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Abstract

In this note we propose a concise proof of David Williams’ decomposition
of the Bessel Process of dimension 3 (BES(3)), starting from r > 0 at its ulti-
mate minimum. An ultimate minimum of a stochastic process may be seen
as a state of a process at a last hitting time. This discussion is strongly mo-
tivated by our interest in properties of last hitting times in general, and here
specifically, directly linked with the reading guide of Nikeghbali and Platen
(2013).

1 Introduction

Clearly, to decide whether a stochastic process hits a certain set for the last time
depends on what will happen in the future. Therefore last-hitting times are usu-
ally not measurable with respect to the natural filtration of the process and thus
among the difficult random times of a stochastic process. Stopping times, on the
contrary, do have this property by definition, and we know quite an impressive
collection of Theorems and tools for stopping times.

As Chung (see citation of Nikeghbali and Platen (2013)) among others con-
clude, last hitting times must be avoided at all costs.
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This is one way to see things, but, often enough, reality looks somewhat differ-
ent. Indeed, ironically, many interesting problems in the theory of optimal stop-
ping require us to deal with last hitting times, and not with stopping times. And
so, the attitude has changed, and the work of Jeulin (1980) and others had quite
an influence on this development. In their recent paper, Nikeghbali and Platen
cite several interesting examples from the domain of Mathematical Finance, and
we look at one of them under a different angle. We would also like to slightly
broaden the horizon of Mathematical Finance by looking at a few other exam-
ples. But first to the main topic of this article, that is, to David Williams’ theorem
of decomposition.

The BES(3)-process and Williams’ Theorem

(1.1) In their survey about last passage times, Nikeghbali and Platen (2013) illus-
trate some of their formulae with the following example:

Let (Rt)t≥0 be a 3-dimensional Bessel process (BES(3)-process) on R+ starting
from r > 0. Denote by (Ft)t≥0 its natural filtration, and let It denote the current
infimum of the process (R) at time t, that is,

It = inf
0≤s≤t

Rs.

The following results can be found in Nikeghbali and Platen around Corollary
4.10:

(a) I∞ follows the same distribution as the random variable rU, where U is
uniform on [0, 1].

(b) The Azéma-supermartingale associated with the random time g at which
the process (Rt)t≥0 reaches I∞ is given by

Zt ≡ P(g > t|Ft) =
It

Rt
.

(c) The Laplace transform of the law of g is

E
(

e−λg
)

=
1√
2λr

(

1 − e−
√

2λr
)

.

(d) The density of g denoted by p(t) equals

p(t) =
1√

2πt r

(

1 − e−(r2/2t)
)

.

Our aim is now to show Williams’ decomposition of a BES(3)-process at its
ultimate minimum, and how this decomposition is closely connected with
(a)-(b)-(c)-(d).



New Proof of Williams’ Decomposition 321

(1.2) Recall that if (Bt)t≥0 is a Brownian motion starting from 0 and a is a real

constant, then the law of the first hitting time of a by (Bt), denoted by T
(B)
a is

given by

P
(

T
(B)
a ∈ dt

)

=
dt√
2πt3

| a | exp

(

− a2

2t

)

. (1)

This well-known fact allows us to rewrite the statements (c) and (d) above as

g
L
= T

(B)
rU , (2)

where U is independent of (B) and uniform on [0, 1], and where
L
= denotes iden-

tity in law. This can be verified using (c) and (d). In fact, (2) may be understood
via the classical decomposition of the process (R) before and after time g, due to
Williams (1974).

The essence of the result is displayed in Figure 1.

2 Williams’ decomposition of (R), before and after g, via pro-

gressive enlargement

(2.1) Figure 1 below displays a ’finite-horizon’ version of the decomposition of a
BES(3)-process.
Note that this figure is nothing else but a (simulated finite-horizon) version of the
Figure 5 in Revuz-Yor (1999) (see Proposition 3.10 and Theorem 3.11 in Ch. 6,
Sect. 3) where the BES(3)-process is considered starting from level c := r.

