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Abstract

The objective of this work is to give some relationship between the Favard
spaces and the p-admissibility (resp. (p, q)-admissibility) of unbounded con-
trol operators for linear (resp; bilinear) systems in Banach spaces. For linear
case, this enables to give a simple identification of the space of the 1−admis-
sible control operators in Banach space and it enables us to extend the result
of Weiss [29] (for p = 1) on reflexive Banach spaces to a general situation.
This result is applied to boundary control systems. The results obtained for
bilinear systems generalize those given in Idrissi [16] and Berrahmoune [2]
and are applied to diffusion equations of fractional order time distributed
order.

1 Introduction

This paper studies infinite-dimensional bilinear control systems described by:

{

ẋ(t) = Ax(t) + u(t)Bx(t), t ≥ 0,

x(0) = x0.
(1.1)

where x(·) the state of the system (1.1) takes values in a Banach space X (state
space), the unbounded operator (A,D(A)) generates a C0-semigroup (strongly
continuous semigroup) (T(t))t≥0 on X, B is unbounded linear control operators
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in the sense that it is a bounded linear operator from X to a larger Banach space
V ⊃ X, i.e. B ∈ L(X, V) (space of bounded linear operator from X to V). The
function u ∈ L

p
loc(R

+) is a scalar control.
In order to give a meaning to the mild and strong solutions of (1.1) we have to
suppose that the semigroup (T(t))t≥0 can be extended to a strongly continuous
semigroup (TV(t))t≥0 on V with generator (AV ,D(AV)).
Thus, in the larger space V the system (1.1) can be rewritten in the abstract form:

{

ẋ(t) = AV x(t) + u(t)Bx(t), t ≥ 0

x(0) = x0.
(1.2)

The initial state x0 ∈ V is given. By a mild solution of (1.2) we mean an X-valued
continuous function x on [0, T] satisfying (variation of parameters formula) :

x(t) = T
V(t)x0 +

∫ t

0
T

V(t − s)u(s)Bx(s)ds. (1.3)

All vector-valued integrals are Bochner integrals. Remark that the solution of
(1.3) is always well-defined in V for all x0 ∈ V and u ∈ Lp(0, T), T > 0. In general,
due to the unboundedness aspect of the control operator B this solution does not
exist with values in the domain of B. Thus, to confront this difficulty, and inspired
by the concept of admissibility developed in [29] for unbounded linear control
systems, the author in [16] has introduced the following notion of admissibil-
ity: the operator B is said to be (p, q)-admissible if the convolution Φt(u, x) :=
(TV ∗ uBx)(t) ∈ X for all u ∈ L

p
loc(R

+), x ∈ L
q
loc(R

+, X) and t ≥ 0 where p
and q are conjugates. Unfortunately, it appears along the results obtained in [16]
that this definition is too restrictive in the sense it does not concern the reflexive
(e.g. Hilbert) state space X, the operator B must be bounded makes this definition
without interest. Further, unbounded bilinear systems in reflexive Banach spaces
are not concerned, which makes hard to find examples of admissible operators
enabling us to treat significant examples. In [2], the author extends this definition
of admissibility for the operator B by avoiding the constraint that p and q be con-
jugates, i.e. 1

p +
1
q = 1 and by using the generalized Hölder inequality he deduces

that Φt(u, x) ∈ X provided that

0 <
1

p
+

1

q
≤ 1, (1.4)

thus the conjugacy constraint of (p, q) dispensed with.
Further, it has been proved in [16] (see. [2] for conjugate case) that system (1.1)
with a (p, q)-admissible control operator has a unique mild solution. Contrary to
the author in [16], the concept of an abstract bilinear control systems has not been
considered in [2]. Therefore, neither the representation theorem, nor the identi-
fication of such operators were studied in [2]. So, we are still longing for such
a complete result regarding the (p, q)-admissibility of the unbounded control
operators for infinite dimensional bilinear control systems, at least for such sys-
tems in Hilbert spaces and it is one the objectives of this paper.



On the Admissible Control operators 713

We proceed as follows: In Section 2 we recall the necessary background on ex-
trapolation theory and Favard classes. In section 3 we review some results on
the abstract linear and bilinear systems and some known (and unknown) of its
properties. The main results of this paper are contained in Sections 4 and 5. In
section 4 we give a relation between the space of p-admissible linear operators
and some Favard class. This allows us the prove that the p-Weiss property is true
for p = 1. Secondly we pay particular attention to the analytic semigroups case.
In [17] the authors have been interested in case p = 1 for some boundary control
systems and they have studied their reachability. In Section 5 we go back to the
work of [17] and show that the considered sufficient (smoothness) condition is in
fact necessary for the existence of the mild solutions. In section 6, an analogous
result which links the space of (p, q)-admissible operators and the Favard class is
the Proposition 24 first proved under the conjugacy of the reels p and q in [16].
Moreover, we pay particular attention to the analytic semigroups case in order
to generalize a result in [2] on the (p, q)-admissibility of the fractional Laplacian
(−∆)γ where ∆ denotes the usual Dirichlet Laplacian operator for a system gov-
erned by the heat equation. Finally, in Section 7 we go back to such fractional
diffusions system governed by the heat equation, and extend the results given
in [2].

2 Notions and preliminary results

In this section we review some notions and results from the theory of extrapola-
tion introduced in [24] and [21]. The details and proofs can be found, e.g., in [11].

2.1 Extrapolation spaces and Favard classes

Let (X, ‖·‖) be a Banach space and T := (T(t))t≥0 be a C0-semigroup of the
bounded linear operators on X, with generator (A,D(A)), and ω0(T) :=

inf
{

ω ∈ R / ‖T(t)‖L(X) ≤ Meωt, for some M ≥ 1
}

its growth bound. The

spaces X1 and X−1 are defined as follows: X1 := (D(A), ‖ · ‖1), where ‖x‖1 :=
‖(λI − A)x‖, x ∈ D(A) (for some λ fixed in the resolvent set ρ(A) of A), and X−1

is the completion of X with respect to the norm ‖x‖−1 := ‖(λI − A)−1x‖, x ∈ X.
These spaces are independent of the choice of λ and are related by the following
continuous and dense injections:

X1
d→֒ X

d→֒ X−1.

