On weakly classical primary submodules

Hojjat Mostafanasab

Abstract

In this paper all rings are commutative with nonzero identity. Let M be an R-module. A proper submodule N of M is called a *classical primary submodule*, if for each $m \in M$ and elements $a, b \in R$, $abm \in N$ implies that either $am \in N$ or $b^tm \in N$ for some $t \geq 1$. We introduce the notion of "weakly classical primary submodules". A proper submodule N of M is a *weakly classical primary submodule* if whenever $a, b \in R$ and $m \in M$ with $0 \neq abm \in N$, then either $am \in N$ or $b^tm \in N$ for some $t \geq 1$.

1 Introduction

Throughout this paper all rings are commutative with nonzero identity and all modules are unitary. We recall that a proper ideal P (resp. Q) of a commutative ring R is said to be *prime* (resp. primary) if whenever $ab \in P$ (resp. $ab \in Q$) for some $a,b \in R$, then $a \in P$ or $b \in P$ (resp. either $a \in Q$ or $b \in \sqrt{Q}$). Several authors have extended the notion of prime ideals to modules, see, for example [11, 16, 18]. Let M be a module over a commutative ring R. A proper submodule N of M is called prime if for $a \in R$ and $m \in M$, $am \in N$ implies that $m \in N$ or $a \in (N :_R M) = \{r \in R \mid rM \subseteq N\}$. Anderson and Smith [3] said that a proper ideal P of a ring R is weakly prime if whenever $a,b \in R$ with $0 \neq ab \in P$, then $a \in P$ or $b \in P$. Weakly prime submodules were introduced by Ebrahimi and Farzalipour in [13]. A proper submodule N of M is called weakly prime if for $a \in R$ and $m \in M$ with $0 \neq am \in N$, either $m \in N$ or $a \in (N :_R M)$. In [12], Ebrahimi and Farzalipour said that a proper ideal Q of a commutative ring R is

Received by the editors in February 2015 - In revised form in August 2015. Communicated by S. Caenepeel.

²⁰¹⁰ Mathematics Subject Classification: Primary: 13A15; secondary: 13C99; 13F05.

Key words and phrases: Weakly primary submodule, Classical primary submodule, Weakly classical primary submodule.

weakly primary if whenever $a, b \in R$, then $0 \neq ab \in Q$ implies that either $a \in Q$ or $b \in \sqrt{\mathbb{Q}}$. Also, they said that a proper submodule N of M is weakly primary if for $a \in R$ and $m \in M$ with $0 \neq am \in N$, either $m \in N$ or $a \in \sqrt{(N :_R M)}$. A proper submodule N of M is called a *classical prime submodule*, if for each $m \in M$ and $a, b \in R$, $abm \in N$ implies that $am \in N$ or $bm \in N$. This notion of classical prime submodules has been extensively studied by Behboodi in [7, 8] (see also, [9], in which, the notion of classical prime submodules is named "weakly prime submodules"). For more information on classical prime submodules, the reader is referred to [4, 5, 10]. In [19] the authors introduced the concept of weakly classical prime submodules. A proper submodule N of an R-module M is called a weakly classical prime submodule if whenever $a, b \in R$ and $m \in M$ with $0 \neq abm \in N$, then $am \in N$ or $bm \in N$. Baziar and Behboodi [6] defined a classical primary submodule in M as a proper submodule N of M such that if $abm \in N$, where $a, b \in R$ and $m \in M$, then either $am \in N$ or $b^t m \in N$ for some t > 1. In this paper we introduce the concept of weakly classical primary submodules. A proper submodule N of an *R*-module *M* is called a *weakly classical primary submodule* if whenever $a, b \in R$ and $m \in M$ with $0 \neq abm \in N$, then $am \in N$ or $b^t m \in N$ for some $t \geq 1$. Clearly, every classical primary submodule is a weakly classical primary submodule.

The annihilator of M which is denoted by $Ann_R(M)$ is $(0:_R M)$. Furthermore, for every $m \in M$, $(0:_R m)$ is denoted by $Ann_R(m)$. When $Ann_R(M) = 0$, M is called a faithful R-module. An R-module M is called a multiplication mod*ule* if every submodule N of M has the form IM for some ideal I of R, see [14]. Note that, since $I \subseteq (N :_R M)$ then $N = IM \subseteq (N :_R M)M \subseteq N$. So that $N = (N :_R M)M$. Finitely generated faithful multiplication modules are cancellation modules [22, Corollary to Theorem 9], where an R-module M is defined to be a cancellation module if IM = IM for ideals I and I of R implies I = I. Let N and K be submodules of a multiplication R-module M with $N = I_1M$ and $K = I_2M$ for some ideals I_1 and I_2 of R. The product of N and K denoted by NKis defined by $NK = I_1I_2M$. Then by [2, Theorem 3.4], the product of N and K is independent of presentations of N and K. Clearly, NK is a submodule of M and $NK \subseteq N \cap K$ (see [2]). Let N be a proper submodule of a nonzero R-module M. We recall from [17] that the M-radical of N, denoted by M-rad(N), is defined to be the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then we say M-rad(N) = M. It is shown in [14, Theorem 2.12] that if *N* is a proper submodule of a multiplication *R*-module *M*, then M-rad $(N) = \sqrt{(N:_R M)}M$. In [20], Quartararo et al. said that a commutative ring *R* is a *u-ring* provided *R* has the property that an ideal that is contained in a finite union of ideals must be contained in one of those ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them. They show that every Bézout ring is a *u*-ring. Moreover, they proved that every Prüfer domain is a *u*-domain. Also, any ring which contains an infinite field as a subring is a *u*-ring, [21, Exercise 3.63]. In [15], Gottlieb investigated submodules covered by finite unions of submodules.

Among many results in this paper, it is shown (Theorem 2.17) that N is a weakly classical primary submodule of an R-module M if and only if for every pair of ideals I, J of R and $m \in M$ with $0 \neq IJm \subseteq N$, either $Im \subseteq N$ or $J \subseteq \sqrt{(N:_R m)}$. It is proved (Theorem 2.19) that if N is a weakly classical primary

submodule of an R-module M that is not classical primary, then $(N:_R M)^2 N = 0$. It is shown (Theorem 3.4) that over a um-ring R, N is a weakly classical primary submodule of an R-module M if and only if for every pair of ideals I, J of R and submodule L of M with $0 \neq IJL \subseteq N$, either $IL \subseteq N$ or $J \subseteq \sqrt{(N:_R L)}$. Let R be a um-ring, M be an R-module and R be a faithfully flat R-module. It is shown (Theorem 3.10) that R is a weakly classical primary submodule of R if and only if R is a weakly classical primary submodule of R is an R-module, for R in R

2 Properties of weakly classical primary submodules

Notice that for an R-module M, the zero submodule $\{0\}$ is always a weakly classical primary submodule. In the following example, we give a module in which the zero submodule is not classical primary.

Example 2.1. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}_p \oplus \mathbb{Z}_q \oplus \mathbb{Q}$ where p, q are two distinct prime integers. Note that $pq(\overline{1},\overline{1},0) = (\overline{0},\overline{0},0)$, but $p(\overline{1},\overline{1},0) \neq (\overline{0},\overline{0},0)$ and $q^t(\overline{1},\overline{1},0) \neq (\overline{0},\overline{0},0)$ for every $t \geq 1$. So the zero submodule of M is not classical primary. Hence the two concepts of classical primary submodules and of weakly classical primary submodules are different in general.

For an *R*-module *M*, the set of zero-divisors of *M* is denoted by $Z_R(M)$.

Theorem 2.2. *Let* M *be an* R-module, N *be a submodule of* M *and* S *be a multiplicative subset of* R.

- 1. If N is a weakly classical primary submodule of M such that $(N :_R M) \cap S = \emptyset$, then $S^{-1}N$ is a weakly classical primary submodule of $S^{-1}M$.
- 2. If $S^{-1}N$ is a weakly classical primary submodule of $S^{-1}M$ such that $S \cap Z_R(N) = \emptyset$ and $S \cap Z_R(M/N) = \emptyset$, then N is a weakly classical primary submodule of M.

