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Abstract

We consider the nonautonomous differential equation of second order
X" +a(t)x — b(t)xt +c(t)x?*+1 = 0, where a(t), b(t), c(t) are T-periodic func-
tionsand 2 < | < 2k + 1. This is a generalization of a biomathematical model
of an aneurysm in the circle of Willis. We prove the existence of a T-periodic
solution for this equation, using a saddle-point theorem.

1 Introduction

We consider the nonautonomous differential equation
X" +a(t)x —b(t)x! + c(H)x¥ ! =0, (1)

where 2 < | < 2k+ 1 and a(t),b(t),c(t) are T-periodic functions, subject to the
constraints 0 < a < a(t) < A,0<c<c(t) <Cand |b(t)] < B, fora, Ab,B,C >
0. Equation (I) comes from biomathematics, see for example [1].

The existence of periodic solutions to (1) for (k,I) = (3,2) was previously
considered in [2], [3] and [4], using different methods. Here we aim in the general
case adopting methods similar to these in [3], basically a saddle point theorem
due to Silva ([5]). The key point in the generalization of the results in [3] for
arbitrary I and k is the proof of the existence of real positive zeroes for a 2k degree
polynomial.

In this paper we prove the existence of a nontrivial T-periodic solution for
using a saddle point theorem, under some specific assumptions on a, A, c,C, B to
be given latter. For simplicity, we fix T = 27t.
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2 Description of the main result

The starting point is to associate weak solutions of (1)) with critical points of a
functional. If F(a, B,7) is a function of class C?, I : C'[a,b] — R is defined as

g—i(xo(t),xé(t),t) - %S—Z(xo(t),xg,(t),t) =0,

for t € [a,b].

Now we recall the Palais-Smale (PS) condition. Let H be a Hilbert space. A
differentiable functional | € C!(H,R) is said to satisfies the (PS) condition if
every sequence (X, ), in H such that (J(x,)), is bounded and |'(x,) — 0in H has
a convergent subsequence in H.

The following saddle-point theorem is due to Silva ([5])).

Theorem 1. Let E = X & Xy a real Banach space, with X, finite dimensional. Suppose
f € C}E,R) with
(i) f(x) <0, forx € Xy,
(ii) f(x) > 0 for x € Xp with ||x|| = p, for some p > 0,
(iii) f(x) < Bfor x = x1 + A € Xq @ (C), for some unitary ¢ € Xp and B > 0, with
A > 0.

If f satisfies (PS) condition, then f has a nonzero critical point in E.

Now we present a criteria on the existence of positive zeroes for a polynomial.
For a proof, see [6].

Theorem 2. Let p(t) = ag + at + ... + anx™ be a polynomial. Consider the sequence
P = (ag,a1,...,an). Then the number of positive roots of p does not exceed the number
of the changes of sign in the sequence p.

Our main theorem is

Theorem 3. Consider I,k € Z with2 <1 < 2k+ 1 and let a(t),b(t),c(t) be mensu-
rable 27t-periodic functions with |b(t)] < B,0 <c <c(t) <Cm? <a<a(t) <A<

, cli+1) (a — m)(I +1)
(m+1% gkt = 1o 2B
equation

> 1 for some integer m > 0. Then the

X"+ a(t)x —b(t)x! +c()x¥H =0
has a nontrivial 27t periodic solution.

Example 4. Consider equation (1) with a(t) = 6 + sin(t), b(t) = cos(t), c¢(t) =
2k + 3 +sin(t) and m = 2. Definea =5, A=7,B=1,¢c=2k+2and C =2k + 4.
As | > 2, Theorem 3| guarantees that the equation

X" 4 (6 +sin(t))x — cos(t)x' + (2k 4+ 3 +sin(t) )x*+1 =0

has a nontrivial 27t-periodic solution, for every 2 <1 < 2k + 1.
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3 Proof of Theorem 3|

Let us denote

E = HY0,2m) {che ; C_k=TCp Z(1+k2)c§<oo}
keZ keZ
normed with
271 2 5
||x||2=/ (% + 2) dx.
0

Note that for x = Y.z cke’™ € E we have that
|x[|* =27 } (14 K)ct

keZ
Consider
1 - 1 1 1
F / t — 1= = t 2 t I+1 _ t 2k+2
(x,x',t) 5% Za( )x” + ] 1b( )x 72k—|—2c( )x

Recall that critical points of

are weak solutions of
X" +a(t)x — b(t)x! + c(t)x* 1 = 0.

Consider _
Xp={xeEx= ) e}
k<m?
and

Xo={xeEx= Y e}
k>(m+1)2

As we want to use Theorem [I] we shall estimate f(x) for x € X; and for
x € Xp.