The Banach space X−1 is called the extrapolation space of X with respect to A
(or T). If there is confusion on A we use the notations XA

1 and XA
−1. The semi-

group (T(t))t≥0 can be restricted to a C0-semigroup T1 on X1, with generator
denoted by (A1,D(A1)), and can be extended to a C0-semigroup (T−1(t))t≥0 on
X−1, with generator denoted by (A−1,D(A−1)). The resolvent operator
R(λ, A) := (λI − A)−1 and its extension R(λ, A−1) to X−1 are isomorphisms
from X to X1 and from X−1 to X respectively. In particular, D(A−1) = X and the
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norm of X is equivalent to the graph norm of A−1.
We define the Favard class of order α; Fα

A with 0 < α ≤ 1 associated to A (or
(T(t))t≥0) by

Fα
A :=

{

x ∈ X / lim
tց0

sup
1

tα
‖T(t)x − x‖ < +∞

}

,

([7], [23]) and similarly the Favard class Fα
A−1

of (T−1(t))t≥0. An equivalent defi-

nition of Favard class of order α used here is the following

Fα
A =

{

x ∈ X / sup
0<t≤1

1

tα

∥

∥e−ωt
T(t)x − x

∥

∥ < +∞

}

,

with ω > ω0(T). It is a Banach space equipped with norm

‖x‖Fα
A

:= ‖x‖+ sup
t>0

1

tα

∥

∥e−ωt
T(t)x − x

∥

∥ ,

and similarly ‖x‖Fα
A−1

on Fα
A−1

. We note that sup
λ>ω

‖λα AR(λ, A)x‖ is an equiva-

lent norm on Fα
A (independent of the choice of ω), invariant under (T(t))t≥0 and

X1 →֒ Fα
A →֒ X. Obviously, λI − A maps Fα

A isometrically onto Fα
A−1

. If X is

reflexive Banach space then F1
A := FA = D(A) (see. e.g. [11]). Actually, the

Favard class Fα
A can be defined for α in the range (0, ∞). We will restrict our con-

siderations to the case α ∈ (0, 1].

For analytic semigroups these spaces are characterized as follows (see. e.g. [11]):

Proposition 1. Assume that A generates an analytic semigroup (T(t))t≥0 on a Banach
space X with ω0(T) < 0. If α ∈ (0, 1], on has

Fα
A =

{

x ∈ X / sup
t>0

∥

∥

∥
t1−α AT(t)x

∥

∥

∥
< +∞

}

and the Favard norm ‖·‖Fα
A

is equivalent to the norm

|x|Fα
A

:= sup
t>0

∥

∥

∥
t1−α AT(t)x

∥

∥

∥
.

Let E be Banach space, we will use the following notations: R+ = [0,+∞[;
Ep = Lp (R+, E) ; E

p
loc = L

p
loc (R

+, E) ; E
p
t = Lp (0, t; E) with p ∈ [1,+∞]. Cω =

{s ∈ C /Re(s) > ω} . For a fixed p ∈ [1,+∞] we denote by p′ the dual exponent
given by 1/p + 1/p′ = 1, and we say that p and p′ are conjugates. Throughout
the paper, the norm of any other Banach space, say E, will be specified by ‖ · ‖E.
In this work, we use the same letter K to denote different constants. The value of
K can change from one expression to another.

We will need the following crucial lemma which is due to ([9],Theorem.9).
A similar version can be found in ([22], Prop. 3.3) and ([23], Lemma. 4.3.9).



On the Admissible Control operators 715

Lemma 2. Let (T(t))t≥0 be a C0-semigroup of bounded linear operators on X, with
generator (A,D(A)). For all f ∈ L1

loc(0,+∞; FA) and t ≥ 0, we set

(T ∗ f ) (t) :=
∫ t

0
T(t − s) f (s)ds.

Then one has

1. (T ∗ f ) (t) ∈ D(A),

2. For ω > ω0(T), there is a constant K, independent of (t, f ), such that

‖(T ∗ f ) (t)‖D(A) ≤ Ke(|ω|t) ‖ f‖L1(0,t;FA)
,

where ‖·‖D(A) denotes the graph norm of A, i.e. ‖x‖D(A) = ‖x‖+ ‖Ax‖, x ∈ D(A).

Definition 3. Let τ > 0 and f , g be two functions of E
p
loc (1 ≤ p ≤ +∞), where

E is a Banach space. The τ-concatenation of f and g is the function f♦
τ

g ∈ E
p
loc

given by
(

f♦
τ

g

)

(t) =

{

f (t) ; 0 ≤ t < τ,

g(t − τ) ; t ≥ τ.

3 Framework on Abstract linear and bilinear control systems

In this section, we only state some necessary concepts (in particular admissibility
and representations theorems) for abstract control linear and bilinear systems.
The notations and terminologies used herein agree almost completely with that
of [25], [29] and [16], [3] and [2] respectively. But for the readers’ convenience, we
repeat some of them.

3.1 Abstract linear control systems

Definition 4. An abstract linear control system (ALCS for short) for X, Up with
p ∈ [1,+∞] is a pair (T, Φ), where T := (T(t))t≥0 be a C0-semigroup of bounded
linear operators on X and Φ = (Φt)t≥0 is a family of bounded linear operators
from Up to X (i.e., Φt ∈ L (Up, X)) such that:

Φτ+t

(

u♦
τ

v

)

= T(t)Φτu + Φtv, (3.1)

for any u and v in Up and t, τ ≥ 0.

The functional equation (3.1) is called the composition property.

Definition 5. Let (T(t))t≥0 be a C0-semigroup of bounded linear operators on X,
with generator (A,D(A)), and let V be a Banach space such that:

1. X
d→֒ V (i.e. continuous and dense injection).
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2. T(t) has an extension T
V(t) on V which forms a C0-semigroup on V .

We say that B ∈ L(U, V) is an p-admissible (p ∈ [1,+∞]) control operator for
(T(t))t≥0 (or A), if

∫ t

0
T

V(t − s)Bu(s)ds ∈ X (3.2)

for all u in U
p
loc and t ≥ 0. We note that the extension C0-semigroup (TV(t))t≥0,

if it exists it is unique, with its generator denoted by (AV ,D(AV)). B ∈ L(U, V)
is said to be a weakly p-admissible control operator for (T(t))t≥0; if for every
v ∈ U, the vector bv := Bv is a p-admissible for (T(t))t≥0. i.e., (3.2) holds for all u
of the form u(σ) = vw(σ), where v ∈ U and w ∈ Lp(0; t; C).