Proof. (1) Let N be a weakly classical primary submodule of M and $(N:_R M) \cap S = \emptyset$. Suppose that $\frac{0}{1} \neq \frac{a_1}{s_1} \frac{a_2}{s_2} \frac{m}{s_3} \in S^{-1}N$ for some $a_1, a_2 \in R$, $s_1, s_2, s_3 \in S$ and $m \in M$. Then there exists $s \in S$ such that $sa_1a_2m \in N$. If $sa_1a_2m = 0$, then $\frac{a_1}{s_1} \frac{a_2}{s_2} \frac{m}{s_3} = \frac{sa_1a_2m}{ss_1s_2s_3} = \frac{0}{1}$, a contradiction. Since N is a weakly classical primary submodule, then we have $a_1(sm) \in N$ or $a_2^t(sm) \in N$ for some $t \geq 1$. Thus $\frac{a_1}{s_1} \frac{m}{s_3} = \frac{sa_1m}{ss_1s_3} \in S^{-1}N$ or $\left(\frac{a_2}{s_2}\right)^t \frac{m}{s_3} = \frac{sa_2^tm}{ss_2^ts_3} \in S^{-1}N$. Consequently $S^{-1}N$ is a weakly classical primary submodule of $S^{-1}M$.

(2) Suppose that $S^{-1}N$ is a weakly classical primary submodule of $S^{-1}M$ and $S \cap Z_R(N) = \emptyset$ and $S \cap Z_R(M/N) = \emptyset$. Let $a, b \in R$ and $m \in M$ such that $0 \neq abm \in N$. Then $\frac{a}{1}\frac{b}{1}\frac{m}{1} \in S^{-1}N$. If $\frac{a}{1}\frac{b}{1}\frac{m}{1} = \frac{0}{1}$, then there exists $s \in S$ such that

sabm=0 which contradicts $S\cap Z_R(N)=\emptyset$. Therefore $\frac{a}{1}\frac{b}{1}\frac{m}{1}\neq \frac{0}{1}$, and so either $\frac{a}{1}\frac{m}{1}\in S^{-1}N$ or $\left(\frac{b}{1}\right)^t\frac{m}{1}\in S^{-1}N$ for some $t\geq 1$. Assume that $\frac{a}{1}\frac{m}{1}\in S^{-1}N$. So there exists $u\in S$ such that $uam\in N$. But $S\cap Z_R(M/N)=\emptyset$, whence $am\in N$. If $\left(\frac{b}{1}\right)^t\frac{m}{1}\in S^{-1}N$ for some $t\geq 1$, then there exists $v\in S$ such that $vb^tm\in N$. Again $S\cap Z_R(M/N)=\emptyset$ implies that $b^tm\in N$. Consequently N is a weakly classical primary submodule of M.

Theorem 2.3. Let M be an R-module and N a proper submodule of M.

- 1. If N is a weakly classical primary submodule of M, then $(N :_R m)$ is a weakly primary ideal of R for every $m \in M \setminus N$ with $Ann_R(m) = 0$.
- 2. If $(N :_R m)$ is a weakly primary ideal of R for every $m \in M \setminus N$, then N is a weakly classical primary submodule of M.
- *Proof.* (1) Suppose that N is a weakly classical primary submodule. Let $m \in M \setminus N$ with $\operatorname{Ann}_R(m) = 0$, and $0 \neq ab \in (N :_R m)$ for some $a, b \in R$. Then $0 \neq abm \in N$. So $am \in N$ or $b^t m \in N$ for some $t \geq 1$, i.e., $a \in (N :_R m)$ or $b \in \sqrt{(N :_R m)}$. Consequently $(N :_R m)$ is a weakly primary ideal of R.
- (2) Assume that $(N :_R m)$ is a weakly primary ideal of R for every $m \in M \setminus N$. Let $0 \neq abm \in N$ for some $m \in M$ and $a, b \in R$. If $m \in N$, then we are done. So we assume that $m \notin N$. Hence $0 \neq ab \in (N :_R m)$ implies that either $a \in (N :_R m)$ or $b^t \in (N :_R m)$ for some $t \geq 1$. Therefore either $am \in N$ or $b^t m \in N$, and so N is a weakly classical primary submodule of M.

We recall that M is a torsion-free R-module if and only if for every $0 \neq m \in M$, $\operatorname{Ann}_R(m) = 0$. As a direct consequence of Theorem 2.3 the following result follows.

Corollary 2.4. Let M be a torsion-free R-module and N a proper submodule of M. Then N is a weakly classical primary submodule of M if and only if $(N :_R m)$ is a weakly primary ideal of R for every $m \in M \setminus N$.

Theorem 2.5. Let $f: M \to M'$ be a homomorphism of R-modules.

- 1. Suppose that f is a monomorphism. If N' is a weakly classical primary submodule of M' with $f^{-1}(N') \neq M$, then $f^{-1}(N')$ is a weakly classical primary submodule of M.
- 2. Suppose that f is an epimorphism. If N is a weakly classical primary submodule of M containing Ker(f), then f(N) is a weakly classical primary submodule of M'.
- *Proof.* (1) Suppose that N' is a weakly classical primary submodule of M' with $f^{-1}(N') \neq M$. Let $0 \neq abm \in f^{-1}(N')$ for some $a,b \in R$ and $m \in M$. Since f is a monomorphism, $0 \neq f(abm) \in N'$. So we get $0 \neq abf(m) \in N'$. Hence $f(am) = af(m) \in N'$ or $f(b^tm) = b^tf(m) \in N'$ for some $t \geq 1$. Thus $am \in f^{-1}(N')$ or $b^tm \in f^{-1}(N')$. Therefore $f^{-1}(N')$ is a weakly classical primary submodule of M.

(2) Assume that N is a weakly classical primary submodule of M. Let $a, b \in R$ and $m' \in M'$ be such that $0 \neq abm' \in f(N)$. By assumption there exists $m \in M$ such that m' = f(m) and so $f(abm) \in f(N)$. Since $Ker(f) \subseteq N$, we have $0 \neq abm \in N$. It implies that $am \in N$ or $b^tm \in N$ for some $t \geq 1$. Hence $am' \in f(N)$ or $b^tm' \in f(N)$. Consequently f(N) is a weakly classical primary submodule of M'.

As an immediate consequence of Theorem 2.5(2) we have the following corollary.

Corollary 2.6. Let M be an R-module and $L \subset N$ be submodules of M. If N is a weakly classical primary submodule of M, then N/L is a weakly classical primary submodule of M/L.

Theorem 2.7. Let K and N be submodules of M with $K \subset N \subset M$. If K is a weakly classical primary submodule of M and N/K is a weakly classical primary submodule of M/K, then N is a weakly classical primary submodule of M.

Proof. Let $a, b \in R$, $m \in M$ and $0 \neq abm \in N$. If $abm \in K$, then $am \in K \subset N$ or for some $t \geq 1$, $b^t m \in K \subset N$ as it is needed. Thus, assume that $abm \notin K$. Then $0 \neq ab(m+K) \in N/K$, and so $a(m+K) \in N/K$ or $b^t(m+K) \in N/K$ for some $t \geq 1$. It means that $am \in N$ or $b^t m \in N$, which completes the proof. ■

Proposition 2.8. Let N be a proper submodule of an R-module M. If N is a weakly primary submodule of M, then N is a weakly classical primary submodule of M.

Proof. Assume that N is a weakly primary submodule of M. Let $a, b \in R$ and $m \in M$ such that $0 \neq abm \in N$. Therefore either $bm \in N$ or $a \in \sqrt{(N:_R M)}$. In the first case we reach the claim. In the second case there exists $t \geq 1$ such that $a^tM \subseteq N$ and so $a^tm \in N$. Consequently N is a weakly classical primary submodule.

