})), where the inter-
section runs over all prime submodules of M, [1, Theorem 6].

We recall from [14, Theorem 2.12] that if N is a proper submodule of a multi-
plication R-module M, then M-rad(N) = /(N :g M)M.

Theorem 2.23. Let N be a weakly classical primary submodule of M. If N is not classical
primary, then

1. /(N ;g M) = \/Anng(M).

2. If M is multiplication, then M-rad(N)=M-rad ({0}). If in addition M is faithful,
then M-rad(N) = Nil(M).
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Proof. (1) Assume that N is not classical primary. By Theorem 2.19, (N :g M)?N =
0. Then
(N :g M)® = (N :g M)3(N :zg M)

C ((N:x M)®N g M)
= (0:x M),
and so (N :x M) C /(0 :g M). Hence, we have /(N :x M) = /(0 :x M) =

v Anng (M).

(2) Suppose that M is multiplication. Then, by part (1) we have that

M-rad(N) = /(N :g M)M = /(0 :g M)M = M-rad({0}).

Now, if in addition M is faithful, then M-rad(N) = M-rad({0}) = Nil(M). =
Regarding Remark 2.20 we have the next proposition.

Proposition 2.24. Let R be a Noetherian ring, M a multiplication R-module and N be
a proper submodule of M. The following conditions are equivalent:

1. N is a weakly classical primary submodule of M;

2. If0 # NiNom C N for some submodules N1, Ny of M and m € M, then either
Nym C N or Nim C N for some t > 1.

Proof. (1)=(2) Let 0 # NjNym C N for some submodules Nj, N, of M and
m € M. Since M is multiplication, there are ideals Iy, I; of R such that Ny = [M
and N, = L M. Therefore 0 # NyNom = I1Iom C N, and so by Theorem 2.17
either 1m C N or I C /(N :g m). In the first case we have Nym = Ijm C N.
Notice the fact that every ideal of a Noetherian ring contains a power of its radi-

t
cal. So, in the second case, there exists some ¢ > 1 such that Ié - ( (N :g m)) -

(N :g m). Therefore Nim = Iim C N.

(2)=(1) Suppose that 0 # I;I,m C N for some ideals Iy, I of R and some m € M.
In part (2) set Ny := 1M and Ny := I[bM. Therefore Nym = Ijm C N or
Nim = Iim C N for some t > 1. Consequently N is a weakly classical primary
submodule of M. [ |

3 Weakly classical primary submodules of modules over spe-
cific rings

First, we recall the two concepts of u-rings and um-rings and then investigate
weakly classical primary submodules over these rings.

Definition 3.1. ([20]) A commutative ring R is a u-ring provided R has the prop-
erty that an ideal that is contained in a finite union of ideals must be contained in
one of those ideals; and a um-ring is a ring R with the property that an R-module
which is equal to a finite union of submodules must be equal to one of them.
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Proposition 3.2. Let M be an R-module and N be a weakly classical primary submodule
of M.Then

1. Foreverya,b € Randm € M,

(N :g abm) = (0 :g abm) U (N :g am) U (Ug>1(N g b'm)) ;

2. If Ris a u-ring, then for every a,b € Rand m € M, (N :g abm) = (0 :g abm) or
(N :g abm) = (N :g am) or (N :g abm) = (N :g b'm) for some t > 1.

Proof. (1) Let a,b € R and m € M. Suppose that r € (N :g abm). Then
ab(rm) € N. If ab(rm) = 0, then r € (0 :g abm). Therefore we assume that
ab(rm) # 0. So, either a(rm) € N or b'(rm) € N for some t > 1. Thus, either
r € (N :g am) orr € (N :g b'm) for some t > 1. Consequently (N :g abm) =
(0 :g abm) U (N :g am) U (Up>1(N g b'm)).

(2) Apply part (1). |

Lemma 3.3. A ring R is a um-ring if and only if M C U M;, where M;’s are some
R-modules and n is a positive integer implies that M C M; for somel <i<mn.

