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Abstract

In this paper we obtain the Fekete-Szego inequalities for the classes Hy(¢),
ST (a, @) and M, (a, @) of bi-univalent functions defined in terms of sub-
ordination. These inequalities result in the bounds of the third coefficient
which improve many known results concerning different classes of bi-univalent
functions.

1 Introduction

Let A be the class of all functions f in the unit disk D = {{ € C : || < 1}
normalized by the conditions f(0) = f/(0) —1 = 0 and S be the subclass of A
consisting of univalent functions in ID. For every f € S there exists an inverse
function f~! which is defined in some neighbourhood of the origin. According
to the Koebe one-quarter theorem f~! is defined in some disk containing the
disk |w| < 1/4. In some cases this inverse function can be extended to whole
D. Clearly, f~! is also univalent. This is the reason of discussing so called bi-
univalent functions.

A function f € A is called bi-univalent in D if both f and f~! are univalent
in ID. Following Lewin, we denote the class of bi-univalent functions by .

Observe that for f € ¢ of the form

f@) =2+ Y a2 M
n=2
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the inverse function f ! has the Taylor-Maclaurin series expansion
FHw) = w — apw® + (227 — az)w® + ... (2)

Lewin gave the first estimate of coefficients in ¢. Namely, he proved that
laz] < 1.51. On the other hand, Styer and Wright showed that |a,| > 4/3 for
some function in o. The problem of estimating coefficients |a,|, n > 2 is still
open. However, a lot of results for a, a3 and a4 were proved for some subclasses
of ¢. Unfortunatelly, they are not sharp.

In the recent paper Ali et al. obtained results in classes defined in terms
of subordination. Among others they discussed classes Hy(¢), ST (a, ¢) and
M (a, @). In the definitions of the three classes a function ¢ appears. In all cases
it is assumed that ¢ is an analytic function in ID with positive real part. Moreover,
it has series expansion of the form

¢(z) =1+ Biz+ Byz® + ... 3)

where all coefficients are real and B; > 0.
Now we can formulate the definitions of the classes mentioned above.

Definition 1. A function f € o isin Hy(¢) if

fiz) < p(z) and g'(w)<gw) , g=f".
Definition 2. A function f € cisin ST s(«, ¢) if

2f(2) | )
@ e

Definition 3. A function f € o isin My (a, ¢) if

(1-— a)ZJj:éZ)) +a (1 + ZJ{:;S)) < ¢(z) and

(1 —oc)w;(lz(;;)) +a (1 + wgg,/(lz(:)))) <ow) , g=f"1.

Observe that the class ST,(0,9) = My(0,¢9) is known as the class of
Ma-Minda bi-starlike functions and the class M, (1, ¢) is known as the class of
Ma-Minda bi-convex functions. These particular classes are denoted by ST ,(¢)
and CV,(¢) respectively.

In this paper we shall obtain the Fekete-Szeg6 inequalities for Hy(¢),
STs(a, ) and My (a, ¢). These inequalities will result in bounds of the third
coefficient which are, in some cases, better then these obtained in [1], [2], [6].

< ¢(z) and
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2 Main results

At the beginning, observe that the conditions in all three definitions can be writ-
ten as follows:

F(z) < ¢(z) and G(w) < ¢(w) 4
where
F(z) = f'(2) , G(w) = g'(w) for Ho(e),
@, D o w@) | W)
=0 T O T ) T ey o ST
_ o) 2f"(2)
e == (1457 )
_ wg'(w) wg" (w)
G(w) = (1—a) 2@ +a <1 + o (w) ) for Mg(a, @) .
The conditions (4) are equivalent to
F(z) = ¢(u(z)) and G(w) = ¢(o(w)) . ®)
Here, functions u and v are analytic in ID, u(0) = v(0) = 0, and |u(z)| < 1,

lv(z)] < 1forallz € D.
We apply the same technique as in [1]. Assume that

_ 1+u(z)

P(Z)Il_u(z):1+P12+P222+... (6)
and ) @
+0(z
q(z)zl_v(z):1—|—qlz—|—q7_zz—|—.... (7)
Clearly, Re p(z) > 0 and Reg(z) > 0. From (6), (7) one can derive
u(z) = Ipiz+3(po — %plz)zer... (8)
and
v(z) = %qlz + %(lh — %qlz)zz 4. )
Combining (3), (5), (8) and (9),
F(z) =1+ %Blplz + (%szlz + %Bl(pz — %pf)) 24, (10)
and
G(z) =1+ 3Bz + (1Bons® + 1B1(q2 — 3an?)) 2+ (11)
From (10) and (11) and the series expansions of F and G, it follows that
Ai(F) = IBipm (12)
Ay(F) = 1Bopi®+ iBi(p2— 3p1?) (13)
Ay(G) = 1Bt +iBi(q2 — im?), (15)

where A;(h) stands for j-th coefficient of a function .
Now we can establish our main results.
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Theorem 1. Let f of the form (1) be in Hy(¢) and yu € R. Then