Corollary 2.9. *Let* R *be a ring and* I *be a proper ideal of* R.

- 1. $_RI$ is a weakly classical primary submodule of $_RR$ if and only if I is a weakly primary ideal of R.
- 2. Every proper ideal of R is weakly primary if and only if for every R-module M and every proper submodule N of M, N is a weakly classical primary submodule of M.
- *Proof.* (1) Let $_RI$ be a weakly classical primary submodule of $_RR$. Then by Theorem 2.3(1), $(I:_R1) = I$ is a weakly primary ideal of R. For the converse, notice that $_RI$ is a weakly primary submodule of $_RR$ if and only if I is a weakly primary ideal of R. Now, apply Proposition 2.8.
- (2) Assume that every proper ideal of R is weakly primary. Let N be a proper submodule of an R-module M. Since for every $m \in M \setminus N$, $(N :_R m)$ is a proper ideal of R, then it is a weakly primary ideal of R. Hence by Theorem 2.3(2), N is a weakly classical primary submodule of M. We have the converse immediately by part (1).

The following example shows that the converse of Proposition 2.8 is not true.

Example 2.10. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}_p \oplus \mathbb{Z} \oplus \mathbb{Z}$ where p is a prime integer. Consider the submodule $N = \{\overline{0}\} \oplus \{0\} \oplus \mathbb{Z}$ of M. Notice that $(\overline{0},0,0) \neq p(\overline{1},0,1) = (\overline{0},0,p) \in N$, but $(\overline{1},0,1) \notin N$. Also $p^t(\overline{1},1,1) \notin N$ for every $t \geq 1$, which shows that $p \notin (N :_{\mathbb{Z}} M)$. Therefore N is not a weakly primary submodule of M. Now, assume that $m,n,z,w \in \mathbb{Z}$ and $\overline{x} \in \mathbb{Z}_p$ be such that $(\overline{0},0,0) \neq mn(\overline{x},z,w) \in N$. Hence $\overline{mnx} = \overline{0}$ and mnz = 0. Therefore p|mnx and z = 0. So p|m or p|nx. If p|m, then $m(\overline{x},z,w) = (\overline{mx},0,mw) = (\overline{0},0,mw) \in N$. Similarly, if p|nx, then $n(\overline{x},z,w) = (\overline{nx},0,nw) = (\overline{0},0,nw) \in N$. Consequently N is a weakly classical prime submodule and so it is a weakly classical primary submodule.

Proposition 2.11. Let M be a cyclic R-module. Then a proper submodule N of M is a weakly primary submodule if and only if it is a weakly classical primary submodule.

Proof. By Proposition 2.8, the "only if" part holds. Let M = Rm for some $m \in M$ and N be a weakly classical primary submodule of M. Suppose that $0 \neq rx \in N$ for some $r \in R$ and $x \in M$. Then there exists an element $s \in R$ such that x = sm. Therefore $0 \neq rx = srm \in N$ and since N is a weakly classical primary submodule, $x = sm \in N$ or $r^tm \in N$ for some $t \geq 1$. Hence $x \in N$ or $r^t \in (N :_R M)$. Consequently, either $x \in N$ or $r \in \sqrt{(N :_R M)}$ and so N is a weakly primary submodule of M.

Definition 2.12. Let N be a proper submodule of M and $a, b \in R$, $m \in M$. If N is a weakly classical primary submodule and abm = 0, $am \notin N$, $b \notin \sqrt{(N :_R m)}$, then (a, b, m) is called a *classical primary triple-zero of* N.

Theorem 2.13. Let N be a weakly classical primary submodule of a finitely generated R-module M and suppose that $abK \subseteq N$ for some $a,b \in R$ and some submodule K of M. If (a,b,k) is not a classical primary triple-zero of N for any $k \in K$, then $aK \subseteq N$ or $b^tK \subseteq N$ for some $t \ge 1$.

Proof. Suppose that (a,b,k) is not a classical primary triple-zero of N for any $k \in K$. Assume on the contrary that $aK \nsubseteq N$ and $b \notin \sqrt{(N:_R K)}$. Then there exists $k_1 \in K$ such that $ak_1 \notin N$, and since M is finitely generated, there exists $k_2 \in K$ such that $b \notin \sqrt{(N:_R k_2)}$. If $abk_1 \neq 0$, then we have $b \in \sqrt{(N:_R k_1)}$, because $ak_1 \notin N$ and N is a weakly classical primary submodule of M. If $abk_1 = 0$, then since $ak_1 \notin N$ and (a,b,k_1) is not a classical primary triple-zero of N, we conclude once again that $b \in \sqrt{(N:_R k_1)}$. By a similar argument, since (a,b,k_2) is not a classical primary triple-zero and $b \notin \sqrt{(N:_R k_2)}$, then we deduce that $ak_2 \in N$. By our hypothesis, $ab(k_1 + k_2) \in N$ and $(a,b,k_1 + k_2)$ is not a classical primary triple-zero of N. Hence we have either $a(k_1 + k_2) \in N$ or $b \in \sqrt{(N:_R k_1 + k_2)}$. If $a(k_1 + k_2) = ak_1 + ak_2 \in N$, then since $ak_2 \in N$, we have $ak_1 \in N$, a contradiction. If $b \in \sqrt{(N:_R k_1 + k_2)}$, then since $b \in \sqrt{(N:_R k_1)}$, we have $b \in \sqrt{(N:_R k_2)}$, which again is a contradiction. Thus $aK \subseteq N$ or $b^tK \subseteq N$ for some $t \ge 1$.

Definition 2.14. Let N be a weakly classical primary submodule of an R-module M and suppose that $IJK \subseteq N$ for some ideals I, J of R and some submodule K of M. We say that N is a *free classical primary triple-zero with respect to IJK* if (a,b,k) is not a classical primary triple-zero of N for any $a \in I$, $b \in J$, and $k \in K$.

Remark 2.15. Let N be a weakly classical primary submodule of M and suppose that $IJK \subseteq N$ for some ideals I, J of R and some submodule K of M such that N is a free classical primary triple-zero with respect to IJK. Then $a \in I$, $b \in J$, and $k \in K$ implies that either $ak \in N$ or $b^tk \in N$ for some $t \ge 1$.

Corollary 2.16. Let N be a weakly classical primary submodule of a finitely generated R-module M and suppose that $IJK \subseteq N$ for some ideals I, J of R and some submodule K of M. If N is a free classical primary triple-zero with respect to IJK, then $IK \subseteq N$ or $J \subseteq \sqrt{(N:_R K)}$.

Proof. Suppose that N is a free classical primary triple-zero with respect to IJK. Assume that $IK \not\subseteq N$ and $J \not\subseteq \sqrt{(N:_R K)}$. Then there exist $a \in I$ and $b \in J$ with $aK \not\subseteq N$ and $b^sK \not\subseteq N$ for every $s \ge 1$. Since $abK \subseteq N$ and N is free classical primary triple-zero with respect to IJK, then Theorem 2.13 implies that $aK \subseteq N$ or $b^tK \subseteq N$ for some $t \ge 1$, which is a contradiction. Consequently $IK \subseteq N$ or $J \subseteq \sqrt{(N:_R K)}$.

Let M be an R-module and N a submodule of M. For every $a \in R$, $\{m \in M \mid am \in N\}$ is denoted by $(N :_M a)$. It is easy to see that $(N :_M a)$ is a submodule of M containing N.

In the next theorem we characterize weakly classical primary submodules.