The closed graph theorem shows that if B is p-admissible control operator for
(T(t))t≥0 then, for some ( and hence all) t ≥ 0 there is K := Kt ≥ 0 such that

∥

∥

∥

∥

∫ t

0
T

V(t − s)Bu(s)ds

∥

∥

∥

∥

≤ K ‖u‖U
p
t

,

for all u ∈ U
p
loc with p ∈ [1,+∞]. And the operator which belongs to L(Up, V),

defined by

ΦV
t (u) :=

∫ t

0
T

V(t − s)Bu(s)ds (3.3)

is also bounded from Up to X. It is well-known that the couple
(

T, Φ
V
)

is an
ALCS for X, Up.

Definition 6. Let (T(t))t≥0, X and V defined as in Definition 5. We denote by
Ap(U, X, V, T) with p ∈ [1,+∞] the space of all p-admissible control operators
for (T(t))t≥0 . We endow this space with the norm

‖B‖V,t
p := sup

‖u‖
U

p
t
≤1

{∥

∥

∥

∥

∫ t

0
T

V(t − s)Bu(s)ds

∥

∥

∥

∥

}

, t > 0.

The following direct result is needed for a part of the proof of Proposition 15.

Claim. In the conditions of Definition 5 we have ‖B‖V,t
p =

∥

∥ΦV
t

∥

∥

L(U
√

,X ) , where

ΦV is given by (3.3).

Proof. By using the property of causality verified by the integral operator ΦV
t we

obtain

‖B‖V,t
p = sup

‖u‖
U

p
t
≤1

{
∥

∥

∥

∥

Φ
V
t

(

u♦
t

0

)
∥

∥

∥

∥

}

.

Since

∥

∥

∥

∥

u♦
t

0

∥

∥

∥

∥

Up

= ‖u‖U
p
t

we obtain ‖B‖V,t
p =

∥

∥ΦV
t

∥

∥

L(U
√

,X )
.

We denote Ap(U, X, T) := Ap(U, X, X−1, T) and the set ap(X, T) :=
Ap(C, X, X−1, T) denotes the space of p-admissible input elements for (T(t))t≥0.
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The following representation theorem ensures the existence and the unique-
ness of a p-admissible control operator associated with an ALCS. For the proof
we refer the reader to [29].

Theorem 7. Let (T(t))t≥0 be a C0-semigroup on the Banach space X generated by
(A,D(A)) and let (T, Φ) be an ALCS. for X, Up with p ∈ [1,+∞[. Then, there is a
unique operator B ∈ L(U, X−1) such that

Φtu =
∫ t

0
T−1(t − s)Bu(s)ds, (3.4)

for any u ∈ Up and t ≥ 0.

Thus if B ∈ L(U, V) be a p-admissible control operator, then by Theorem 7
there exists a unique operator B0 ∈ L(U, X−1) such that

Φ
V
t u =

∫ t

0
T−1(t − s)B0u(s)ds,

for any u ∈ Up and t ≥ 0.

Remark 8. In general, B0 is not equal to B (see e.g. [29], [8]). However, if A has a
continuous extension to an operator in L(X, V) (e.g. X →֒ D(AV)) then B0 = B.

For the next, recall that in Proposition 2.3 [30] (resp. in the Proposition 4.2.9
[27]) it has been proved that for p = 2 (resp. p ∈ [1,+∞]) the following p-
resolvent condition

∥

∥

∥
(sI − A−1)

−1B
∥

∥

∥

L(U ,X )
≤ K

Re(s)1/p
, s ∈ Cω. (3.5)

is necessary for the p-admissibility of the operator B.

This leads to the following definition which is inspired by the Weiss conjectures.

Definition 9. Let A generate a bounded C0-semigroup on a Banach X and U is an
other Banach space and p ∈ [1,+∞] . We say that A satisfies the p-Weiss property
if for any B ∈ L(U; X−1) the following statements are equivalent:

1. B is a p-admissible control operator for (T(t))t≥0.

2. B satisfies the p-resolvent condition (3.5).

In the literature there are many results concerning the validity or invalidity
of the 2-Weiss property on Hilbert spaces for some classes of C0-semigroups (see,
e.g. [18],[6]). As far as the analytic semigroups are concerned, it has been shown
in [18] and in [4] for a short proof (resp. in [13], [4], [5]) that 2-Weiss (resp.
p-Weiss, p ∈ [1,+∞]) property holds if and only if (−A)1/2 is 2-admissible (resp.
(−A)1/p is p−admissible) and generally the 2-Weiss property no longer holds
even for compact semigroups (see. [14]).
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Remark 10. The following simple observation will be helpful for the rest: The fact
that the notion of p-admissibility is invariant under scalings e−α·T, to investi-
gate the p-admissibility we may assume that T is exponentially stable. Thus for
B ∈ L(U, X−1) and for real s large enough and by definition of the extrapolation
space X−1 (with λ = 0) we obtain

∥

∥

∥
s1/p A−1(sI − A−1)

−1Bu
∥

∥

∥

−1
=

∥

∥

∥
s1/p(sI − A−1)

−1Bu
∥

∥

∥
p ≥ 1. (3.6)

Notice that the above condition can be reformulated by saying that if B is p-

admissible then Bu ∈ F
1/p
A−1

for all u ∈ U accordingly to (3.5). Finally, the closed

graph theorem implies that a new necessary condition of p-admissibility of B for
(T(t))t≥0 is

Range(B) ⊂ F
1/p
A−1

, (3.7)

and in an implicit setting it was observed in Remark 3.3 [29] that a2(X, T) ⊂ F
1
2
A−1

.

So, for spaces X and V as in Definition 5 we can ask: ”under what conditions
on the underlying semigroup (T(t))t≥0 the equality :

L(U, F
1/p

AV ) = Ap(U, X, V, T), (3.8)

takes place”?
For analytic semigroups it is easy to see that the p-resolvent condition is true if
and only if it is for real s only. Thus, with V = X−1 a necessary and sufficient
condition for a semigroup to satisfy the p-Weiss property is that Ap(U, X, T) =

L(U, F
1/p
A−1

) accordingly to identity (3.6).