Proof. (<) Itis clear.
n
(=) Suppose that R is a um-ring. Let M C U M; for some R-modules My, Mo, . ..
, M. Then M = U (M; M) and so M = M; N M for some 1 < i < n. Therefore

=1
MCMforsome1<z<n n

Theorem 3.4. Let R be a um-ring, M be an R-module and N be a proper submodule of
M. The following conditions are equivalent:

~

. N is weakly classical primary;

2. For every a,b € R, (N :pr ab) = (0 :pr ab) or (N :p ab) = (N :p a) or
(N :ppab) = (N :p bY) for somet > 1;

3. For every a,b € R and every submodule L of M, 0 # abL C N implies that
alL C N or b'L C N for some t > 1;

4. For every a € R and every submodule L of M with aL ¢ N, (N :g al) =
(0:gaL)or (N :gal) C /(N :r L);

5. For every a € R, every ideal I of R and every submodule L of M, 0 # alL C N
implies that alL. C N or I C /(N :g L);

6. For every ideal I of R and every submodule L of M with I ¢ /(N :g L),
(N:rIL)=(0:gr IL)or (N:g IL) = (N :g L);

7. For every pair of ideals I, | of R and every submodule L of M, 0 # IJL C N
implies that IL C Nor ] C /(N :g L).



754 H. Mostafanasab

Proof. Similar to that of Theorem 2.17. n

Remark 3.5. The zero submodule of the Z-module Zg, is a weakly classical pri-
mary submodule (weakly primary ideal) of Zs. Notice that2 -3 € 6Z, but neither
2 € 6Znor 3 € \/6Z = 27 N 3Z. Therefore (0 :z Zg) = 6Z is not a weakly pri-
mary ideal of Z.

Proposition 3.6. Let R be a um-ring, M be an R-module and N be a proper submodule
of M. If N is a weakly classical primary submodule of M, then (N :g L) is a weakly
primary ideal of R for every faithful submodule L of M that is not contained in N.

Proof. Assume that N is a weakly classical primary submodule of M and L is a
faithful submodule of M such that L ¢ N. Let 0 # ab € (N :x L) for some
a,b € R. Then 0 # abL C N, because L is faithful. Hence Theorem 3.4 implies
that al. C N or b'L C N for some t > 1,ie,a € (N :g L)orb € /(N g L).
Consequently (N :g L) is a weakly primary ideal of R. ]

Lemma 3.7. Let R be a ring and Q be a proper ideal of R. The following conditions are
equivalent:

1. Q is a weakly primary ideal of R;

2. For every element a € R\Q, either (Q :gr a) = (0:g a) or (Q :g a) C VQ;
3. For every a € R and every ideal I of R, 0 # al C Q implies that either a € Q or

I1CVQ
4. For every ideal I of Rwith I ¢ \/Q, either (Q :x I) = (0:g ) or (Q :r I) = Q;
5. For every pair of ideals I, ] of R, 0 # 1] C Q implies that either | C Qor ] C 1/Q.

Proof. (1)=-(2) Assume that Q is a weakly primary ideal of R. Leta € R\Q and
x € (Q:ra). Thenax € Q. Ifax = 0, then x € (0 :g a). Suppose that ax # 0. So
x € v/Q. Hence (Q :g a) C (0:g a) U+/Q. Therefore either (Q :gr a) = (0 :g a) or
(Q:ra) CVQ.

(2)=(3) Suppose that for some 2 € R and ideal I of R, 0 # al C Q. Thus
I C (Q :r a). Since al # 0, then (Q :g a) # (0 :g a). Then, part (2) implies
that I C (Q:ra) C vO.

(3)=-(4) Suppose that I ¢ /Q for some ideal I of R. Let x € (Q :g I). Then
xI € Q. If xI =0, then x € (0 :g I). If xI # 0, then by part (3) we have that
x € Q. Hence (Q :x I) = (0 :g I) UQ. Consequently (Q :zx I) = (0 :g I) or
Q1) =0

(4)=(5) Assume that I, ] are ideals of R such that 0 # I] C Q. Then I C (Q :r J).
Suppose that | ¢ /Q. Thus part (4) implies that (Q :x J) = (0 :x J) or
(Q:rJ) = Q. Since I] # 0, then we have only (Q :r J]) = Q,andso I C Q.
(5)=(1) is straightforward. [ |

Theorem 3.8. Let R be a Noetherian um-ring, M be a faithful multiplication R-module
and N be a proper submodule of M. The following conditions are equivalent:

1. N is a weakly classical primary submodule of M;
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2.If0 # NiN;N3 C N for some submodules N1, Np, N3 of M, then either
Ni1N3 C N or NiN3 C N for some t > 1;

3. If 0 # NiN, C N for some submodules N1, Ny of M, then either Ny C N or
N} C N for some t > 1;

4. N is a weakly primary submodule of M;
5. (N :r M) is a weakly primary ideal of R.

Proof. (1)=>(2) Let 0 # N1N;N3 C N for some submodules Nj, Np, N3 of M. Since
M is multiplication, there exist ideals I}, I of R such that Ny = [ M and N, =
ILbM. Therefore 0 # I;I,N3 C N. Since R is Noetherian, Theorem 2.24 implies
that ;N3 C N or IN3 C N for some ¢ > 1. Thus, either NyN3 C N or NJN3 C N.
(2)=(3) is easy.