Theorem 2.17. *Let* M *be an* R-module and N *be a proper submodule of* M. *The following conditions are equivalent:*

- 1. N is weakly classical primary;
- 2. For every $a, b \in R$, $(N :_M ab) \subseteq (0 :_M ab) \cup (N :_M a) \cup (\cup_{t>1} (N :_M b^t))$;
- 3. For every $a \in R$ and $m \in M$ with $am \notin N$, $(N :_R am) \subseteq (0 :_R am) \cup \sqrt{(N :_R m)}$;
- 4. For every $a \in R$ and $m \in M$ with $am \notin N$, $(N :_R am) = (0 :_R am)$ or $(N :_R am) \subseteq \sqrt{(N :_R m)}$;
- 5. For every $a \in R$ and every ideal I of R and $m \in M$ with $0 \neq aIm \subseteq N$, either $am \in N$ or $I \subseteq \sqrt{(N:_R m)}$;
- 6. For every ideal I of R and $m \in M$ with $I \nsubseteq \sqrt{(N:_R m)}$, $(N:_R Im) = (0:_R Im)$ or $(N:_R Im) = (N:_R m)$;
- 7. For every pair of ideals I, J of R and $m \in M$ with $0 \neq IJm \subseteq N$, either $Im \subseteq N$ or $J \subseteq \sqrt{(N :_R m)}$.

Proof. (1)⇒(2) Suppose that N is a weakly classical primary submodule of M. Let $m \in (N :_M ab)$. Then $abm \in N$. If abm = 0, then $m \in (0 :_M ab)$. Assume that $abm \neq 0$. Hence $am \in N$ or $b^tm \in N$ for some $t \geq 1$. Therefore $m \in (N :_M a)$ or $m \in \bigcup_{t \geq 1} (N :_M b^t)$. Consequently, $(N :_M ab) \subseteq (0 :_M ab) \cup (N :_M a) \cup (\bigcup_{t \geq 1} (N :_M b^t))$.

(2)⇒(3) Let $am \notin N$ for some $a \in R$ and $m \in M$. Assume that $x \in (N :_R am)$.

Then $axm \in N$, and so $m \in (N :_M ax)$. Since $am \notin N$, then $m \notin (N :_M a)$. Thus by part (2), $m \in (0:_M ax)$ or $m \in \bigcup_{t>1} (N:_M x^t)$, whence $x \in (0:_R am)$ or $x \in \sqrt{(N:_R m)}$. Therefore $(N:_R am) \subseteq (0:_R am) \cup \sqrt{(N:_R m)}$.

- $(3)\Rightarrow(4)$ By the fact that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them.
- (4)⇒(5) Suppose that for some $a \in R$, an ideal I of R and $m \in M$, $0 \neq aIm \subseteq N$. Hence $I \subseteq (N :_R am)$ and $I \not\subseteq (0 :_R am)$. If $am \in N$, then we are done. So, assume that $am \notin N$. Therefore by part (4) we have that $I \subseteq \sqrt{(N :_R m)}$.
- (5)⇒(6) Assume that *I* is an ideal of *R* and $m \in M$ such that $I \nsubseteq \sqrt{(N:_R m)}$. Let $x \in (N :_R Im)$. Thus $xIm \subseteq N$. If xIm = 0, then $x \in (0 :_R Im)$. If $xIm \neq 0$, then by part (5) we have $xm \in N$ and so $x \in (N :_R m)$. Hence $(N:_R Im) = (0:_R Im) \cup (N:_R m)$. Consequently $(N:_R Im) = (0:_R Im)$ or $(N:_R Im) = (N:_R m).$
- (6) \Rightarrow (7) Let $0 \neq IJm \subseteq N$ for some ideals I, J of R and $m \in M$ with $J \nsubseteq \sqrt{(N:_R m)}$. Therefore $I \subseteq (N:_R Jm)$. On the other hand part (6) implies that either $(N:_R Jm) = (0:_R Jm)$ or $(N:_R Jm) = (N:_R m)$. The former cannot hold, because $IJm \neq 0$. Hence the second case implies that $Im \subseteq N$.

 $(7) \Rightarrow (1)$ Is trivial.

Theorem 2.18. Let N be a weakly classical primary submodule of M and suppose that (a,b,m) is a classical primary triple-zero of N for some $a,b \in R$ and $m \in M$. Then the following conditions hold:

- 1. abN = 0.
- 2. $a(N :_R M)m = 0$.
- 3. $b(N :_R M)m = 0$.
- 4. $(N:_R M)^2 m = 0$.
- 5. $a(N :_R M)N = 0$.
- 6. $b(N :_R M)N = 0$.
- *Proof.* (1) Suppose that $abN \neq 0$. Then there exists $n \in N$ with $abn \neq 0$. Hence $0 \neq ab(m+n) = abn \in N$, so we conclude that $a(m+n) \in N$ or $b^t(m+n) \in N$ for some $t \ge 1$. Thus $am \in N$ or $b^t m \in N$, which contradicts the assumption that (a, b, m) is classical primary triple-zero. Thus abN = 0.
- (2) Let $axm \neq 0$ for some $x \in (N :_R M)$. Then $a(b+x)m \neq 0$, because abm = 0. Since $xm \in N$, $a(b+x)m \in N$. Then $am \in N$ or $(b+x)^t m \in N$ for some $t \ge 1$. Hence $am \in N$ or $b^t m \in N$, which contradicts our hypothesis.
 - (3) The proof is similar to part (2).
- (4) Assume that $x_1x_2m \neq 0$ for some $x_1, x_2 \in (N:_R M)$. Then by parts (2) and (3), $(a + x_1)(b + x_2)m = x_1x_2m \neq 0$. Clearly $(a + x_1)(b + x_2)m \in N$. Then $(a+x_1)m \in N$ or $(b+x_2)^t m \in N$ for some $t \geq 1$. Therefore $am \in N$ or $b^t m \in N$ which is a contradiction. Consequently $(N:_R M)^2 m = 0$.
- (5) Let $axn \neq 0$ for some $x \in (N :_R M)$ and $n \in N$. Therefore by parts (1) and (2) we conclude that $0 \neq a(b+x)(m+n) = axn \in N$. So $a(m+n) \in N$

or $(b+x)^t(m+n) \in N$ for some $t \geq 1$. Hence $am \in N$ or $b^tm \in N$. This contradiction shows that $a(N:_R M)N = 0$.

A submodule N of an R-module M is called a nilpotent submodule if $(N :_R M)^k N = 0$ for some positive integer k (see [1]), and we say that $m \in M$ is nilpotent if Rm is a nilpotent submodule of M.

Theorem 2.19. If N is a weakly classical primary submodule of an R-module M that is not classical primary, then $(N :_R M)^2 N = 0$ and so N is nilpotent.

Proof. Suppose that N is a weakly classical primary submodule of M that is not classical primary. Then there exists a classical primary triple-zero (a,b,m) of N for some $a,b \in R$ and $m \in M$. Assume that $(N:_R M)^2 N \neq 0$. Hence there are $x_1,x_2 \in (N:_R M)$ and $n \in N$ such that $x_1x_2n \neq 0$. By Theorem 2.18, $0 \neq (a+x_1)(b+x_2)(m+n) = x_1x_2n \in N$. So $(a+x_1)(m+n) \in N$ or $(b+x_1)^t(m+n) \in N$ for some $t \geq 1$. Therefore $am \in N$ or $b^tm \in N$, a contradiction.

Remark 2.20. Let M be a multiplication R-module and K, L be submodules of M. Then there are ideals I, J of R such that K = IM and L = JM. Thus KL = IJM = IL. In particular KM = IM = K. Also, for any $m \in M$ we define Km := KRm. Hence Km = IRm = Im.

Corollary 2.21. If N is a weakly classical primary submodule of a multiplication R-module M that is not classical primary, then $N^3 = 0$.

Proof. Since M is multiplication, then $N = (N :_R M)M$. Therefore by Theorem 2.19 and Remark 2.20, $N^3 = (N :_R M)^2 N = 0$.

Definition 2.22. ([17]) Let N be a proper submodule of a nonzero R-module M. Then the M-radical of N, denoted by M-rad(N), is defined to be the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then we say M-rad(N) = M.

Let M be an R-module. Assume that Nil(M) is the set of all nilpotent elements of M. If M is faithful, then Nil(M) is a submodule of M and if M is faithful multiplication, then $Nil(M) = Nil(R)M = \bigcap Q$ (= M-rad($\{0\}$)), where the intersection runs over all prime submodules of M, [1, Theorem 6].