For a normal (resp. bounded) and analytic semigroup (T(t))t≥0 on a Hilbert
(resp. on Banach) space X, Remark 3.3 in [29] (resp. Theorem 4.1 [18] and
Theorem 1.8 [13]) implicitly contains an affirmative answer for p = 2 and for
p = 1 respectively. In particular for an analytic semigroup on X = lr, the
Theorem 1.1 [28] implicitly contains an affirmative answer with V = X−1 for
all p with r ≥ p′ ≥ 2. For all semigroups (T(t))t≥0 on a reflexive Banach space
X an affirmative answer for p = 1 was given in the Theorem 4.8 [29] since in this
case FA−1

= X as cited above. Below we show that Theorem 4.8 [29] takes place
for all Banach space.

Unlike identity (3.8), in the next section and in spite of the invalidity of (3.6) we
will show that the condition (3.7) remains true for all pairs (X, V) as in Definition
5 with an extra assumption.

3.2 Abstract Bilinear Control Systems

In this subsection we recall the definition of an abstract bilinear control systems.
It is stated in [16] for the conjugated p and q. But for the non-conjugated p and q
satisfying (1.4) the author in [2] deals only with the definition of (p, q)-admissible
bilinear control operators.
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In the sequel, p and q are real numbers in [1,+∞] satisfying (1.4).

Definition 11. An abstract bilinear control system (ABCS for short) for Cp × Xq

is a pair (T, Ψ), where T := (T(t))t≥0 be a C0-semigroup of bounded linear op-
erators on X and Ψ = (Ψt)t≥0 is a family of bounded bilinear operators from
Cp × Xq to X (i.e., Ψt ∈ BL (Cp × Xq, X)) such that

Ψτ+t

(

u♦
τ

v, x♦
τ

y

)

= T(t)Ψτ (u, x) + Ψt (v, y) , (3.9)

for any u, v ∈ Cp, x, y ∈ Xq and t, τ ≥ 0.

The functional equation (3.9) is called the ”composition property”.

The following definition was introduced in [16] for conjugates p and q and in
[2] for all (p, q) satisfying (1.4).

Definition 12. Let (T(t))t≥0, X and V defined as in Definition 5, we say that
B ∈ L(X, V) is an (p, q)-admissible operator control for (T(t))t≥0 (or A) , if

∫ t

0
T

V(t − s)u(s)Bx(s)ds ∈ X (3.10)

for all u, x in C
p
loc × X

q
loc and t ≥ 0.

We note that a (p, q)-admissible operator B is also a q-admissible control oper-
ator for (T(t))t≥0 (this can be seen by considering the input u = 1). If B is a (p, q)-
admissible control operator for (T(t))t≥0, then for all t ≥ 0 there is K := Kt ≥ 0
such that

∥

∥

∥

∥

∫ t

0
T

V(t − s)u(s)Bx(s)ds

∥

∥

∥

∥

X

≤ K ‖u‖
C

p
t
‖x‖X

q
t

, (3.11)

for all (u, x) C
p
loc × X

q
loc.

As in the linear case, we have the following representation theorem which has
been proved in [16] where p and q are conjugates. The proof can be obtained
similarly for non conjugates p and q and it is omitted.

Theorem 13. Let (T(t))t≥0 be a C0-semigroup on the Banach space X generated by
(A,D(A)). Let (T, Ψ) be an ABCS for Cp × Xq with p, q ∈]1,+∞[ satisfying (1.4).
Then, there is a unique operator B ∈ L(X, X−1) such that:

Ψt(u, x) =
∫ t

0
T−1(t − s)u(s)Bx(s)ds, (3.12)

for any (u, x) in Cp × Xq and t ≥ 0.

Remark 14. Let B ∈ L (X, V) and be (p, q)-admissible control operator for (T(t))t≥0

we have the following statements:
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(i) If we denote

ΨV
t (u, x) =

∫ t

0
T

V(t − s)u(s)Bx(s)ds

with (u, x) in Cp × Xq then the couple
(

T, Ψ
V
)

is an ABCS for Cp × Xq. By repre-
sentation Theorem 13 there is a unique operator B0 ∈ L(X, X−1) such that

ΨV
t (u, x) =

∫ t

0
T−1(t − s)u(s)B0x(s)ds,

for any (u, x) in C
p × Xq and t ≥ 0.

(ii) When AV ∈ L(X, V), we deduce that B0 = B which is due to the fact that
B is a q-admissible control operator for (T(t))t≥0, (see. Remark 8).

4 Admissible Linear Control Operators and the Favard spaces

After recalling the definitions of ALCS and some related theorems, this section
states the main results giving a relationship between the space of the admissible
control operators and the Favard spaces.

Proposition 15. Let U Banach space and let X, V and (T(t))t≥0 as defined in Defini-
tion 5 and p ∈ [1,+∞[. If there is an isomorphism between D(AV) and X then:

L(U, FAV ) →֒ Ap(U, X, V, T) →֒ L(U, F
1
p

AV ),

where FAV denotes the Favard space associated with AV .

Remark 16. For Banach spaces X and V as in Proposition 15 we don’t necessary

have a similar identity to (3.6) but we always have Ap(U, X, V, T) ⊂ L(U, F
1
p

A−1
).

In fact, let B ∈ Ap(U, X, V, T) then by virtue of Remarks 8 and 10 we obtain

B ∈ Ap(U, X, T) ⊂ L(U, F
1
p

A−1
).

Proof. (Proof of Proposition 15). Let B ∈ L(U, FAV ) and u ∈ U
p
loc ⊆ U1

loc then

Bu(·) ∈ L1
loc(R

+, FAV ) and by Lemma 2 (i) we have

∫ t

0
T

V(t − s)Bu(s)ds ∈ D(AV),

for all t ≥ 0, since D(AV) ≃ X this implies B ∈ Ap(U, X, V, T) and by Lemma 2
(ii) there is K := Kt > 0 such that:

∥

∥

∥

∥

∫ t

0
T

V(t − s)Bu(s)ds

∥

∥

∥

∥

≤ K ‖B‖L(U,F
AV )

‖u‖L1(0,t;U)

and since U
p
loc ⊆ U1

loc there is K := Kt > 0 such that

∥

∥

∥

∥

∫ t

0
T

V(t − s)Bu(s)ds

∥

∥

∥

∥

≤ K ‖B‖L(U,F
AV )

‖u‖Lp(0,t;U)
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which implies that

‖B‖V,t
p ≤ K ‖B‖L(U,F

AV )
.