(3)=(4) Suppose that 0 # IK C N for some ideal I of R and some submodule K
of M. It is sufficient to set N1 := K and Np := IM in part (3).

(4)=(1) By Proposition 2.8.

(1)=-(5) By Proposition 3.6.

(5)=(4) Let 0 # IK C N for some ideal I of R and some submodule K of M.
Since M is multiplication, then there is an ideal | of R such that K = JM. Hence
0 # JI C (N :g M) which by Lemma 3.7 implies that either ] C (N :g M) or

I C /(NgM). If I C /(N :g M), the we are done. If ] C (N :x M), then

K=]JMCN.

Proposition 3.9. Let R be a Noetherian um-ring. Let M be a faithful multiplication
R-module and N a submodule of M. Then the following conditions are equivalent:

1. N is a weakly classical primary submodule;
2. (N :g M) is a weakly primary ideal of R;
3. N = IM for some weakly primary ideal I of R.

Proof. (1) < (2). By Theorem 3.8.

(2) = (3) Since (N :g M) is a weakly primary ideal and N = (N :g M) M, then
condition (3) holds.

(3) = (2) By the fact that every multiplication module over a Noetherian ring
is a Noetherian module, M is Noetherian and so finitely generated. Suppose
that N = IM for some weakly primary ideal I of R. Since M is a multiplication
module, we have N = (N : M) M. Therefore N = IM = (N: M) M and so
I = (N : M), because by [22, Corollary to Theorem 9] M is cancellation. m

Theorem 3.10. Let R be a um-ring and M be an R-module.

1. If F is a flat R-module and N is a weakly classical primary submodule of
M such that F® N # F ® M, then F ® N is a weakly classical primary
submodule of F ® M.

2. Suppose that F is a faithfully flat R-module. Then N is a weakly classical
primary submodule of M if and only if F ® N is a weakly classical primary
submodule of F ® M.
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Proof. (1) Leta,b € R. Then by Theorem 3.4, either (N :p ab) = (0 :p1 ab) or
(N :pmab) = (N :pa) or (N:pab) = (N b') for some t > 1. Assume that
(N :p ab) = (0 :pp ab). Then by [5, Lemma 3.2],

(F®N:F®Mab):P®(N:Mab):P®(0:Mab)

= (F®O ‘FoM ab) = (0 ‘FoM ab) .

Now, suppose that (N :p; ab) = (N :p; a). Again by [5, Lemma 3.2],
(F@NF®Mﬂb) :F®(NMLZI?) :F®(NMQ)

=(P®N:F®Ma).

With a similar argument we can show that if (N :p; ab) = (N : b') for some
t > 1, then (FQN :pgpmab) = (F® N :pgpm b') . Consequently by Theorem 3.4
we deduce that F ® N is a weakly classical primary submodule of F ® M.

(2) Let N be a weakly classical primary submodule of M and assume that

F®N =F®M. Then0—>F®NgF®M—>0isanexactsequence. Since F

is a faithfully flat module, 0 — N 5 M — 0is an exact sequence. So N = M,
which is a contradiction. So F @ N # F ® M. Then F ® N is a weakly classical
primary submodule by (1). Now for the converse, let F ® N be a weakly classi-
cal primary submodule of F @ M. Wehave F® N # F ® M and so N # M. Let
a,b € R. Then by Theorem 3.4, (F® N :pgmab) = (0:pgpab) or
(P @ N rem ab) = (P & N reom a) or (P & N :reom ab) = (F & N reoMm bt) for
some t > 1. Suppose that (F ® N :pgp ab) = (0 :pgp ab). Hence

F® (N ‘M ab) = (P @ N reoMm ab) = (0 ‘reM ab)

= (F®0:pepmab) = F® (0 :p ab).