1 4B
=By or |u—1] < |1+ 37
a3 — pax?| < { ° for I Bl

By |pu—1| _ 431
smrham gy o =12 1+ 55

Theorem 2. Let f of the form (1) be in ST ¢(a, ) and y € R. Then

( 2(1+3zx)Bl
, for |1 =11 < gy [1+ 40+ (1420)2 202
a3 — paz”| < By (1]
[(14+4a)B12+(1+2a)2(B1—By)|
for |ju—1] > 5 1+3 ‘1+4o¢+(1+2¢x)231 5

\

Theorem 3. Let f of the form (1) be in My (a, ) and y € R. Then

. 1+ B—B

a3 — pay?| < m313 for | =11 < grigey [1+ (14 ) Z7>
- By |p—1] 1+ 5 B
Bt B f U2 gy [T+ (4 8) T

Taking various real numbers y, « and functions ¢ one can obtain many results.
Some of them improve earlier results published in [1], [2] or [6].
We begin with the class H,(¢). Taking 4 = 1 or p = 0 we get

Corollary 1. If f € Hy(¢) then
1
a3 — az?| < 381
Corollary 2. If f € Hy(¢) then

1B for B2 e (—o0,—3]U[0,00),
|as| < 5y )

B1—B 3 3 3
|3Blz+4 B1 By)| f01" 13122 € [_21_1 U (_ZIO] :

Remark. It is easily seen that if |4 B 132 + 1| > 1 then the bound 1 3B1 in Corol-

lary 2 is better than the bound in [1], Theorem 2.1. The detailed d1scuss10n of the

case 0 < |§B 1B >2 + 1| < 1 shows that for some choices of By, B, the bound in

Corollary 2 is better then the bound in Theorem 2.1 of [1], but for other choices
the result of Ali et al. is better than this in Corollary 2. The situation is the same
while comparing results of Corollary 7 with Theorem 2.2, and Corollary 14 with
Theorem 2.3 in [1].

In papers [1], [5] some special choices of ¢ were considered. Namely,

1+2z\" 9 9
p1(z) = T =14+2yz+29z"+... , 7€ (0,1] (16)
and
14+ (1-2B)z

2(2) = ——— =1+2(1-B)z+2(1-B)z>+... ,B€0,1). (17)
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Certainly, for suitably taken -y or  we get

14z
(po(z)=1_2=1+2z+2zz+... . (18)

The choice of ¢ leads to the classes: H(¢p) of bi-univalent functions with bounded
turning and M, («, ¢o) of bi-Mocanu convex functions.
For ¢;,j=0,1,2we obtain the following conclusions.

Corollary 3. If f € Ho (1) then
a) |as| <37y,
b) |az—a?| < 3.
Corollary 4. If f € Ho(¢2) then
a) |as| <3(1-p),
b) a3 —a?| < 3(1—p).
Corollary 5. If f € Hq (o) then
a) las] <3,
b) |b‘l3 —6122| < % .
Now we can turn to ST, («, ¢). For y = 1 or y = 0 we get
Corollary 6. If f € ST s(«, @) then

1
< _—— B,
a3 a2|_2(1+30¢) 1

Corollary 7. If f € ST s («, @) then

( 1
55~ B
2(143a) °1
B1—B, no _ 3+10a 1
for B2 € (=0, (1—|—21x)2] U [15, %)/
|as| < \
By
\(1+4o<)312+(1+21)c)2(81EBZ)I:};
fOV 1—22 c [_ 3+101x2,_ 1+4a2)u (_ 1+41x2’ 1 ]
. By (1+2a) (1424) (14+2a)27 1420

For ¢1, ¢2, po we conclude

Corollary 8. If f € ST s («, 1) then

142«
for v < 3oy

0

143w

a) |az| < ,
4y

(1420)2+y (1+4a—4a2

1+24
) for v 2 35

b) laz —ar®| < 5 -
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Corollary 9. If f € ST o(a, ¢2) then

(1
a) |az| < 1+4§) ’

1—
b) |az—a2?| < 1—|—3/?x .

Corollary 10. If f € ST s (a, ¢o) then

a) |L13| < 1+4zx 4

b) ’ag, — 022’ <

1—|—31x

As it was said, the class ST (0, ¢) coincides with the class ST s(¢) of Ma-
Minda bi-starlike functions. All the corollaries 6 - 10 can be rewritten for & = 0.
It is worth writting explicitly only the estimates of the third coefficient. From
Corollary 7 it follows that

Corollary 11. If f € ST ,(¢) then

3B1 for B e (—o0,—3]U[1,00) ,
las| <
BB
\812+Bl 5 for 13122 e [-3,-1)uU(-1,1]
This yields
Corollary 12.
v for <3
a) If f € STy(p1) then |as| < 2
JpesTde e for v>3,

b) If f € ST (o) then |az| <2(1-B),

o) If f € STys(qo) then |az| < 2.

The estimate in Corollary 12 point a) is better than the result given in Theorem
3.11in [2] or in Corollary 2.1 (or Remark 2.2) in [1].

Similar conclusions can be obtained for the class CVy(¢) of Ma-Minda bi-
convex functions, as a special case of M («, ). This part of conclusions we start
with more general corollaries.