We recall from [14, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then M-rad $(N) = \sqrt{(N:_R M)}M$.

Theorem 2.23. *Let* N *be a weakly classical primary submodule of* M. *If* N *is not classical primary, then*

1.
$$\sqrt{(N:_R M)} = \sqrt{Ann_R(M)}$$
.

2. If M is multiplication, then M-rad(N)=M-rad $(\{0\})$. If in addition M is faithful, then M-rad(N) = Nil(M).

Proof. (1) Assume that N is not classical primary. By Theorem 2.19, $(N:_R M)^2 N = 0$. Then

$$(N :_R M)^3 = (N :_R M)^2 (N :_R M)$$

 $\subseteq ((N :_R M)^2 N :_R M)$
 $= (0 :_R M),$

and so $(N :_R M) \subseteq \sqrt{(0 :_R M)}$. Hence, we have $\sqrt{(N :_R M)} = \sqrt{(0 :_R M)} = \sqrt{\operatorname{Ann}_R(M)}$.

(2) Suppose that *M* is multiplication. Then, by part (1) we have that

$$M$$
-rad $(N) = \sqrt{(N :_R M)}M = \sqrt{(0 :_R M)}M = M$ -rad $(\{0\})$.

Now, if in addition M is faithful, then M-rad(N) = M-rad $(\{0\}) = Nil(M)$.

Regarding Remark 2.20 we have the next proposition.

Proposition 2.24. Let R be a Noetherian ring, M a multiplication R-module and N be a proper submodule of M. The following conditions are equivalent:

- 1. N is a weakly classical primary submodule of M;
- 2. If $0 \neq N_1 N_2 m \subseteq N$ for some submodules N_1, N_2 of M and $m \in M$, then either $N_1 m \subseteq N$ or $N_2^t m \subseteq N$ for some $t \geq 1$.

Proof. (1)⇒(2) Let $0 \neq N_1N_2m \subseteq N$ for some submodules N_1, N_2 of M and $m \in M$. Since M is multiplication, there are ideals I_1, I_2 of R such that $N_1 = I_1M$ and $N_2 = I_2M$. Therefore $0 \neq N_1N_2m = I_1I_2m \subseteq N$, and so by Theorem 2.17 either $I_1m \subseteq N$ or $I_2 \subseteq \sqrt{(N:_Rm)}$. In the first case we have $N_1m = I_1m \subseteq N$. Notice the fact that every ideal of a Noetherian ring contains a power of its radical. So, in the second case, there exists some $t \geq 1$ such that $I_2^t \subseteq \left(\sqrt{(N:_Rm)}\right)^t \subseteq (N:_Rm)$. Therefore $N_2^tm = I_2^tm \subseteq N$. (2)⇒(1) Suppose that $0 \neq I_1I_2m \subseteq N$ for some ideals I_1, I_2 of R and some $m \in M$. In part (2) set $N_1 := I_1M$ and $N_2 := I_2M$. Therefore $N_1m = I_1m \subseteq N$ or $N_2^tm = I_2^tm \subseteq N$ for some $t \geq 1$. Consequently N is a weakly classical primary submodule of M.

3 Weakly classical primary submodules of modules over specific rings

First, we recall the two concepts of *u*-rings and *um*-rings and then investigate weakly classical primary submodules over these rings.

Definition 3.1. ([20]) A commutative ring R is a u-ring provided R has the property that an ideal that is contained in a finite union of ideals must be contained in one of those ideals; and a um-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them.

Proposition 3.2. *Let* M *be an* R-module and N *be a weakly classical primary submodule of* M. *Then*

1. For every $a, b \in R$ and $m \in M$,

$$(N:_R abm) = (0:_R abm) \cup (N:_R am) \cup (\cup_{t \geq 1} (N:_R b^t m));$$

- 2. If R is a u-ring, then for every $a, b \in R$ and $m \in M$, $(N :_R abm) = (0 :_R abm)$ or $(N :_R abm) = (N :_R am)$ or $(N :_R abm) = (N :_R b^t m)$ for some $t \ge 1$.
- *Proof.* (1) Let $a,b \in R$ and $m \in M$. Suppose that $r \in (N :_R abm)$. Then $ab(rm) \in N$. If ab(rm) = 0, then $r \in (0 :_R abm)$. Therefore we assume that $ab(rm) \neq 0$. So, either $a(rm) \in N$ or $b^t(rm) \in N$ for some $t \geq 1$. Thus, either $r \in (N :_R am)$ or $r \in (N :_R b^t m)$ for some $t \geq 1$. Consequently $(N :_R abm) = (0 :_R abm) \cup (N :_R am) \cup (\bigcup_{t \geq 1} (N :_R b^t m))$.

(2) Apply part (1).

Lemma 3.3. A ring R is a um-ring if and only if $M \subseteq \bigcup_{i=1}^{n} M_i$, where M_i 's are some R-modules and n is a positive integer implies that $M \subseteq M_i$ for some $1 \le i \le n$.

Proof. (\Leftarrow) It is clear.

- (⇒) Suppose that *R* is a *um*-ring. Let $M \subseteq \bigcup_{i=1}^{n} M_i$ for some *R*-modules $M_1, M_2, ...$
- , M_n . Then $M = \bigcup_{i=1}^n (M_i \cap M)$ and so $M = M_i \cap M$ for some $1 \le i \le n$. Therefore $M \subseteq M_i$ for some $1 \le i \le n$.

Theorem 3.4. *Let* R *be a um-ring,* M *be an* R-module and N *be a proper submodule of* M. *The following conditions are equivalent:*

- 1. N is weakly classical primary;
- 2. For every $a, b \in R$, $(N :_M ab) = (0 :_M ab)$ or $(N :_M ab) = (N :_M a)$ or $(N :_M ab) = (N :_M b^t)$ for some $t \ge 1$;
- 3. For every $a, b \in R$ and every submodule L of M, $0 \neq abL \subseteq N$ implies that $aL \subseteq N$ or $b^tL \subseteq N$ for some $t \geq 1$;
- 4. For every $a \in R$ and every submodule L of M with $aL \nsubseteq N$, $(N :_R aL) = (0 :_R aL)$ or $(N :_R aL) \subseteq \sqrt{(N :_R L)}$;
- 5. For every $a \in R$, every ideal I of R and every submodule L of M, $0 \neq aIL \subseteq N$ implies that $aL \subseteq N$ or $I \subseteq \sqrt{(N :_R L)}$;
- 6. For every ideal I of R and every submodule L of M with $I \nsubseteq \sqrt{(N:_R L)}$, $(N:_R IL) = (0:_R IL)$ or $(N:_R IL) = (N:_R L)$;
- 7. For every pair of ideals I, J of R and every submodule L of M, $0 \neq IJL \subseteq N$ implies that $IL \subseteq N$ or $J \subseteq \sqrt{(N :_R L)}$.

Proof. Similar to that of Theorem 2.17.

Remark 3.5. The zero submodule of the \mathbb{Z} -module \mathbb{Z}_6 , is a weakly classical primary submodule (weakly primary ideal) of \mathbb{Z}_6 . Notice that $2 \cdot 3 \in 6\mathbb{Z}$, but neither $2 \in 6\mathbb{Z}$ nor $3 \in \sqrt{6\mathbb{Z}} = 2\mathbb{Z} \cap 3\mathbb{Z}$. Therefore $(0 :_{\mathbb{Z}} \mathbb{Z}_6) = 6\mathbb{Z}$ is not a weakly primary ideal of \mathbb{Z} .

Proposition 3.6. Let R be a um-ring, M be an R-module and N be a proper submodule of M. If N is a weakly classical primary submodule of M, then $(N:_R L)$ is a weakly primary ideal of R for every faithful submodule L of M that is not contained in N.