On an other hand, let B ∈ Ap(U, X, V, T). Since F
1/p

AV →֒ V, it is enough, by the

closed graph theorem, to show that Range(B) ⊂ F
1/p

AV . So, let u ∈ U and t > 0. As

X →֒ D
(

AV
)

, one can write (AV
ω := AV − ωI)

∥

∥e−ωtTV (t) Bu − Bu
∥

∥

V
=

∥

∥

∥
AV

ω

∫ t
0 e−ωsTV (s) Buds

∥

∥

∥

V

≤ K
∥

∥

∥

∫ t
0 e−ωsTV (s) Buds

∥

∥

∥

≤ K t1/p
∥

∥ΦV
t

∥

∥

p ‖u‖ .

The fact that
∥

∥ΦV
t

∥

∥

L(U ,X )
(well-known result [29]) is monotonically increasing in

t and using the above Claim, it follows that

sup
t∈]0,1]

1

t1/p

∥

∥

∥
e−ωt

T
V (t) Bu − Bu

∥

∥

∥

V
≤ K ‖B‖V,1

p ‖u‖

Thus, Bu ∈ F
1/p

AV and we have

‖B‖L(U,F
1/p

AV )
≤ K ‖B‖V,1

p .

We are now in a position to state the main result of this subsection which
generalizes the result recalled at the end of the subsection 3.1 concerning p = 1.
More than that, it is of great use in the paper [6].

Corollary 17. In the conditions of Proposition 15 we have

A1(U, X, V, T) = L(U, FAV ).

In particular A1(U, X, T) = L(U, FA−1
), thus the p- Weiss property is true for p = 1.

Corollary 18. Let X, V and (T(t))t≥0 as in Proposition 15. Then we have FAV →֒ FA−1
.

Proof. Let b ∈ FAV . Appealing to Corollary 17 we obtain b ∈ a1(X, V, T) and
using Remark 8 we obtain b ∈ a1(X, T) = FA−1

.

In the conditions of Corollary 18 a similar result for the pair (F
1/p
A−1

, F
1/p

AV ) for

p ∈]1,+∞[ cannot be announced but we infer that we only have ap(X, V, T) ⊂
F

1/p
A−1

∩ F
1/p

AV .

We now take a look at the situation where A generates an analytic semigroup
on X and p > 1.

Proposition 19. Let A generate a bounded analytic semigroup (T(t))t≥0 on a Banach
space X. Then for all β ∈ ( 1

p , 1] we have:

L(U, F
β
A−1

) →֒ Ap(U, X, T) →֒ L(U, F
1/p
A−1

).
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Proof. Let B ∈ L(U, F
β
A−1

) and u ∈ U
p
loc then

∥

∥

∥

∫ t
0 T−1(t − s)Bu(s)ds

∥

∥

∥

=

∥

∥

∥

∥

∫ t

0
(−A−1)

−1(t − s)1−β(−A−1)(t − s)β−1
T−1(t − s)Bu(s)ds

∥

∥

∥

∥

≤
∫ t

0

∥

∥

∥
(−A−1)

−1(t − s)1−β(−A−1)(t − s)β−1
T−1(t − s)Bu(s)

∥

∥

∥
ds

=
∫ t

0

∥

∥

∥
(t − s)1−β(−A−1)(t − s)β−1

T−1(t − s)Bu(s)
∥

∥

∥

−1
ds.

There is no loss of generality in assuming that (T(t))t≥0 is a bounded and so is

(T−1(t))t≥0. Since Range(B) ⊂ F
β
A−1

by virtue of Proposition 1, we have

∥

∥

∥
(t − s)1−β(−A−1)T−1(t − s)Bu(s)

∥

∥

∥

−1
≤ ‖B‖L(U,F

β
A−1

)
‖u(s)‖ .

Thus
∥

∥

∥

∥

∫ t

0
T−1(t − s)Bu(s)ds

∥

∥

∥

∥

≤ ‖B‖L(U,F
β
A−1

)

∫ t

0
(t − s)β−1 ‖u(s)‖ ds,

and it is easy to verify by Hölder inequality and taking into account the con-
dition on β that the scalar function s 7→ (t − s)β−1 ‖u(s)‖ is L1

loc(R
+) then B is

p-admissible for T(t) and there is K := Kt > 0 such that

‖B‖X−1,t
p ≤ K ‖B‖L(U,F

β
A−1

)
.

We mention that in the above proposition the embedding result on the space
Ap(U, X, T) is optimal in the sense that the limit case β = 1/p is also true if
and only if the semigroup T(t) satisfies the p-Weiss property or equivalently the
operator (−A∗)1/q is q-admissible if X is a reflexive Banach space (see. [5]).

5 Application to Boundary Control Systems

Consider

1. three Banach spaces X, ∂X and U, called the state space, boundary space
and control space, respectively.

2. a closed, densely defined system operator Am : D(Am) ⊆ X → X.

3. a boundary operator Q ∈ L (D (Am) , ∂X).

4. a control operator B ∈ L (U, ∂X).

For these operators and spaces and a control function u ∈ U1
loc and x0 ∈ X, we

consider the abstract Cauchy problem with a boundary control










ẋ(t) = Amx(t), t ≥ 0,

Qx(t) = Bu(t), t ≥ 0,

x(0) = x0.

(5.1)
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In order to investigate (5.1) we make the following assumption ensuring in par-
ticular that the uncontrolled abstract Cauchy problem, i.e., (5.1) with B = 0, is
well-posed.
In the spirit of Greiner’s approach [12] (see. also [25]) and based on some results
in [17] we assume that

1. the operator A := Am|ker Q defined as the restriction of Am to ker Q gener-

ates a strongly continuous semigroup (T(t))t≥0 on a non reflexive X.

2. the boundary operator Q : D (Am) → ∂X is onto.

Under these assumptions the following properties have been shown by [[12];
Lemmas 1.2, 1.3].

