
On the Fekete-Szegö problem for classes of

bi-univalent functions

Pawe l Zaprawa

Abstract

In this paper we obtain the Fekete-Szegö inequalities for the classes Hσ(ϕ),
ST σ(α, ϕ) and Mσ(α, ϕ) of bi-univalent functions defined in terms of sub-
ordination. These inequalities result in the bounds of the third coefficient
which improve many known results concerning different classes of bi-univalent
functions.

1 Introduction

Let A be the class of all functions f in the unit disk D ≡ {ζ ∈ C : |ζ| < 1}
normalized by the conditions f (0) = f ′(0) − 1 = 0 and S be the subclass of A
consisting of univalent functions in D. For every f ∈ S there exists an inverse
function f−1 which is defined in some neighbourhood of the origin. According
to the Koebe one-quarter theorem f−1 is defined in some disk containing the
disk |w| < 1/4. In some cases this inverse function can be extended to whole
D. Clearly, f−1 is also univalent. This is the reason of discussing so called bi-
univalent functions.

A function f ∈ A is called bi-univalent in D if both f and f−1 are univalent
in D. Following Lewin, we denote the class of bi-univalent functions by σ.

Observe that for f ∈ σ of the form

f (z) = z +
∞

∑
n=2

anzn (1)
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the inverse function f−1 has the Taylor-Maclaurin series expansion

f−1(w) = w − a2w2 + (2a 2
2 − a3)w

3 + . . . (2)

Lewin gave the first estimate of coefficients in σ. Namely, he proved that
|a2| < 1.51. On the other hand, Styer and Wright showed that |a2| > 4/3 for
some function in σ. The problem of estimating coefficients |an|, n ≥ 2 is still
open. However, a lot of results for a2, a3 and a4 were proved for some subclasses
of σ. Unfortunatelly, they are not sharp.

In the recent paper Ali et al. obtained results in classes defined in terms
of subordination. Among others they discussed classes Hσ(ϕ), ST σ(α, ϕ) and
Mσ(α, ϕ). In the definitions of the three classes a function ϕ appears. In all cases
it is assumed that ϕ is an analytic function in D with positive real part. Moreover,
it has series expansion of the form

ϕ(z) = 1 + B1z + B2z2 + . . . (3)

where all coefficients are real and B1 > 0.
Now we can formulate the definitions of the classes mentioned above.

Definition 1. A function f ∈ σ is in Hσ(ϕ) if

f ′(z) ≺ ϕ(z) and g′(w) ≺ ϕ(w) , g = f−1 .

Definition 2. A function f ∈ σ is in ST σ(α, ϕ) if

z f ′(z)

f (z)
+ α

z2 f ′′(z)

f (z)
≺ ϕ(z) and

wg′(w)

g(w)
+ α

w2g′′(w)

g(w)
≺ ϕ(w) , g = f−1 .

Definition 3. A function f ∈ σ is in Mσ(α, ϕ) if

(1 − α)
z f ′(z)

f (z)
+ α

(

1 +
z f ′′(z)

f ′(z)

)

≺ ϕ(z) and

(1 − α)
wg′(w)

g(w)
+ α

(

1 +
wg′′(w)

g′(w)

)

≺ ϕ(w) , g = f−1 .

Observe that the class ST σ(0, ϕ) = Mσ(0, ϕ) is known as the class of
Ma-Minda bi-starlike functions and the class Mσ(1, ϕ) is known as the class of
Ma-Minda bi-convex functions. These particular classes are denoted by ST σ(ϕ)
and CVσ(ϕ) respectively.

In this paper we shall obtain the Fekete-Szegö inequalities for Hσ(ϕ),
ST σ(α, ϕ) and Mσ(α, ϕ). These inequalities will result in bounds of the third
coefficient which are, in some cases, better then these obtained in [1], [2], [6].
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2 Main results

At the beginning, observe that the conditions in all three definitions can be writ-
ten as follows:

F(z) ≺ ϕ(z) and G(w) ≺ ϕ(w) (4)

where

F(z) = f ′(z) , G(w) = g′(w) for Hσ(ϕ) ,

F(z) =
z f ′(z)

f (z)
+ α

z2 f ′′(z)

f (z)
, G(w) =

wg′(w)

g(w)
+ α

w2g′′(w)

g(w)
for ST σ(α, ϕ) ,

F(z) = (1 − α)
z f ′(z)

f (z)
+ α

(

1 +
z f ′′(z)

f ′(z)

)

,

G(w) = (1 − α)
wg′(w)

g(w)
+ α

(

1 +
wg′′(w)

g′(w)

)

for Mσ(α, ϕ) .