Proof. Assume that N is a weakly classical primary submodule of M and L is a faithful submodule of M such that $L \nsubseteq N$. Let $0 \neq ab \in (N:_R L)$ for some $a,b \in R$. Then $0 \neq abL \subseteq N$, because L is faithful. Hence Theorem 3.4 implies that $aL \subseteq N$ or $b^tL \subseteq N$ for some $t \geq 1$, i.e., $a \in (N:_R L)$ or $b \in \sqrt{(N:_R L)}$. Consequently $(N:_R L)$ is a weakly primary ideal of R.

Lemma 3.7. Let R be a ring and Q be a proper ideal of R. The following conditions are equivalent:

- 1. *Q* is a weakly primary ideal of *R*;
- 2. For every element $a \in R \setminus Q$, either $(Q :_R a) = (0 :_R a)$ or $(Q :_R a) \subseteq \sqrt{Q}$;
- 3. For every $a \in R$ and every ideal I of R, $0 \neq aI \subseteq Q$ implies that either $a \in Q$ or $I \subseteq \sqrt{Q}$;
- 4. For every ideal I of R with $I \nsubseteq \sqrt{Q}$, either $(Q :_R I) = (0 :_R I)$ or $(Q :_R I) = Q$;
- 5. For every pair of ideals I, J of R, $0 \neq IJ \subseteq Q$ implies that either $I \subseteq Q$ or $J \subseteq \sqrt{Q}$.

Proof. (1) \Rightarrow (2) Assume that Q is a weakly primary ideal of R. Let $a \in R \setminus Q$ and $x \in (Q :_R a)$. Then $ax \in Q$. If ax = 0, then $x \in (0 :_R a)$. Suppose that $ax \neq 0$. So $x \in \sqrt{Q}$. Hence $(Q :_R a) \subseteq (0 :_R a) \cup \sqrt{Q}$. Therefore either $(Q :_R a) = (0 :_R a)$ or $(Q :_R a) \subseteq \sqrt{Q}$.

- (2) \Rightarrow (3) Suppose that for some $a \in R$ and ideal I of R, $0 \neq aI \subseteq Q$. Thus $I \subseteq (Q :_R a)$. Since $aI \neq 0$, then $(Q :_R a) \neq (0 :_R a)$. Then, part (2) implies that $I \subseteq (Q :_R a) \subseteq \sqrt{Q}$.
- (3) \Rightarrow (4) Suppose that $I \nsubseteq \sqrt{Q}$ for some ideal I of R. Let $x \in (Q :_R I)$. Then $xI \subseteq Q$. If xI = 0, then $x \in (0 :_R I)$. If $xI \neq 0$, then by part (3) we have that $x \in Q$. Hence $(Q :_R I) = (0 :_R I) \cup Q$. Consequently $(Q :_R I) = (0 :_R I)$ or $(Q :_R I) = Q$.
- (4) \Rightarrow (5) Assume that I, J are ideals of R such that $0 \neq IJ \subseteq Q$. Then $I \subseteq (Q:_R J)$. Suppose that $J \nsubseteq \sqrt{Q}$. Thus part (4) implies that $(Q:_R J) = (0:_R J)$ or $(Q:_R J) = Q$. Since $IJ \neq 0$, then we have only $(Q:_R J) = Q$, and so $I \subseteq Q$. (5) \Rightarrow (1) is straightforward.

Theorem 3.8. Let R be a Noetherian um-ring, M be a faithful multiplication R-module and N be a proper submodule of M. The following conditions are equivalent:

1. N is a weakly classical primary submodule of M;

- 2. If $0 \neq N_1N_2N_3 \subseteq N$ for some submodules N_1, N_2, N_3 of M, then either $N_1N_3 \subseteq N$ or $N_2^tN_3 \subseteq N$ for some $t \geq 1$;
- 3. If $0 \neq N_1N_2 \subseteq N$ for some submodules N_1, N_2 of M, then either $N_1 \subseteq N$ or $N_2^t \subseteq N$ for some $t \geq 1$;
- 4. N is a weakly primary submodule of M;
- 5. $(N:_R M)$ is a weakly primary ideal of R.
- *Proof.* (1)⇒(2) Let $0 \neq N_1N_2N_3 \subseteq N$ for some submodules N_1, N_2, N_3 of M. Since M is multiplication, there exist ideals I_1, I_2 of R such that $N_1 = I_1M$ and $N_2 = I_2M$. Therefore $0 \neq I_1I_2N_3 \subseteq N$. Since R is Noetherian, Theorem 2.24 implies that $I_1N_3 \subseteq N$ or $I_2^tN_3 \subseteq N$ for some $t \geq 1$. Thus, either $N_1N_3 \subseteq N$ or $N_2^tN_3 \subseteq N$. (2)⇒(3) is easy.
- (3) \Rightarrow (4) Suppose that $0 \neq IK \subseteq N$ for some ideal I of R and some submodule K of M. It is sufficient to set $N_1 := K$ and $N_2 := IM$ in part (3).
- $(4)\Rightarrow(1)$ By Proposition 2.8.
- $(1)\Rightarrow(5)$ By Proposition 3.6.
- (5) \Rightarrow (4) Let $0 \neq IK \subseteq N$ for some ideal I of R and some submodule K of M. Since M is multiplication, then there is an ideal J of R such that K = JM. Hence $0 \neq JI \subseteq (N:_R M)$ which by Lemma 3.7 implies that either $J \subseteq (N:_R M)$ or $I \subseteq \sqrt{(N:_R M)}$. If $I \subseteq \sqrt{(N:_R M)}$, the we are done. If $J \subseteq (N:_R M)$, then $K = JM \subseteq N$.

Proposition 3.9. Let R be a Noetherian um-ring. Let M be a faithful multiplication R-module and N a submodule of M. Then the following conditions are equivalent:

- 1. N is a weakly classical primary submodule;
- 2. $(N:_R M)$ is a weakly primary ideal of R;
- 3. N = IM for some weakly primary ideal I of R.

Proof. $(1) \Leftrightarrow (2)$. By Theorem 3.8.

- $(2) \Rightarrow (3)$ Since $(N :_R M)$ is a weakly primary ideal and $N = (N :_R M) M$, then condition (3) holds.
- $(3) \Rightarrow (2)$ By the fact that every multiplication module over a Noetherian ring is a Noetherian module, M is Noetherian and so finitely generated. Suppose that N = IM for some weakly primary ideal I of R. Since M is a multiplication module, we have N = (N:M)M. Therefore N = IM = (N:M)M and so I = (N:M), because by [22, Corollary to Theorem 9] M is cancellation.

Theorem 3.10. *Let R be a um-ring and M be an R-module.*

- 1. If F is a flat R-module and N is a weakly classical primary submodule of M such that $F \otimes N \neq F \otimes M$, then $F \otimes N$ is a weakly classical primary submodule of $F \otimes M$.
- 2. Suppose that F is a faithfully flat R-module. Then N is a weakly classical primary submodule of M if and only if $F \otimes N$ is a weakly classical primary submodule of $F \otimes M$.

Proof. (1) Let $a, b \in R$. Then by Theorem 3.4, either $(N :_M ab) = (0 :_M ab)$ or $(N :_M ab) = (N :_M a)$ or $(N :_M ab) = (N :_M ab) = (N :_M ab)$ for some $t \ge 1$. Assume that $(N :_M ab) = (0 :_M ab)$. Then by [5, Lemma 3.2],

$$(F \otimes N :_{F \otimes M} ab) = F \otimes (N :_{M} ab) = F \otimes (0 :_{M} ab)$$
$$= (F \otimes 0 :_{F \otimes M} ab) = (0 :_{F \otimes M} ab).$$

Now, suppose that $(N :_M ab) = (N :_M a)$. Again by [5, Lemma 3.2],

$$(F \otimes N :_{F \otimes M} ab) = F \otimes (N :_{M} ab) = F \otimes (N :_{M} a)$$
$$= (F \otimes N :_{F \otimes M} a).$$

With a similar argument we can show that if $(N :_M ab) = (N :_M b^t)$ for some $t \ge 1$, then $(F \otimes N :_{F \otimes M} ab) = (F \otimes N :_{F \otimes M} b^t)$. Consequently by Theorem 3.4 we deduce that $F \otimes N$ is a weakly classical primary submodule of $F \otimes M$.