Thus 0 — F® (0 :p1 ab) S5F® (N :pab) — 01is an exact sequence. Since F is

a faithfully flat module, 0 — (0 :ps ab) 5 (N :prab) — 0 is an exact sequence
which implies that (N :pr ab) = (0 :p ab). With a similar argument we can de-
duce that if (F® N:pgmab) = (F®N:pgma) or (FON pgpmab) =
(F®N :pgm b') for some t > 1, then (N :ppab) = (N:pa) or (N iy ab) =
(N :p b'). Consequently N is a weakly classical primary submodule of M by
Theorem 3.4. n

Corollary 3.11. Let R be a um-ring, M be an R-module and X be an indeterminate. If
N is a weakly classical primary submodule of M, then N[X] is a weakly classical primary
submodule of M[X].

Proof. Assume that N is a weakly classical primary submodule of M. Notice that
R[X] is a flat R-module. Then by Theorem 3.10, R[X] ® N ~ N[X] is a weakly
classical primary submodule of R[X] ® M ~ M[X]. ]
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4 Weakly classical primary submodules in direct products of
modules

Let R be a ring and M;, My be two R-modules. Then M = M; x M; is an R-
module, and for R-submodules N; of M; and N, of My, N = Nj X N is an
R-submodule of M.

Theorem 4.1. Let My, M, be R-modules and Ny be a proper submodule of M. Then the
following conditions are equivalent:

1. N = Nj x My is a weakly classical primary submodule of M = My x Mp;

2. Ni is a weakly classical primary submodule of My and for each r,s € R and
my € My we have

rsmy =0, rmy & Ny, s & /(N1 : my) = 15 € Anng(Ma).

Proof. (1)=-(2) Suppose that N = N; x M is a weakly classical primary submod-
ule of M = M x Mj. Letr,s € R and m; € M; be such that 0 # rsm; € Nj.
Then (0,0) # rs(m1,0) € N. Thus r(m1,0) € N or s(my,0) € N for some
t > 1, and so rm; € Nj or s'm; € Nj for some t > 1. Consequently Nj is a
weakly classical primary submodule of M;. Now, assume that rsm; = 0 for some
r,s € Rand m; € M such that rm; ¢ Ny and s ¢ /(N : mq). Suppose that
rs ¢ Anng(My). Therefore there exists mp, € M, such that rsmy # 0. Hence
(0,0) # rs(my,my) € N, and so r(my, my) € N or s!(my,my) € N for some t > 1.
Thus rm; € Nj or s‘m; € Nj for some t > 1, which is a contradiction. Conse-
quently rs € Anng(M>).

(2)=(1)Letr,s € Rand (my, my) € M = M; x Mj be such that (0,0) # rs(my, my)
€ N = Nj; X My. First assume that rsm; # 0. Then by part (2), rm; € Nj or
stmy € Nj for some t > 1. So r(my,my) € N or st(my,my) € N, and thus we
are done. If rsmy = 0, then rsmy # 0. Therefore rs ¢ Anng(M;), and so part (2)
implies that either rm; € Ny or s'm; € Nj for some t > 1. Again we have that
r(my,my) € N or s(my,my) € N which shows N is a weakly classical primary
submodule of M. [ |

The following two propositions have easy verifications.

Proposition 4.2. Let My, M, be R-modules and Ny be a proper submodule of M. Then
N = Nj X My is a classical primary submodule of M = My x My if and only if Ny is a
classical primary submodule of M;.

Proposition 4.3. Let M1, M, be R-modules and Ny, N; be proper submodules of My, M,
respectively. If N = Ny X Ny is a weakly classical primary (resp. classical primary) sub-
module of M = My X My, then Ny is a weakly classical primary (resp. classical primary)
submodule of My and Ny is a weakly classical primary (resp. classical primary) submod-
ule of M.
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Example 44. Let R = Z, M = Z x Z and N = pZ x qZ where p, g are two
distinct prime integers. Since pZ, qZ are prime ideals of Z, then pZ, qZ are
weakly classical primary Z-submodules of Z. Notice that (0,0) # pgq(1,1) =
(pg,p9) € N, but p(1,1) ¢ N and ¢4'(1,1) ¢ N for every t > 1. So N is not a
weakly classical primary submodule of M. This example shows that the converse
of Proposition 4.3 is not true.

Let R; be a commutative ring with identity and M; be an R;-module, for
i=1,2. Let R = Ry X Ry. Then M = M; X M, is an R-module and each submod-
ule of M is in the form of N = N; X N for some submodules N; of M; and N, of
Mo.