The conditions (4) are equivalent to

F(z) = ϕ(u(z)) and G(w) = ϕ(v(w)) . (5)

Here, functions u and v are analytic in D, u(0) = v(0) = 0, and |u(z)| < 1,
|v(z)| < 1 for all z ∈ D.

We apply the same technique as in [1]. Assume that

p(z) ≡
1 + u(z)

1 − u(z)
= 1 + p1z + p2z2 + . . . (6)

and

q(z) ≡
1 + v(z)

1 − v(z)
= 1 + q1z + q2z2 + . . . . (7)

Clearly, Re p(z) > 0 and Re q(z) > 0. From (6), (7) one can derive

u(z) = 1
2 p1z + 1

2(p2 −
1
2 p1

2)z2 + . . . (8)

and
v(z) = 1

2q1z + 1
2(q2 −

1
2q1

2)z2 + . . . . (9)

Combining (3), (5), (8) and (9),

F(z) = 1 + 1
2 B1p1z +

(

1
4 B2p1

2 + 1
2 B1(p2 −

1
2 p1

2)
)

z2 + . . . (10)

and
G(z) = 1 + 1

2 B1q1z +
(

1
4 B2q1

2 + 1
2 B1(q2 −

1
2q1

2)
)

z2 + . . . . (11)

From (10) and (11) and the series expansions of F and G, it follows that

A1(F) = 1
2 B1p1 (12)

A2(F) = 1
4 B2p1

2 + 1
2 B1(p2 −

1
2 p1

2) (13)

A1(G) = 1
2 B1q1 (14)

A2(G) = 1
4 B2q1

2 + 1
2 B1(q2 −

1
2q1

2) , (15)

where Aj(h) stands for j-th coefficient of a function h.
Now we can establish our main results.
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Theorem 1. Let f of the form (1) be in Hσ(ϕ) and µ ∈ R. Then

|a3 − µa2
2| ≤







1
3 B1 for |µ − 1| ≤

∣

∣

∣
1 + 4

3
B1−B2

B1
2

∣

∣

∣

B1
3|µ−1|

|3B1
2+4(B1−B2)|

for |µ − 1| ≥
∣

∣

∣
1 + 4

3
B1−B2

B1
2

∣

∣

∣
.

Theorem 2. Let f of the form (1) be in ST σ(α, ϕ) and µ ∈ R. Then

|a3 − µa2
2| ≤



























1
2(1+3α)

B1

for |µ − 1| ≤ 1
2(1+3α)

∣

∣

∣
1 + 4α + (1 + 2α)2 B1−B2

B1
2

∣

∣

∣

B1
3|µ−1|

|(1+4α)B1
2+(1+2α)2(B1−B2)|

for |µ − 1| ≥ 1
2(1+3α)

∣

∣

∣
1 + 4α + (1 + 2α)2 B1−B2

B1
2

∣

∣

∣
.

Theorem 3. Let f of the form (1) be in Mσ(α, ϕ) and µ ∈ R. Then

|a3 −µa2
2| ≤







1
2(1+2α)

B1 for |µ − 1| ≤ 1+α
2(1+2α)

∣

∣

∣
1 + (1 + α)B1−B2

B1
2

∣

∣

∣

B1
3|µ−1|

|(1+α)B1
2+(1+α)2(B1−B2)|

for |µ − 1| ≥ 1+α
2(1+2α)

∣

∣

∣
1 + (1 + α)B1−B2

B1
2

∣

∣

∣
.

Taking various real numbers µ, α and functions ϕ one can obtain many results.
Some of them improve earlier results published in [1], [2] or [6].