(2) Let N be a weakly classical primary submodule of M and assume that $F \otimes N = F \otimes M$. Then $0 \to F \otimes N \stackrel{\subseteq}{\to} F \otimes M \to 0$ is an exact sequence. Since F is a faithfully flat module, $0 \to N \stackrel{\subseteq}{\to} M \to 0$ is an exact sequence. So N = M, which is a contradiction. So $F \otimes N \neq F \otimes M$. Then $F \otimes N$ is a weakly classical primary submodule by (1). Now for the converse, let $F \otimes N$ be a weakly classical primary submodule of $F \otimes M$. We have $F \otimes N \neq F \otimes M$ and so $N \neq M$. Let $a,b \in R$. Then by Theorem 3.4, $(F \otimes N :_{F \otimes M} ab) = (0 :_{F \otimes M} ab)$ or $(F \otimes N :_{F \otimes M} ab) = (F \otimes N :_{F \otimes M} ab) = (F \otimes N :_{F \otimes M} ab)$ for some $t \geq 1$. Suppose that $(F \otimes N :_{F \otimes M} ab) = (0 :_{F \otimes M} ab)$. Hence

$$F \otimes (N :_M ab) = (F \otimes N :_{F \otimes M} ab) = (0 :_{F \otimes M} ab)$$
$$= (F \otimes 0 :_{F \otimes M} ab) = F \otimes (0 :_M ab).$$

Thus $0 \to F \otimes (0:_M ab) \stackrel{\subseteq}{\to} F \otimes (N:_M ab) \to 0$ is an exact sequence. Since F is a faithfully flat module, $0 \to (0:_M ab) \stackrel{\subseteq}{\to} (N:_M ab) \to 0$ is an exact sequence which implies that $(N:_M ab) = (0:_M ab)$. With a similar argument we can deduce that if $(F \otimes N:_{F \otimes M} ab) = (F \otimes N:_{F \otimes M} ab)$ or $(F \otimes N:_{F \otimes M} ab) = (F \otimes N:_{F \otimes M} ab) = (N:_M ab)$ for some $t \ge 1$, then $(N:_M ab) = (N:_M a)$ or $(N:_M ab) = (N:_M a)$. Consequently N is a weakly classical primary submodule of M by Theorem 3.4.

Corollary 3.11. Let R be a um-ring, M be an R-module and X be an indeterminate. If N is a weakly classical primary submodule of M, then N[X] is a weakly classical primary submodule of M[X].

Proof. Assume that N is a weakly classical primary submodule of M. Notice that R[X] is a flat R-module. Then by Theorem 3.10, $R[X] \otimes N \simeq N[X]$ is a weakly classical primary submodule of $R[X] \otimes M \simeq M[X]$.

4 Weakly classical primary submodules in direct products of modules

Let R be a ring and M_1 , M_2 be two R-modules. Then $M = M_1 \times M_2$ is an R-module, and for R-submodules N_1 of M_1 and N_2 of M_2 , $N = N_1 \times N_2$ is an R-submodule of M.

Theorem 4.1. Let M_1 , M_2 be R-modules and N_1 be a proper submodule of M_1 . Then the following conditions are equivalent:

- 1. $N = N_1 \times M_2$ is a weakly classical primary submodule of $M = M_1 \times M_2$;
- 2. N_1 is a weakly classical primary submodule of M_1 and for each $r,s \in R$ and $m_1 \in M_1$ we have

$$rsm_1 = 0, rm_1 \notin N_1, s \notin \sqrt{(N_1 : m_1)} \Rightarrow rs \in Ann_R(M_2).$$

Proof. (1)⇒(2) Suppose that $N = N_1 \times M_2$ is a weakly classical primary submodule of $M = M_1 \times M_2$. Let $r, s \in R$ and $m_1 \in M_1$ be such that $0 \neq rsm_1 \in N_1$. Then $(0,0) \neq rs(m_1,0) \in N$. Thus $r(m_1,0) \in N$ or $s^t(m_1,0) \in N$ for some $t \geq 1$, and so $rm_1 \in N_1$ or $s^tm_1 \in N_1$ for some $t \geq 1$. Consequently N_1 is a weakly classical primary submodule of M_1 . Now, assume that $rsm_1 = 0$ for some $r,s \in R$ and $m_1 \in M_1$ such that $rm_1 \notin N_1$ and $s \notin \sqrt{(N_1 : m_1)}$. Suppose that $rs \notin Ann_R(M_2)$. Therefore there exists $m_2 \in M_2$ such that $rsm_2 \neq 0$. Hence $(0,0) \neq rs(m_1,m_2) \in N$, and so $r(m_1,m_2) \in N$ or $s^t(m_1,m_2) \in N$ for some $t \geq 1$. Thus $rm_1 \in N_1$ or $s^tm_1 \in N_1$ for some $t \geq 1$, which is a contradiction. Consequently $rs \in Ann_R(M_2)$.

(2) \Rightarrow (1) Let $r, s \in R$ and $(m_1, m_2) \in M = M_1 \times M_2$ be such that $(0, 0) \neq rs(m_1, m_2) \in N = N_1 \times M_2$. First assume that $rsm_1 \neq 0$. Then by part (2), $rm_1 \in N_1$ or $s^tm_1 \in N_1$ for some $t \geq 1$. So $r(m_1, m_2) \in N$ or $s^t(m_1, m_2) \in N$, and thus we are done. If $rsm_1 = 0$, then $rsm_2 \neq 0$. Therefore $rs \notin Ann_R(M_2)$, and so part (2) implies that either $rm_1 \in N_1$ or $s^tm_1 \in N_1$ for some $t \geq 1$. Again we have that $r(m_1, m_2) \in N$ or $s^t(m_1, m_2) \in N$ which shows N is a weakly classical primary submodule of M.

The following two propositions have easy verifications.

Proposition 4.2. Let M_1 , M_2 be R-modules and N_1 be a proper submodule of M_1 . Then $N = N_1 \times M_2$ is a classical primary submodule of $M = M_1 \times M_2$ if and only if N_1 is a classical primary submodule of M_1 .

Proposition 4.3. Let M_1 , M_2 be R-modules and N_1 , N_2 be proper submodules of M_1 , M_2 , respectively. If $N = N_1 \times N_2$ is a weakly classical primary (resp. classical primary) submodule of $M = M_1 \times M_2$, then N_1 is a weakly classical primary (resp. classical primary) submodule of M_1 and N_2 is a weakly classical primary (resp. classical primary) submodule of M_2 .

Example 4.4. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \times \mathbb{Z}$ and $N = p\mathbb{Z} \times q\mathbb{Z}$ where p, q are two distinct prime integers. Since $p\mathbb{Z}$, $q\mathbb{Z}$ are prime ideals of \mathbb{Z} , then $p\mathbb{Z}$, $q\mathbb{Z}$ are weakly classical primary \mathbb{Z} -submodules of \mathbb{Z} . Notice that $(0,0) \neq pq(1,1) = (pq,pq) \in N$, but $p(1,1) \notin N$ and $q^t(1,1) \notin N$ for every $t \geq 1$. So N is not a weakly classical primary submodule of M. This example shows that the converse of Proposition 4.3 is not true.

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Theorem 4.5. Let $R = R_1 \times R_2$ be a decomposable ring and $M = M_1 \times M_2$ be an R_1 -module where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times M_2$ is a proper submodule of M. Then the following conditions are equivalent:

- 1. N_1 is a classical primary submodule of M_1 ;
- 2. *N* is a classical primary submodule of *M*;
- 3. N is a weakly classical primary submodule of M.