(2.2) We now state precisely Williams’ Decomposition Theorem before and after
time g.

Theorem 1 (Williams (1974))
Consider the following three independent random objects:

(i) a Brownian motion (B′
t)t≥0 with B′

0 = r > 0;

(ii) a uniform random variable U on [0, 1];

(iii) a BES(3)-process (R̃t)t≥0 with R̃0 = 0;

Then the process (R) defined by

Rt =

{

B′
t , if t ≤ g

rU + R̃t−g , if t ≥ g
(3)

with g = inf{u ≥ 0 : B′
u = rU} is a BES(3)-process starting from r > 0.

We note that the pre-g-Brownian-motion found in (3) explains the result (2).

Indeed, if B′
t = r − B

(0)
t then

g = inf
{

u ≥ 0 : B
(0)
u = r(1 − U)

}

, (2′)

which implies (2).
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Figure 1: This graph presents an approximation of a BES(3)-process based on
three independent simulations of U[−1/2, 1/2]-random walks Sx

k , S
y
k , Sz

k, where

k runs from 1 to 1200. The starting point is chosen Sx
0 = 4, S

y
0 = 4, Sz

0 = 2, so
that the starting level of the simulated process is B0 = r = 6. The minimum
height is indicated by the supporting horizontal line at level 1.41963. This level is
a simulated I1200 and not I∞, of course. The latter is unconditionally the random
variable U[0, B0] = U[0, 6].

2.3 We now proceed to the proof of the Theorem via the enlargement formula
which describes the additive decomposition of the BES(3)-process (Rt) in the
filtration

(

F g
t )
)

containing the filtration (Ft), and making g a stopping time.

Firstly, we have

Rt = r + Bt +
∫ t

0

ds

Rs
, (4)

where (Bt) is a Brownian motion with respect to the filtration (Ft).

Secondly, the enlargement formula (see e.g. Jeulin (1980)) yields

r + Bt = B′
t +

∫ g∧t

0

d < B, Z >u

Zu
+

∫ t

g

d < B, 1 − Z >u

1 − Zu
(5)

with (B′
t) being a Brownian motion with respect to (F g

t ).
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Thirdly, we deduce from (b) the two identities

d < B, Z >u

Zu
= − du

Ru
, for u ≤ g (6)

and
d < B, 1 − Z >u

1 − Zu
=

I∞du

Ru(Ru − I∞)
, for u > g. (7)

These two identities imply (using (4) and (6)) , and also

1

Ru
+

I∞

Ru(Ru − I∞)
=

1

Ru − I∞

the form of the pre-g-process, and the form of the post-g-process.

Finally, for the proof of (3) to be complete, it remains to prove that the process

(B′) is independent of the random variable I∞

L
= rU, or more precisely, that,

given I∞ = a, the pre-g-process is just the process (B′
u)u≤T′

a
with obvious notation.

This is asserted in the following proposition:

Proposition: Let (Φu)u≥0 be a non-negative predictable process on path-space.
Further, let Pr denote the law of the process (R) starting from r and let P′

r denote
the law of the Brownian motion (B′) starting from r. Then, for a < r,

Er

[

Φg|I∞ = a
]

= Er [ΦTa |Ta < ∞] (8.1)

≡ Er [ΦTa |I∞ < a] (8.2)

= E′
r

[

Φ(B′
u; u ≤ T′

a)
]

. (8.3)

Proof: The equality between the RHS of (8.1) and (8.3) follows, as we will show,
from Doob’s absolute continuity relationship, namely

Pr/Ft =

(

Xt∧T0

r

)

P′
r/Ft,

on the canonical path-space C([0, ∞], R), where (Xt) denotes the coordinate
process on path-space. Indeed, this equality may be extended when replacing
the time t by a stopping time. Restricting FTa on the set {Ta < ∞} we get then in
particular

Pr/(FTa ∩ {Ta < ∞}) =
( a

r

)

P′
r/FTa , 0 < a < r,

which yields the desired result.