Let x € Xj.
fix) < Y a2k —a +/2ﬂ< xl“—%c(f)kaH) dx
k2<m? 2k +2
1
< n(m*—a c +/ Blx|"t1 — —cx 2k+2) dt 2
k2<22 k (z+1 o 2k +2 @
27 m? —a 1 1
< 2 -1 _ 2k
= /0 x( R s L B T S )
2
Let g(x) = moay ! Blx|'~! — ————c|x|?*. The hypotheses of Theorem
2 I+1 2k + 2

guarantees that g(x) < 0 for all x € Xj, so the last integral in (2) is negative and
the first item of Theorem [I]is true.
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Now let x € X5.

o) 2 n N aW- A [ (hen - gl ) a

k2>(m+1)2

27 (m+1)?>—-A 1 _ 1
> 2 _ I-1 2k
- /o g ( 2 l+1B|x| 2k+2c|x| at

To verify (ii) in Theorem[I} we have to find p > 0 such that f(x) > 0 forx € X
and ||x|| < p. This is equivalent to find a positive solution of A(x) = 0, where
C(m+1)2-A 1 1
Ax) = 2 0% T2kt
The next lemma applied to the polynomial A(x) guarantee that it has a positive
root.

Cka

Lemma 5. A polynomial p(x) = pg — p1x'~1 — pax?*, with po, p1,p2 > 0and I <
2k + 1, always has a unique positive root.

Proof. As we have just one change of sign in the sequence of the coefficients of p,
follows from Theorem [2 that p has at most one positive real root. As p(0) > 0
and lim, ;o p(y) = —o0, p has exactly one real root. m

Now we check item (iii) of Theorem [Il Consider
1
¢lx) =
) V(14 (m+2)2)

Note that {(x) € X,. Also observe that |[{|| = 1. If X = } 2,2 cke™ + A&, with
A > 0, then, by the equivalence of the p-norms in the finite dimensional space
X1 @ (¢), we have that

cos(m + 2)x.

- 2 B 27T—l+1 . c Tkt
f(x) < mt*(m+1)2+— |x|" " dt 72k—|—2 XA dt

[+1
< O e B - 2 g
< I mg 4 o B - g I
with 61,8, > 0. Put ¢(t) = @tz + 51%1‘1“ — @ﬁtzkﬂ.
As limy 100 ¢(t) = —oo, ¢ is bounded from above by a constant B > 0, so

f(x) < B and item (iii) of Theorem [Ilis verified.
Now it rests to check (PS) condition. Denote g(t, x) = c(t)x?*1 — b(t)x'. Con-

X
sider G(t,x) = t,y)dy. Take 6 = [+ 1. Then
0 g\, y)ay

0G(t,x) = zlk—i—leC(t)ka”—b(t)le

< c(t)x2k+2—b(t)xl+1
= xg(t, x).
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Note also that G(t,x) > 0 for larger values of x. This shows that ¢ satisfies the
Rabinowitz’s condition.

Let (u,) be a (PS) sequence for f in E. There exists a constant cy such that for
€ (2,0)

1 1
CO"‘;“”n“ = f(”n)_;(f/(”n)/”n)
1 1 1 1
(3-7) Il = (5= 3) 02+ a3
1 r2nm 21
+—/ ung(x,un)dx—/ G(x, uy)dx
v Jo 0
1 1 1 1
> (37 Il (37 ) 07+ Dl
4 1 o2 1 I+1
- S — bt
+ (1/ 1) /0 <2k+2c(t)x i 119( )x dx
1 1 1
> (3= Il = (5= ) 07+ )l
c %2 B [0 141
+2k+2 ( ) [ ”“2kiz I+ 1 (; _1) ||“n||111
1 1 1
> (37 Il = (51 ) 02+ DBalalBis

¢ 4 w2 B (0 141
+2k_|_2 <; o 1) ||u”||2k+2 - I +1 ; -1 132||un||2k+2/

with B1, B2 > 0. So the sequence (x,) is bounded in E because 2k +2 > [ +1 > 2.
Assume the weak convergence x, — u in E, the strong convergence x, — u in
L%(0,27) and the uniform convergence x, — u in C[0, 27].

Note that x is a critical point of f, as

v

0 = limy—e (f'(x0),y)

27
— lim (x,’qy’ —a(t)xuy + b(t)xi,y — c(x)x%kﬂy) dt
0

n—oo
27
— / (x’y’ —a(t)xy + b(t)x'y — c(t)kaHy) dt,
0

SO

27r
al = (' (xa), 2 +/ )+ 1)+ gt x0))

27r
— / +xg(t,x)> dt

As weak convergence and convergence of the square of the norm implies con-
vergence, the proof is complete.
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