1. For each λ ∈ ρ(A), D(Am) = D(A)⊕ ker(λ − Am);

2. Q| ker(λ−Am) is invertible and the operator Qλ :=
(

Q| ker(λ−Am)

)−1
: ∂X →

ker(λ − Am) ⊆ X is bounded;

3. Pλ := QλQ ∈ L (D(Am)) is a projection onto ker(λ − Am) along D (A);

4. R(µ, A)Qλ = 1
λ−µ(Qµ − Qλ) = R(λ, A)Qµ for all λ, µ ∈ ρ (A) , λ 6= µ.

The operator Qλ is called the Dirichlet operator for λ ∈ ρ(A).
By defining the operators Bλ := QλB ∈ L(U, ker(λ − Am)) which are essential to
obtain an explicit representation of the boundary control system (5.1) as follows:

{

ẋ(t) = A (x (t)− Bλu (t)) + λBλu(t), t ≥ 0,

x(0) = x0.
(5.2)

In the bigger space X−1 the above system can be rewritten in the form:

{

ẋ(t) = A−1x(t) + (λ − A−1) Bλu(t), t ≥ 0

x(0) = x0.
. (5.3)

The initial state x0 ∈ X is given. By a mild solution of (5.3) we mean a continuous
function x(t) on [0, T] satisfying (variation of parameters formula) :

x (t) := T (t) x0 +
∫ t

0
T−1 (t − s) (λ − A−1) Bλu(s)ds

= T (t) x0 + (λ − A−1)
∫ t

0
T (t − s) Bλu(s)ds. (5.4)

Remark that the solution of (5.4) is always well-defined in X−1. In the Propo-
sition 2.7 [17] it was proved that a classical solution of (5.3) which means that
x(·) = x(·, x0, u) is continuously differentiable in X and x(t) ∈ D(Am) satisfying
(5.1) is also a mild one. In order to obtain from (5.4) solutions having values in
X the authors impose some (regularity) sufficient condition on the elements in
ker (λ − Am) that is (a) ker (λ − Am) ⊆ FA, or equivalently (b) Range(Bλ) ⊆ FA.



724 F. Maragh – H. Bounit – A. Fadili – H. Hammouri

Other equivalent conditions to (a) have been presented in [9].

It was been proved in Proposition 2.9 in [17] that under the assumption
Range (Bλ) ⊆ FA and if in addition for some control u ∈ U1

loc a classical solution
x(·) of (5.3) exists, then this solution given by (5.5) below. As a classical solution
of (5.3) associated to x0 ∈ X and u ∈ U1

loc is also a mild one, the following result
shows that the above sufficient condition is even necessary for the existence of
the mild solutions of (5.4) covering the Proposition 2.9 in [17].

Theorem 20. Let the initial state x0 ∈ X and λ ∈ ρ(A). Then system (5.1) admit a
(unique) mild solution of all u ∈ U1

loc if and only if Range (Bλ) ⊆ FA. Moreover, for all

u ∈ U1
loc its solution is given by

x (t) = T (t) x0 + (λ − A)
∫ t

0
T (t − s) Bλu(s)ds. (5.5)

Proof. Sufficiency. Assume that Range (Bλ) ⊆ FA then by the closed graph theo-
rem we obtain Bλ ∈ L (U, FA) which implies Bλ := (λI − A−1)Bλ ∈ L

(

U, FA−1

)

.

By virtue of Corollary 17 we obtain Bλ ∈ A1(U, X, T), in particular
∫ t

0 T−1 (t − s) Bλu(s)ds ∈ X for all u ∈ U1
loc. Hence system (5.3) has a unique

mild solution satisfying

x (t) = T (t) x0 + (λ − A)
∫ t

0
T (t − s) Bλu(s)ds.

accordingly to Lemma 2.
Necessity. Assume that for all u ∈ U1

loc system (5.3) has a mild solution denoted
by x(t). The fact that x(t) is given by (5.4) we obtain

∫ t

0
T−1 (t − s) Bλu(s)ds ∈ X,

which implies that
(λ − A−1) Bλ ∈ A1(U, X, T).

Thanks to Corollary 17 we obtain

Range ((λ − A−1) Bλ) ⊆ FA−1
.

Now, as (λI − A−1)
−1 ∈ L

(

FA−1
, FA

)

we obtain Range (Bλ) ⊆ FA. This end the
proof.
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6 Admissible Bilinear Control Operators and the Favard spaces

In this section we come back to bilinear systems and show that the space of (p, q)-
admissible control operators for bilinear systems is also related to the Favard
spaces as in [16] where the conjugacy of p, q (i.e. q = p′) was considered.

Definition 21. Let (T(t))t≥0, X and V defined as in Definition 5. We denote by
Ap,q(X, V, T) the space of all (p, q)-admissible control operators for (T(t))t≥0 .
We endow this space with the norm

‖B‖V,t
p,q := sup

‖u‖
C

p
t
≤1,‖x‖

X
q
t
≤1

{
∥

∥

∥

∥

∫ t

0
T

V(t − s)u(s)Bx(s)ds

∥

∥

∥

∥

}

, t > 0.

We would like to point out that we do not claim that the following Proposition
is new, although it might be (it is only stated in [16] without proof under the
conjugacy of p and q).

Proposition 22. For all (u, x) in Cp × Xq. Let B ∈ Ap,q(X, V, T), if we define ΨV
t (·, ·)

for t ≥ 0 by

ΨV
t (u, x) =

∫ t

0
T

V(t − s)u(s)Bx(s)(s)ds

then
‖B‖V,t

p,q =
∥

∥

∥
ΨV

t

∥

∥

∥

BL
.

Proof. Using the property of causality property verified by the integral operator
ΨV

t we obtain

‖B‖V,t
p,q = sup

‖u‖
C

p
t
≤1,‖x‖

X
q
t
≤1

{
∥

∥

∥

∥

Ψ
V

t

(

u♦
t

0, x♦
t

0

)
∥

∥

∥

∥

}

,

since

∥

∥

∥

∥

u♦
t

0

∥

∥

∥

∥

Cp

= ‖u‖Lp(0,t) and

∥

∥

∥

∥

x♦
t

0

∥

∥

∥

∥

Xq

= ‖x‖Lq(0,t;X) then ‖B‖V,t
p,q =

∥

∥ΨV
t

∥

∥

BL.