Identity (8.2) is obvious, since the equality {Ta < ∞} = {I∞ < a} holds Pr-
almost surely.

The proof of the equality (8.1) is slightly more subtle. We start with the iden-
tity

E
[

1{g≤t}ϕ(I∞)
]

= E

[

(1 − Zt)
∫ t

0
ϕ(Is)d(1 − Zs)

]

(9)
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which holds for any Borel-measurable function ϕ : [0, ∞[→ R+. To see this, note
that

E
[

1{g≤t}ϕ(It)
]

= E [(1 − Zt)ϕ(It)] .

Assuming ϕ ∈ C1 the latter becomes by partial integration

E

[

∫ t

0
ϕ′(Is)dIs(1 − Zs)

]

+ E

[

∫ t

0
ϕ(Is)d(1 − Zs)

]

.

We note that the expectation involving ϕ′ vanishes, since 1 − Zs vanishes dIs

almost everywhere. Thus a monotone class argument implies that (9) holds for
every non-negative Borel-measurable function ϕ.

Next, from the additive decomposition of (1 − Zs), we obtain

E
[

1{g≤t}ϕ(I∞)
]

= E

[

∫ t

0
ϕ(Is)

(

−dIs

Is

)]

= E

[

∫ r

It

ϕ(a)
da

a

]

.

Since {It ≤ a} = {t ≥ Ta} the latter can also be written as

E

(

∫ r

0
ϕ(a)

da

a
1{Ta≤t}

)

,

so that from (9)

E
[

1{g≤t}ϕ(I∞)
]

= E

(

∫ r

0
ϕ(a)

da

a
1{Ta≤t}

)

. (10)

Now note that the identity (10) still holds if we replace t by a generic stopping
time. Applying again the monotone class theorem gives us then

E
[

Φgϕ(I∞)
]

= E

[

∫ r

0
ϕ(a)

da

a
ΦTa 1{Ta<∞}

]

. (11)

Finally, using I∞

L
= rU with U being uniform on [0, 1] under Pr (see (2)), we see

that identity (11) implies identity (8.1).

Remarks. The statement of the theorem invites for a proof choosing between,
on the one hand, initial enlargement with I∞, and, on the other hand, progres-
sive enlargement with g. However we have not exactly proceeded like this; the
Proposition plays the role of the initial enlargement method and relies on a clas-
sical Girsanov relationship between Pr and P′

r .
In conclusion we find it interesting to present the above as an example of the

potential of enlargement techniques, and here specifically, of a melange of en-
largement techniques and Girsanov’s theorem. Having said so, we know that
this approach can in principle be done for higher dimensions; however, the cor-
responding Theorem 1 would look more complicated.

For inverse local time properties linking a Bessel-process with an Ornstein-
Uhlenbeck process see e.g. Hirsch and Yor (2013), Section 2.
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3 More general context of last-hitting times

Now, as announced in the Introduction, a brief look at examples outside of math-
ematical finance.

Buying and selling problems, best-choice problems, secretary problems and
others are typical representatives of a last-hitting time problem. One may see
them as problems of stopping on the last improvement of a stochastic process. In
some of these problems, the difficulty stemming from the last-hitting time charac-
ter disappears. To give a very simple example, suppose we observe sequentially
variables X1, X2, · · · and would like to maximize, for a given objective function
f , the expected total return, that is we seek

arg max
τ

f (X1, X2, · · · , Xτ).

Suppose now that the optimal payoff for stopping after time t does not depend
on Ft, where (Fs) denotes the natural filtration. Then

sup
τ≥t

E
(

f (X1, X2, · · · , Xτ)
∣

∣

∣
Ft)

)

= sup
τ≥t

E( f (Xt+1, Xt+2, · · · , Xτ))

so that RHS as well as X1, X2, · · · , Xt are both Ft-measurable. Hence it suffices
to compare at each time t the value f (X1, X2, · · · , Xt) with the RHS supremum in
order to take the optimal decision.