Corollary 13. If f € M (a, ¢) then

1

<~ B
a3 ”2’—2(1+2a) 1

Corollary 14. If f € M (a, ¢) then

_ 1 B1—By o 345 143«
2(1+2x) By for B;? € (=0, (1+1x)2] J [(1+1x)2'00) !
as| < \
By B1—B, _ 345 1 _ 1 143
(1+zx)\312+(1+1x )(B1—B3)] for B2 € [ (1+a)2” 1+zx> U( 1+a’ (l—Hx)Z] :
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As particular cases we get

Corollary 15. If f € My (a, ¢1) then

0 (1+a)?
1+2IX for ,)/ S 3+80€+0€2

a) |ag| <
442 (14-a)?

o) [(Ita) 7 (1—a)] for v = 35

b) |613 —6122| < 1-&-% .

Corollary 16. If f € My («, ¢y) then

2(1—
a) o) < 222,

1—
b) as —a?| < 1+2ﬁlx :

Corollary 17. If f € My (a, ¢o) then

a) oz < 135,

b) az —ar?| < 15z -

Hence, for CV,(¢) the following corollaries hold.

Corollary 18. If f € CV,(¢) then

1B, for Bt e (—eo,~2] U 1,9),
3] < B;® B;—B
—~ 1 1
B2 —By [ Bz € [-2,—3)U(=2,1].
Corollary 19.
3y for v <3
a) If f € CVy (1) then |az| <
1
v for v=3,

b) If f € CVy(¢2) then |az] <1—P,
c) If f € CVo (o) then |az| < 1.

Observe that the bound in Corollary 19 point a) improves the known result
for CVy(¢1) (see, Theorem 5.1 in [2] or in Corollary 2.2 in [1]).
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3 Proofs of Theorems

P. Zaprawa

Proof of Theorem 1. Since F = " and G = ¢/, from (13)-(15) it follows that

2612 = %Blpl
3a3 1Bop1® + 3Bi(p2 — 3p1?)
—2612 %qul
3(2a> —a3) = 3}Boqi*+ 3Bi(q2 — 391%) .
From (19) and (21)
P1=—4q1.
Subtracking (22) from (20) and applying (23) we have
1
a3 = ay” + —Bl(PZ —2) -
On the other hand, summing (20) and (22) results in
1 1
6a;” = = B1(p2+2) — 3(B1 = Ba)(p1* + ¢%)

Combining this with (19) and (21) leads to

2 _ Bi®(p2 + 42)
4[3B12+4(By — By)] -

az
From (24) and (25) it follows that

s — pa? = 71 [(h(0) +1)p2 + (h() ~ o]

where 2( )
B 3B1°(1 —pu
M) = 357408, =

Since all B; are real and B; > 0, we conclude that
Biin
’ag_mz’g{é| 0l h()| =
3

0 < |h(p )I
which completes the proof.

By)

for
for

(19)
(20)
(21)
(22)

(23)

(24)

(25)

Proof of Theorem 2. For the class ST («, @) the functions in (4) are of the form

! z 2 1
Flz) = 55+ a7 and G(w) = S5 + (5. Hence
(1 + 20&)&2 %Blpl
2(1+3a)as — (1+ Za)azz }1sz12 + %Bl(pz - %plz)

—(1+2a)ay
(3 +10a)ay® — 2(1 + 3a)a3

IBiq1
}1320712 + %Bl(fh

—3m?).

(26)
(27)
(28)
(29)



On the Fekete-Szego problem for classes of bi-univalent functions 177

From (26) and (28) there is
p1=—q1- (30)

Subtracking (29) from (27) and applying (30) we get
1

— .2 _
az = ax”~ + 8(1 +3D¢)B1(p2 qz) . (31)
Now, summing (27) and (29) leads to
1 1
2(1 + 4a)ay” = 5B1(p2 +42) — 7(B1 — By)(p1* + %) -
This equality and (26), (28) result in
2 B1%(p2 + q2)
= ) 32
" T AT 4a)B2 T (1 + 20)°(B — By) 2
From (31) and (32) it follows that
a3z — pay® = B h()—l-; + h()—;
3T = B MW T g1y 3y ) P2 B8 +3a)) )
where
h(p) = B1*(1—p)
4[(144a)B12 4 (14 2a)%2(By — By)]
Therefore
o1 ] < {4B;|h<m| for [(1)| > gk
< 1
2(1—|—13tx) for 0< |h(]l)| < 8(143a) *
The proof is completed. n
The functions F and G for the class M, («, ¢) are following:
2f'(2) ( Zf”(Z))
F(z) =(1—« +a |1+
& =097 )
e (w) (w)
wg' (w wg" (w
Gw)=(1—a + (1 + ) .
0= =0 ) ¢(w)
The relations (13)-(15) take form
(14+a)a, = IBip (33)
2(1+42a)az — (1 +3a)ax? = %szlz + %Bl(pz - %plz) (34)
—(1+a)ay = 3Biq (35)
(3+5a)a% —2(1+2a)az = 1Bag1? + 3B1(q2 — 101%) - (36)

All the details of the proof of Theorem 3 are quite similar to those in the proofs
given above and will be omitted.
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