In the sequel we need the following result which has been proved in [16] and
[2].

Proposition 23. In the conditions of Definition 21, the function t 7→
∥

∥ΨV
t

∥

∥

BL is mono-
tonically increasing in t.

As for linear case the following result relies the space of (p, q)-admissible bi-
linear operators with some Favard spaces. This improves on earlier results in
[16].

Proposition 24. In the conditions of Definition 5 such that D(AV) = X we have

L(X, FAV ) →֒ Ap,q(X, V, T) →֒ L(X, Fα
AV ),

with α = 1
p +

1
q .
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Before we give the proof, which is more or less along the lines of the linear
case, let us comment on this proposition. If B is (p, q)-admissible for (T(t)t≥0),
then it is easy to see that B is q-admissible for (T(t)t≥0), and that Ap,q(X, V, T) →֒
L(X, F

1/q

AV ) accordingly to Proposition 15.

Proof. (Proof of Proposition 24) The first injection: Let B ∈ L(X, FAV ) and (u, x) ∈
C

p
loc × X

q
loc. By using the generalized Hölder inequality we have u · x ∈ X1

loc

then uBx ∈ L1
loc (R

+, FAV ). Hence by applying Lemma 2 (i) one obtains that

B ∈ Ap,q(X, V, T). Since D(AV) = X, Lemma 2 (ii) and the generalized Hölder
inequality yield:

∥

∥

∥

∥

∫ t

0
T

V(t − s)u(s)Bx(s)ds

∥

∥

∥

∥

≤ K ‖uBx‖L1(0,t;F
AV)

≤ K ‖B‖L(X,F
AV ) ‖u‖

C
p
t
‖x‖

X
q
t

.

Hence

‖B‖V,t
p,q ≤ K ‖B‖L(X,F

AV )
.

The second injection: We argue in the same spirit as above: Let B ∈ Ap,q(X, V, T)
since Fα

AV ⊆ V, it is enough by the closed graph theorem to show that Range (B) ⊆
Fα

AV . So, let x ∈ X, uω(·) = e−ω· and ξx(·) = x on R+ since

e−ωt
T

V(t)Bx − Bx =
(

AV − ωI
)

∫ t

0
e−ωs

T
V(s)Bxds,

taking ω ≥ max(0, ω0(T
V)) and since D(AV) = X, we obtain

∥

∥

∥
e−ωt

T
V(t)Bx − Bx

∥

∥

∥

V
≤ K

∥

∥

∥

∥

∫ t

0
e−ωs

T
V(s)Bxds

∥

∥

∥

∥

≤ K
∥

∥

∥
ΨV

t (uω , ξx)
∥

∥

∥

≤ K

∥

∥

∥

∥

ΨV
t (uω♦

t
0, ξx♦

t
0)

∥

∥

∥

∥

≤ K
∥

∥

∥
ΨV

t

∥

∥

∥

BL
tα ‖x‖

then we have:
1

tα

∥

∥

∥
e−ωt

T
V(t)Bx − Bx

∥

∥

∥

V
≤ K

∥

∥

∥
ΨV

t

∥

∥

∥

BL
‖x‖

taking the supremum in (0, 1] and using Proposition 23 we obtain:

sup
0<t≤1

1

tα

∥

∥

∥
e−ωt

T
V(t)Bx − Bx

∥

∥

∥

V
≤ K

∥

∥

∥
ΨV

1

∥

∥

∥

BL
‖x‖

then Bx ∈ Fα
AV implying that B ∈ L(X, Fα

AV ).

Finally, by Proposition 22 we obtain ‖B‖L(X,F
AV )

≤ K ‖B‖V,1
p,q .
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In the case of q = p′ we rediscover the result in [16] saying that
Ap,p′(X, V, T) = L(X, FAV ).

When the underlying operator A generates an analytic semigroup we have
the following.

Proposition 25. Let A generate a bounded analytic semigroup (T(t))t≥0 on a Banach
space X, and let α = 1

p +
1
q and β > 0 such that α < β ≤ 1 then

L(X, F
β
A−1

) →֒ Ap,q(X, T) →֒ L(X, Fα
A−1

).

Proof. We have only to prove the first injection. Let B ∈ L(X, F
β
A−1

) and (u, x) ∈
C

p
loc × X

q
loc then

∥

∥

∥

∫ t
0 T−1(t − s)u(s)Bx(s)ds

∥

∥

∥

=

∥

∥

∥

∥

∫ t

0
(−A−1)

−1(t − s)1−β(−A−1)T−1(t − s)Bx(s)(t − s)β−1u(s)ds

∥

∥

∥

∥

≤
∫ t

0

∥

∥

∥
(−A−1)

−1(t − s)1−β(−A−1)T−1(t − s)Bx(s)(t − s)β−1u(s)
∥

∥

∥
ds

=
∫ t

0

∥

∥

∥
(t − s)1−β(−A−1)T−1(t − s)Bx(s)(t − s)β−1u(s)

∥

∥

∥

−1
ds.

The fact that (T−1(t))t≥0 is a bounded analytic semigroup and that Range(B) ⊂
F

β
A−1

we have

∥

∥

∥
(t − s)1−β(−A−1)T−1(t − s)Bx(s)

∥

∥

∥

−1
≤ ‖B‖L(X,F

β
A−1

)
‖x(s)‖ .

Thus
∥

∥

∥

∥

∫ t

0
T−1(t − s)u(s)Bx(s)ds

∥

∥

∥

∥

≤ ‖B‖L(X,F
β
A−1

)

∫ t

0
(t − s)β−1 ‖x(s)‖ |u(s)| ds

and it is easy to verify with the generalized Hölder inequality and taking into ac-
count the condition on β that the function s 7→ (t− s)β−1 ‖x(s)‖ |u(s)| is L1

loc(R
+)

then B is (p, q)-admissible and there is K := Kt > 0 such that

‖B‖X−1,t
p,q ≤ K ‖B‖L(X,F

β
A−1

)
.

The following result covers the result in [2] and it is certainly more general
than this ones where the author needs γ = 1/2 and it will suffice for the applica-
tion we have in mind.