In more difficult problems the Ft-independence is typically no longer satis-
fied. However, external information about the underlying process may help us
to change nevertheless the last-hitting time problem into a tractable stopping
problem. As examples we may refer to the proof of the 1/e-law of best choice
(Bruss (1984)) which changed the sequential problem into a combinatorial prob-
lem in a non-sequential setting, or as a more recent example, the solution of the
continuous-time last-arrival problem (Bruss and Yor (2012)) where the relevant
external information about the underlying process was derived from a related
martingale.

There may be many other examples of such a ”detour”.

And then there are certain other problems where the last hitting time objective
is hiding behind other objectives, as for example the objective to discover the first
time a random subset of a given set becomes complete. We give only one specific
example of this. It is in the important field of clinical trials, more precisely, in the
field of so-called compassionate-use clinical trials.

3.1 Compassionate use clinical trials

In such trials, a sequence of patients is treated with a drug (sometimes without
FDA-approval) which may have serious side effects, the only justification being
that it may be as being the last hope for the patients.

Typically, not much is known about the success probability of unapproved
drugs or unapproved dosage of (known) medication. This is why compassion-
ate use trials are, as far as possible, set up sequentially so that the physician or
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statistician may learn form preceding observations. We should also mention that
such trials may not be permitted in all countries, and that, if they are, they always
require a special written consent of patients.

A little reflection shows that such sequential treatments pose a difficult ethical
problem. The conscientious physician should try to save all lives which can be
saved, and, at the same time, avoid all unnecessary sufferings caused by the se-
quence of treatments. Since he or she is not a prophet, the goal must be to stop (in
a given sequence of patients within a fixed horizon) with maximum probability
with the first patient completing the random subset of successes, that is, to stop
with the last success. Indeed, then all successes are covered, whereas the remain-
ing patients (de facto not savable by the drug) do not have to suffer unnecessarily.
In practice the sequence of treatments should also be stopped (in agreement with
the patients) if the current estimate of the success probability drops below a cer-
tain bound.

If the success probability for each patient is known beforehand, then the opti-
mal strategy follows immediately from the odds-algorithm (Bruss (2000)); for ex-
tensions and newer developments see Ano et al. (2010), Ferguson (2008), Tamaki
(2010), and Dendievel (2013)).

If the physician has incomplete information about the respective success prob-
abilities, then the general solution of the optimal stopping problem is an open
problem, and as the authors think, an important one. However, interestingly, if
the physician has absolutely no information about the success probabilities of the
treatment, then the optimal solution is known. It then follows from the notion
of stochastic processes with proportional increments introduced in Bruss and Yor
(2012), and an additional martingale argument, as Dendievel (2013) has shown in
a strongly related problem.

Post scriptum

As the reader will have noticed, this paper looks unfinished. This is the case and
was caused by a very sad event: Professor Marc Yor has left us unexpectedly
on January 9, 2014. There may be many people who may have known Marc
in person better than the co-author, but I think it is safe to say that everybody
who had the pleasure to have known Marc for a longer time, will remember his
remarkable profoundness, his scientific generosity, and also warm kindness, and
will understand the very deep sadness which fell upon all of us.

Marc and I had worked on this paper in several periods between 2011 and
2013. Following the positive response of interest Francis Hirsch and Marc had
received from the Bulletin of the Belgian Math. Society - Simon Stévin for their
paper on the Lamperti presentation of a specific inverse local time (see Hirsch
and Yor (2013)), Marc suggested that we submit the paper to the same journal.
This is what I did on January 13, 2014, sending the paper as it was, that is, as
far as it was written by early December 2013 when we had the last phone call
exchange on it. Only this Post scriptum is added now.

As the open ends of the preceding text reveal, we had hoped to push certain
things further. So for instance, our discussion about the nature of last hitting
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times is still insufficiently connected with the more specific topic of Williams’
Decomposition of the BES(3) which is the main part of this paper. This is also
true, to some extent, for the discussions of the mentioned applications. However,
since we could no longer discuss these points in more detail, I did not feel entitled
to write under both our names a corresponding extended version.