Proof. (1) \Rightarrow (2) Let $(a_1,a_2)(b_1,b_2)(m_1,m_2) \in N$ for some $(a_1,a_2),(b_1,b_2) \in R$ and $(m_1,m_2) \in M$. Then $a_1b_1m_1 \in N_1$ so either $a_1m_1 \in N_1$ or $b_1^tm_1 \in N_1$ for some $t \geq 1$, which shows that either $(a_1,a_2)(m_1,m_2) \in N$ or $(b_1,b_2)^t(m_1,m_2) \in N$. Consequently N is a classical primary submodule of M.

- $(2)\Rightarrow(3)$ It is clear that every classical primary submodule is a weakly classical primary submodule.
- (3)⇒(1) Let $abm \in N_1$ for some $a,b \in R_1$ and $m \in M_1$. We may assume that $0 \neq m' \in M_2$. Therefore $0 \neq (a,1)(b,1)(m,m') \in N$. So either $(a,1)(m,m') \in N$ or $(b,1)^t(m,m') \in N$ for some $t \geq 1$. Therefore $am \in N_1$ or $b^tm \in N_1$. Hence N_1 is a classical primary submodule of M_1 .

Proposition 4.6. Let $R = R_1 \times R_2$ be a decomposable ring and $M = M_1 \times M_2$ be an R-module where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that N_1 , N_2 are proper submodules of M_1 , M_2 , respectively. If $N = N_1 \times N_2$ is a weakly classical primary submodule of M, then N_1 is a weakly prime submodule of M_1 and N_2 is a weakly prime submodule of M_2 .

Proof. Suppose that $N = N_1 \times N_2$ is a weakly classical primary submodule of M. By hypothesis, there exist $x \in M_1 \backslash N_1$ and $y \in M_2 \backslash N_2$. First, we show that N_1 is a weakly prime submodule of M_1 . Let $0 \neq am_1 \in N_1$ for some $a \in R_1$ and $m_1 \in M_1$. Then $0 \neq (1,0)(a,1)(m_1,y) \in N_1 \times N_2 = N$. Notice that if $(a,1)(m_1,y) \in N_1 \times N_2 = N$, then $y \in N_2$ which is a contradiction. So we get $(1,0)^t(m_1,y) \in N_1 \times N_2 = N$ for some $t \geq 1$. Thus $m_1 \in N_1$. Hence N_1 is a weakly prime submodule of M_2 .

The following example shows that the converse of Proposition 4.6 is not true in general.

Example 4.7. Let $R = M = \mathbb{Z} \times \mathbb{Z}$ and $N = p\mathbb{Z} \times q\mathbb{Z}$ where p, q are two distinct prime integers. Since $p\mathbb{Z}$, $q\mathbb{Z}$ are prime ideals of \mathbb{Z} , then $p\mathbb{Z}$, $q\mathbb{Z}$ are weakly primary (weakly classical primary) \mathbb{Z} -submodules of \mathbb{Z} . Notice that $(0,0) \neq (p,1)(1,q)(1,1) = (p,q) \in N$, but $(p,1)(1,1) \notin N$ and $(1,q)^t(1,1) \notin N$ for every $t \geq 1$. So N is not a weakly classical primary submodule of M.

Theorem 4.8. Let $R = R_1 \times R_2 \times R_3$ be a decomposable ring and $M = M_1 \times M_2 \times M_3$ be an R-module where M_i is an R_i -module, for i = 1, 2, 3. If N is a weakly classical primary submodule of M, then either $N = \{(0,0,0)\}$ or N is a classical primary submodule of M.

Proof. Since $\{(0,0,0)\}$ is a weakly classical primary submodule in any module, we may assume that $N=N_1\times N_2\times N_3\neq \{(0,0,0)\}$. We assume that N is not a classical primary submodule of M and reach a contradiction. Without loss of generality we may assume that $N_1\neq 0$ and so there is $0\neq n\in N_1$. We claim that $N_2=M_2$ or $N_3=M_3$. Suppose that there are $m_2\in M_2\setminus N_2$ and $m_3\in M_3\setminus N_3$. Get $r\in (N_2:_{R_2}M_2)$ and $s\in (N_3:_{R_3}M_3)$. Since

$$(0,0,0) \neq (1,r,1)(1,1,s)(n,m_2,m_3) = (n,rm_2,sm_3) \in N,$$

then $(1,r,1)(n,m_2,m_3)=(n,rm_2,m_3)\in N$ or $(1,1,s)^t(n,m_2,m_3)=(n,m_2,s^tm_3)\in N$ for some $t\geq 1$. Therefore either $m_3\in N_3$ or $m_2\in N_2$, a contradiction. Hence $N=N_1\times M_2\times N_3$ or $N=N_1\times N_2\times M_3$. Let $N=N_1\times M_2\times N_3$. Then $(0,1,0)\in (N:_RM)$. Clearly $(0,1,0)^2N\neq \{(0,0,0)\}$. So $(N:_RM)^2N\neq \{(0,0,0)\}$ which is a contradiction, by Theorem 2.19. In the case when $N=N_1\times N_2\times M_3$ we have that $(0,0,1)\in (N:_RM)$ and similar to the previous case we reach a contradiction.

References

- [1] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, *Comm. Algebra*, **36** (2008), 4620–4642.
- [2] R. Ameri, On the prime submodules of multiplication modules, *Inter. J. Math. Math. Sci.*, **27** (2003), 1715–1724.
- [3] D. D. Anderson and E. Smith, Weakly prime ideals, *Houston J. Math.*, **29** (2003), 831–840.
- [4] A. Azizi, On prime and weakly prime submodules, *Vietnam J. Math.*, **36**(3) (2008) 315–325.
- [5] A. Azizi, Weakly prime submodules and prime submodules, *Glasgow Math. J.*, **48** (2006) 343–346.
- [6] M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, *J. Algebra Appl.*, **8**(3) (2009) 351-362.
- [7] M. Behboodi, A generalization of Bears lower nilradical for modules, *J. Algebra Appl.*, **6** (2) (2007) 337-353.

[8] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, *Acta Math. Hungar.*, **113**(3) (2006) 239-250.

- [9] M. Behboodi and H. Koohy, Weakly prime modules, *Vietnam J. Math.*, **32**(2) (2004) 185-195.
- [10] M. Behboodi and S. H. Shojaee, On chains of classical prime submodules and dimension theory of modules, *Bull. Iranian Math. Soc.*, **36**(1) (2010) 149–166.
- [11] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978) 156–181.
- [12] S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, *Georgian Math. J.*, **12**(3) (2005), 423–429.
- [13] S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, *Tamk. J. Math.*, **38**(3) (2007), 247–252.
- [14] Z. A. El-Bast and P. F. Smith, Multiplication modules, *Comm. Algebra*, **16** (1988), 755–779.
- [15] Ch. Gottlieb, On finite unions of submodules, Comm. Algebra, 43 (2015), 847-855.
- [16] C.-P. Lu, Prime submodules of modules, *Comm. Math. Univ. Sancti Pauli*, **33** (1984), 61-69.
- [17] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, *Canadian Math. Bull.*, **29**(1) (1986), 37-39.
- [18] R. L. McCasland and M. E. Moore, Prime submodules, *Comm. Algebra*, **20** (1992), 1803-1817.
- [19] H. Mostafanasab, U. Tekir and K. H. Oral, Weakly classical prime submodules, submitted.
- [20] P. Quartararo and H. S. Butts, Finite unions of ideals and modules, *Proc. Amer. Math. Soc.*, **52** (1975), 91-96.
- [21] R.Y. Sharp, *Steps in commutative algebra*, Second edition, Cambridge University Press, Cambridge, 2000.
- [22] P. F. Smith, Some remarks on multiplication modules, *Arch. Math.*, **50** (1988), 223–235.

Department of Mathematics and Applications
University of Mohaghegh Ardabili
P. O. Box 179, Ardabil, Iran
email:h.mostafanasab@uma.ac.ir, h.mostafanasab@gmail.com