We begin with the class Hσ(ϕ). Taking µ = 1 or µ = 0 we get

Corollary 1. If f ∈ Hσ(ϕ) then

|a3 − a2
2| ≤

1

3
B1 .

Corollary 2. If f ∈ Hσ(ϕ) then

|a3| ≤

{

1
3 B1 for B1−B2

B1
2 ∈ (−∞,− 3

2 ] ∪ [0, ∞) ,
B1

3

|3B1
2+4(B1−B2)|

for B1−B2

B1
2 ∈ [− 3

2 ,− 3
4) ∪ (− 3

4 , 0] .

Remark. It is easily seen that if | 4
3

B1−B2

B1
2 + 1| ≥ 1 then the bound 1

3 B1 in Corol-

lary 2 is better than the bound in [1], Theorem 2.1. The detailed discussion of the

case 0 < | 4
3

B1−B2

B1
2 + 1| < 1 shows that for some choices of B1, B2 the bound in

Corollary 2 is better then the bound in Theorem 2.1 of [1], but for other choices
the result of Ali et al. is better than this in Corollary 2. The situation is the same
while comparing results of Corollary 7 with Theorem 2.2, and Corollary 14 with
Theorem 2.3 in [1].

In papers [1], [5] some special choices of ϕ were considered. Namely,

ϕ1(z) =

(

1 + z

1 − z

)γ

= 1 + 2γz + 2γ2z2 + . . . , γ ∈ (0, 1] (16)

and

ϕ2(z) =
1 + (1 − 2β)z

1 − z
= 1 + 2(1 − β)z + 2(1 − β)z2 + . . . , β ∈ [0, 1) . (17)
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Certainly, for suitably taken γ or β we get

ϕ0(z) =
1 + z

1 − z
= 1 + 2z + 2z2 + . . . . (18)

The choice of ϕ0 leads to the classes: Hσ(ϕ0) of bi-univalent functions with bounded
turning and Mσ(α, ϕ0) of bi-Mocanu convex functions.

For ϕj, j = 0, 1, 2 we obtain the following conclusions.

Corollary 3. If f ∈ Hσ(ϕ1) then

a) |a3| ≤
2
3γ ,

b) |a3 − a2
2| ≤ 2

3 γ .

Corollary 4. If f ∈ Hσ(ϕ2) then

a) |a3| ≤
2
3(1 − β) ,

b) |a3 − a2
2| ≤ 2

3(1 − β) .

Corollary 5. If f ∈ Hσ(ϕ0) then

a) |a3| ≤
2
3 ,

b) |a3 − a2
2| ≤ 2

3 .

Now we can turn to ST σ(α, ϕ). For µ = 1 or µ = 0 we get

Corollary 6. If f ∈ ST σ(α, ϕ) then

|a3 − a2
2| ≤

1

2(1 + 3α)
B1 .

Corollary 7. If f ∈ ST σ(α, ϕ) then

|a3| ≤



































1
2(1+3α)

B1

for B1−B2

B1
2 ∈ (−∞,− 3+10α

(1+2α)2 ] ∪ [ 1
1+2α , ∞) ,

B1
3

|(1+4α)B1
2+(1+2α)2(B1−B2)|

for B1−B2

B1
2 ∈ [− 3+10α

(1+2α)2 ,− 1+4α
(1+2α)2 ) ∪ (− 1+4α

(1+2α)2 , 1
1+2α ] .

For ϕ1, ϕ2, ϕ0 we conclude

Corollary 8. If f ∈ ST σ(α, ϕ1) then

a) |a3| ≤











γ
1+3α for γ ≤ 1+2α

3+2α

4γ2

(1+2α)2+γ(1+4α−4α2)
for γ ≥ 1+2α

3+2α ,

b) |a3 − a2
2| ≤ γ

1+3α .
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Corollary 9. If f ∈ ST σ(α, ϕ2) then

a) |a3| ≤
2(1−β)
1+4α ,

b) |a3 − a2
2| ≤

1−β
1+3α .

Corollary 10. If f ∈ ST σ(α, ϕ0) then

a) |a3| ≤
2

1+4α ,

b) |a3 − a2
2| ≤ 1

1+3α .