Under the given circumstances, Marc and I would be glad to see that this arti-
cle may serve as a source of inspiration to other readers. A few of our additional
discussions should therefore be indicated.

Possible source of inspiration

Williams (2002) gave an example of a random time ρ associated with Brownian
motion such that ρ is not a stopping time but, nevertheless, E(Mρ) = E(M0) for
every uniformly integrable martingale M. This result as well as some results of
a different kind in Bruss and Ferguson (2002) and in Bruss and Yor (2012), raised
our interest. To exemplify the latter, we were surprised to see that a stochastic
process which looks like a Poisson process but of which we knew that it cannot
be reasonably assumed to be a Poisson process, allows for conclusions precisely
as if it were a Poisson process, seemingly being the only candidate for which our
conclusion should be true. This coincidence had enabled us to solve the so-called
Last-arrival problem which was open, and seen by several colleagues, wrongly
so, as an ill-posed problem.

Why is it that in Williams’ example the equality E(Mρ) = E(M0) holds true al-
though ρ is not a stopping time for the martingale M whereas this seems
intuitively necessary? Why could Marc and I use the above mentioned Poisson
coincidence which allowed to apply the odds-algorithm although independence
assumptions make in the original problem no sense at all? Thomas et al. (2007)
asked a related question about the odds-algorithm when giving up independence
assumptions. More generally, such questions seem to be related to the question
why sometimes certain methods work seemingly very well although it is ques-
tionable that they can be applied.

Of course, one can always see, a posteriori, the reason why a result is true, but,
a priori, this does not mean much. We often discussed whether we fail to see that
certain coincidences are not coincidences but rather part of a more general pic-
ture. Nobody can hope to get in all generality theorems explaining coincidences,
but we felt the fact that several cases involving stopping times and non-stopping
times occur in related contexts should draw our attention. Is the notion of a stop-
ping time somewhat too coarse? As we understood, an answer could have a
non-negligible impact on questions of how to approach specific applications by
more skilful models. (In the context of proportional increments, to which we
had intended to return after our paper of 2012, we had also discussed results on
self similar processes (Jeanblanc et al. (2002)), on stochastic volatility for Lévy
processes (Carr et al. (2003)), and on exponential functionals of Lévy processes
(Bertoin and Yor (2005)).

Returning to the main part of this paper, we recall that filtrations, progres-
sive enlargements of filtrations and stopping times were an omnipresent part
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in Marc’s way of thinking and expressing his thoughts. This had also a strong
influence on his students as well as on so many others. Motivated by Williams’s
example (Williams (2002)), Nikeghbali and Yor (2005) had introduced so-called
pseudo-stopping times, and Williams path decomposition is a special case in this
paper. Nikeghbali and Yor (2006) proved then several general path decomposi-
tion results taking advantage of the multiplicative decomposition of Azéma’s su-
permartingales for last hitting times as well as pseudo-stopping times connected
with the study of Doob’s maximal identity and multiplicative decompositions.
These were relying in some cases on ideas by Jeulin and others with new results
on pseudo-stopping times.

In papers on Doob’s maximal identity, it was observed that initially enlarging
with a well chosen random variable allows to recover the progressive enlarge-
ments formulae by projection. I remember that Marc had mentioned this connec-
tion which was now also pointed out by the referee. Moreover the latter saw that
in the context of the present paper, this would be the global infimum, and that
one may also see formula 9 of the present paper as being intrinsic in the results
of Nikeghbali and Platen (2013). This is not mentioned in our paper.

The addition of pseudo-stopping times to the class of optional times seems to
refine the classical results on path decompositions in a useful way. It would be
great to try to relate all these things together in a more general context. Going
beyond this, it would be even nicer if one day one could see the most suitable
superset of the class of stopping times, that is, ’broad enough for all practical
purposes’. If we think of other domains of Mathematics, we see that, sometimes,
such a wish becomes reality.
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