Theorem 4.5. Let R = Ry X Ry be a decomposable ring and M = My x M be an R-
module where M is an Ry-module and My is an Ry-module. Suppose that N = Ny x Mp
is a proper submodule of M. Then the following conditions are equivalent:

1. Nj is a classical primary submodule of My;
2. N is a classical primary submodule of M;
3. N is a weakly classical primary submodule of M.

Proof. (1)=(2) Let (a1,a2)(by,by)(m1,my) € N for some (ay,a3), (b1,bp) € R and
(mq,my) € M. Then a;bymy € Ny so either a;my € Nj or bﬁml € Nj for some
t > 1, which shows that either (ay,a2)(my,mz) € N or (by,bp)"(m1,my) € N.
Consequently N is a classical primary submodule of M.

(2)=(3) It is clear that every classical primary submodule is a weakly classical
primary submodule.

(8)=(1) Let abm € N; for some a,b € Ry and m € M;. We may assume that
0 # m’' € My. Therefore 0 # (a,1)(b,1)(m,m’) € N. So either (a,1)(m,m') € N
or (b,1)!(m,m") € N for some t > 1. Therefore am € Nj or b'm € N;. Hence N;
is a classical primary submodule of M;. n

Proposition 4.6. Let R = Ry x Ry be a decomposable ring and M = M; x M be an
R-module where M is an Ry-module and M is an Ry-module. Suppose that N1, Ny are
proper submodules of M1, My, respectively. If N = N x Ny is a weakly classical primary
submodule of M, then Ny is a weakly prime submodule of My and Ny is a weakly prime
submodule of M.

Proof. Suppose that N = N; x N, is a weakly classical primary submodule of
M. By hypothesis, there exist x € M;\N; and y € M,\N,. First, we show that
Nj is a weakly prime submodule of M;. Let 0 # am; € Nj for some a € Ry
and my € Mj. Then 0 # (1,0)(a,1) (m1,y) € N1 x N, = N. Notice that if
(a,1) (m1,y) € N1 x N = N, then y € N, which is a contradiction. So we get
(1,0)" (m1,y) € Ny x Ny = N for some t > 1. Thus m; € Nj. Hence Nj is a
weakly prime submodule of M;. A similar argument shows that N, is a weakly
prime submodule of M. n

The following example shows that the converse of Proposition 4.6 is not true
in general.
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Example 4.7. Let R = M = Z x Z and N = pZ x qZ where p, q are two distinct
prime integers. Since pZ, gqZ are prime ideals of Z, then pZ, gqZ are weakly pri-
mary (weakly classical primary) Z-submodules of Z. Notice that
(0,0) # (p,1)(L,9)(1,1) = (p,q) € N, but (p,1)(1,1) & N and (1,¢)(1,1) & N

for every t > 1. So N is not a weakly classical primary submodule of M.

Theorem 4.8. Let R = Ry X Ry X Rz be a decomposable ring and M = My x My x M3
be an R-module where M; is an R;-module, for i = 1,2,3. If N is a weakly classical pri-
mary submodule of M, then either N = {(0,0,0)} or N is a classical primary submodule
of M.

Proof. Since {(0,0,0)} is a weakly classical primary submodule in any module,
we may assume that N = Nj x N; x N3 # {(0,0,0)}. We assume that N is not
a classical primary submodule of M and reach a contradiction. Without loss of
generality we may assume that N; # 0 and so there is 0 # n € N;. We claim that
N, = M, or N3 = M3. Suppose that there are m, € M \N, and m3 € M3\ N3. Get
r € (Np :g, Mp) and s € (N3 :g, M3). Since

(0,0,0) # (1,7,1)(1,1,s)(n,mp, m3) = (n,rmy,sm3) € N,

then (1,7,1)(n, my, m3) = (n,rmy,m3) € N or (1,1,8)"(n,my, m3) = (n,my,s'ms)
€ N for some t > 1. Therefore either m3 € N3 or my € N, a contradiction.
Hence N = N1 XM2 X N3 or N = N1 X Nz XM3. Let N = N1 XM2 X N3. Then
(0,1,00 € (N :3x M). Clearly (0,1,002N # {(0,0,0)}.  So
(N :x M)2N # {(0,0,0)} which is a contradiction, by Theorem 2.19. In the
case when N = Nj x N x M3 we have that (0,0,1) € (N :x M) and similar to
the previous case we reach a contradiction. n
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