As it was said, the class ST σ(0, ϕ) coincides with the class ST σ(ϕ) of Ma-
Minda bi-starlike functions. All the corollaries 6 - 10 can be rewritten for α = 0.
It is worth writting explicitly only the estimates of the third coefficient. From
Corollary 7 it follows that

Corollary 11. If f ∈ ST σ(ϕ) then

|a3| ≤











1
2 B1 for B1−B2

B1
2 ∈ (−∞,−3] ∪ [1, ∞) ,

B1
3

|B1
2+B1−B2|

for B1−B2

B1
2 ∈ [−3,−1) ∪ (−1, 1] .

This yields

Corollary 12.

a) If f ∈ ST σ(ϕ1) then |a3| ≤

{

γ for γ ≤ 1
3

4γ2

1+γ for γ ≥ 1
3 ,

b) If f ∈ ST σ(ϕ2) then |a3| ≤ 2(1 − β) ,

c) If f ∈ ST σ(ϕ0) then |a3| ≤ 2 .

The estimate in Corollary 12 point a) is better than the result given in Theorem
3.1 in [2] or in Corollary 2.1 (or Remark 2.2) in [1].

Similar conclusions can be obtained for the class CVσ(ϕ) of Ma-Minda bi-
convex functions, as a special case of Mσ(α, ϕ). This part of conclusions we start
with more general corollaries.

Corollary 13. If f ∈ Mσ(α, ϕ) then

|a3 − a2
2| ≤

1

2(1 + 2α)
B1 .

Corollary 14. If f ∈ Mσ(α, ϕ) then

|a3| ≤











1
2(1+2α)

B1 for B1−B2

B1
2 ∈ (−∞,− 3+5α

(1+α)2 ] ∪ [ 1+3α
(1+α)2 , ∞) ,

B1
3

(1+α)|B1
2+(1+α)(B1−B2)|

for B1−B2

B1
2 ∈ [− 3+5α

(1+α)2 ,− 1
1+α) ∪ (− 1

1+α , 1+3α
(1+α)2 ] .



On the Fekete-Szegö problem for classes of bi-univalent functions 175

As particular cases we get

Corollary 15. If f ∈ Mσ(α, ϕ1) then

a) |a3| ≤















γ
1+2α for γ ≤ (1+α)2

3+8α+α2

4γ2

(1+α)[(1+α)+γ(1−α)]
for γ ≥ (1+α)2

3+8α+α2 ,

b) |a3 − a2
2| ≤ γ

1+2α .

Corollary 16. If f ∈ Mσ(α, ϕ2) then

a) |a3| ≤
2(1−β)

1+α ,

b) |a3 − a2
2| ≤

1−β
1+2α .

Corollary 17. If f ∈ Mσ(α, ϕ0) then

a) |a3| ≤
2

1+α ,

b) |a3 − a2
2| ≤ 1

1+2α .

Hence, for CVσ(ϕ) the following corollaries hold.

Corollary 18. If f ∈ CVσ(ϕ) then

|a3| ≤











1
6 B1 for B1−B2

B1
2 ∈ (−∞,−2] ∪ [1, ∞) ,

B1
3

2|B1
2+2(B1−B2)|

for B1−B2

B1
2 ∈ [−2,− 1

2) ∪ (− 1
2 , 1] .

Corollary 19.

a) If f ∈ CVσ(ϕ1) then |a3| ≤







1
3 γ for γ ≤ 1

3

γ2 for γ ≥ 1
3 ,

b) If f ∈ CVσ(ϕ2) then |a3| ≤ 1 − β ,

c) If f ∈ CVσ(ϕ0) then |a3| ≤ 1 .

Observe that the bound in Corollary 19 point a) improves the known result
for CVσ(ϕ1) (see, Theorem 5.1 in [2] or in Corollary 2.2 in [1]).
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3 Proofs of Theorems

Proof of Theorem 1. Since F = f ′ and G = g′, from (13)-(15) it follows that

2a2 = 1
2 B1p1 (19)

3a3 = 1
4 B2p1

2 + 1
2 B1(p2 −

1
2 p1

2) (20)

−2a2 = 1
2 B1q1 (21)

3(2a2
2 − a3) = 1

4 B2q1
2 + 1

2 B1(q2 −
1
2q1

2) . (22)

From (19) and (21)
p1 = −q1 . (23)

Subtracking (22) from (20) and applying (23) we have

a3 = a2
2 +

1

12
B1(p2 − q2) . (24)

On the other hand, summing (20) and (22) results in

6a2
2 =

1

2
B1(p2 + q2)−

1

4
(B1 − B2)(p1

2 + q1
2) .