Theorem 26. Let A generate a bounded analytic semigroup (T(t))t≥0 on a Banach

space X, and p, q ∈]1,+∞[ satisfying (1.4). Then the fractional power (−A)γ is (p,q)-
admissible for all γ ∈ (0, 1) with 1

p +
1
q < 1 − γ.
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Proof. Let (u, x) ∈ C
p
loc × X

q
loc. The fact that D(A−1) = X ⊂ D((−A−1)

γ) and
that (−A−1)

γ ∈ L(X, X−1) (see, Theorem 5.34 [11]) the X−1-valued integral

Ψt (u, x) =
∫ t

0
T−1(t − s)u(s) (−A−1)

γ x(s)ds

is well-defined. Since (T(t))t≥0 is an analytic semigroup (T−1(t))t≥0 is so, this
implies that T−1(t − s) (−A−1)

γ x(s) ∈ X and there exists K := Kγ such that
∥

∥T−1(t − s) (−A−1)
γ x(s)

∥

∥ =
∥

∥(−A)γ
T(t − s)x(s)

∥

∥

≤ Kγ(t − s)−γ ‖x(s)‖ .

It follows that

‖Ψt (u, x)‖ ≤
∫ t

0

∥

∥T−1(t − s)u(s) (−A−1)
γ x(s)

∥

∥ ds

≤ Kγ

∫ t

0
(t − s)−γ ‖x(s)‖ |u(s)| ds.

Since 1
p +

1
q < 1 − γ it easy to check that the function s 7→ (t − s)−γ ‖x(s)‖ |u(s)|

is C1
loc and there is a constant K := Kt > 0 such that

‖Ψt (u, x)‖ ≤ K ‖u‖
C

p
t
‖x‖

X
q
t

,

which ends the proof.

7 Example

In this section we apply the obtained results to fractional equation of diffusion
type.
Let Ω be an open bounded domain in R

n with sufficiently smooth boundary Γ.
We study a time-fractional diffusion equation of distributed order of the form















∂y

∂t
= ∆y + u(t)(−∆)γ y on (0,+∞)× Ω,

y = 0 on (0,+∞)× Γ,

y(0, x) = y0(x) on Ω,

(7.1)

where γ ∈]0, 1].
Recall that fractional Laplacian (−∆)γ as long as γ > 1/2 is widely used to de-
scribe physical systems exhibiting anomalous diffusions (see. e.g. [19], [20], [15]).
The system has the form (1.1) if we set X = L2(Ω), B = (−∆)γ and

D(A) = H2(Ω) ∩ H1
0(Ω), Ay = ∆y.

Let 0 < β1 < β2 < · · · < βn < · · · be the set of eigenvalues of −A and denote
by {ϕn}n the corresponding orthonormal basis in L2(Ω). It is well-known that A
generates an analytic semigroups T(t) which is given explicitly by

T(t)y = ∑
n

〈y, ϕn〉 e−βnt ϕn for all y ∈ L2(Ω),
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where 〈·, ·〉 denotes the scalar product in L2(Ω). Moreover, the operator B can be
expressed by

By = ∑
n

〈y, ϕn〉 β
γ
n ϕn.

Clearly B is unbounded on L2(Ω) and it is bounded from L2(Ω) onto the space V
defined as the completion of L2(Ω) for the norm defined by

‖y‖2
V = ∑

n

〈y, ϕn〉2

β
2γ
n

.

Recall that the space D((−A)γ) is normed

‖y‖2
D((−A)γ) = ∑

n

β
2γ
n (〈y, ϕn〉)2 .

It is easy to see that the space V can be interpreted as the dual space of D((−A)γ)
with respect to the L2(Ω)-topology, the space L2(Ω) being the pivot space.
Furthermore, the the extension (respectively the restriction) of the operator A to
V (respectively D((−A)γ)) generates a strongly continuous semigroup denoted
by (TV(t))t≥0 (see. [1], Vol.1).

Thanks to Theorem 26, we obtain the following condition which extends the re-
sult given in [2] where the author needs γ = 1/2.

Proposition 27. For all γ ∈]0, 1[ and p, q ∈]1,+∞[ satisfying

1

p
+

1

q
< 1 − γ,

the operator (−∆)γ is (p, q)-admissible w.r.t X−1 and V.

Proof. The (p, q)-admissibility w.r.t to X−1 is given by Theorem 26 and hence the
(p, q)-admissibility w.r.t to V can be trivially obtained by similar arguments after
having replaced X−1 by V due to analyticity of (TV(t))t≥0 and that B is simply
the restriction of (−AV)γ to X.

Remark 28. Clearly for all γ ∈]0, 1] the control operator (−∆)γ is unbounded on
L2(Ω). Hence (−∆)γ cannot be (p, p′)-admissible w.r.t to X−1 and V accordingly
to Corollary 4.8 [16] and it was already proved in [2] by a (quantitative) manner
for γ = 1/2 w.r.t V.

Finally, combining Proposition 27 and Theorem 2.5 [2] leads to the following
corollary.

Corollary 29. Let γ ∈]0, 1[ and p ∈] 1
1−γ ,+∞[. Then for any y0 ∈ L2(Ω) and

u ∈ C
p
loc, the system (7.1) admits a unique mild solution y(t) on R+.
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8 Conclusion

In this work, we have considered a class of linear and bilinear control systems
which allow some unboundedness of control operators. Links between the no-
tion of p-admissibility for linear systems (resp. (p, q)-admissibility for bilinear
systems) and Favard class are given. In particular and concerning linear systems,
we have identified the space of 1-admissible control operator for a given linear
system which constitutes a generalization of the result in Theorem [29], more we
have shown that the Weiss-conjecture holds for p = 1 in general Banach setting.
Based on this, an application to boundary control systems is given. More, the au-
thors in [6] have shown that every well-posed linear system in L1 is weakly regu-
lar, if the adjoint of its associated C0 -semigroup is also a C0-semigroup. (see. [27]
for more information about well-posed linear systems). Regular bilinear systems
which has been introduced in [3] constitutes an important subclass of the well-
posed bilinear systems, see [3]. So, it has been proved in [6] that every well-posed
bilinear system as introduced in [3] is weakly regular under the same assumption
on its underlying semigroups. Finally, it would be interesting to study bilinear
systems with delays in state and control. This may give rise to another class of
bilinear systems. That will be the subject of our future work.
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