Combining this with (19) and (21) leads to

a2
2 =

B1
3(p2 + q2)

4[3B1
2 + 4(B1 − B2)]

. (25)

From (24) and (25) it follows that

a3 − µa2
2 =

B1

12
[(h(µ) + 1)p2 + (h(µ) − 1)q2] ,

where

h(µ) =
3B1

2(1 − µ)

3B1
2 + 4(B1 − B2)

.

Since all Bj are real and B1 > 0, we conclude that

∣

∣

∣
a3 − µa2

2
∣

∣

∣
≤

{

B1
3 |h(µ)| for |h(µ)| ≥ 1

B1
3 for 0 ≤ |h(µ)| ≤ 1 ,

which completes the proof.

Proof of Theorem 2. For the class ST σ(α, ϕ) the functions in (4) are of the form

F(z) = z f ′(z)
f (z)

+ α
z2 f ′′(z)

f (z)
and G(w) = wg′(w)

g(w)
+ α

w2g′′(w)
g(w)

. Hence

(1 + 2α)a2 = 1
2 B1p1 (26)

2(1 + 3α)a3 − (1 + 2α)a2
2 = 1

4 B2p1
2 + 1

2 B1(p2 −
1
2 p1

2) (27)

−(1 + 2α)a2 = 1
2 B1q1 (28)

(3 + 10α)a2
2 − 2(1 + 3α)a3 = 1

4 B2q1
2 + 1

2 B1(q2 −
1
2q1

2) . (29)
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From (26) and (28) there is
p1 = −q1 . (30)

Subtracking (29) from (27) and applying (30) we get

a3 = a2
2 +

1

8(1 + 3α)
B1(p2 − q2) . (31)

Now, summing (27) and (29) leads to

2(1 + 4α)a2
2 =

1

2
B1(p2 + q2)−

1

4
(B1 − B2)(p1

2 + q1
2) .

This equality and (26), (28) result in

a2
2 =

B1
3(p2 + q2)

4[(1 + 4α)B1
2 + (1 + 2α)2(B1 − B2)]

. (32)

From (31) and (32) it follows that

a3 − µa2
2 = B1

[(

h(µ) +
1

8(1 + 3α)

)

p2 +

(

h(µ)−
1

8(1 + 3α)

)

q2

]

,

where

h(µ) =
B1

2(1 − µ)

4[(1 + 4α)B1
2 + (1 + 2α)2(B1 − B2)]

.

Therefore

∣

∣

∣
a3 − µa2

2
∣

∣

∣
≤

{

4B1|h(µ)| for |h(µ)| ≥ 1
8(1+3α)

B1
2(1+3α)

for 0 ≤ |h(µ)| ≤ 1
8(1+3α)

.

The proof is completed.
The functions F and G for the class Mσ(α, ϕ) are following:

F(z) = (1 − α)
z f ′(z)

f (z)
+ α

(

1 +
z f ′′(z)

f ′(z)

)

and

G(w) = (1 − α)
wg′(w)

g(w)
+ α

(

1 +
wg′′(w)

g′(w)

)

.

The relations (13)-(15) take form

(1 + α)a2 = 1
2 B1p1 (33)

2(1 + 2α)a3 − (1 + 3α)a2
2 = 1

4 B2p1
2 + 1

2 B1(p2 −
1
2 p1

2) (34)

−(1 + α)a2 = 1
2 B1q1 (35)

(3 + 5α)a2
2 − 2(1 + 2α)a3 = 1

4 B2q1
2 + 1

2 B1(q2 −
1
2q1

2) . (36)

All the details of the proof of Theorem 3 are quite similar to those in the proofs
given above and will be omitted.
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