Existence of periodic solutions for a nonautonomous differential equation

Anderson Luis Albuquerque de Araujo
Ricardo Miranda Martins

Abstract

We consider the nonautonomous differential equation of second order $x^{\prime \prime}+a(t) x-b(t) x^{l}+c(t) x^{2 k+1}=0$, where $a(t), b(t), c(t)$ are T-periodic functions and $2 \leq l<2 k+1$. This is a generalization of a biomathematical model of an aneurysm in the circle of Willis. We prove the existence of a T-periodic solution for this equation, using a saddle-point theorem.

1 Introduction

We consider the nonautonomous differential equation

$$
\begin{equation*}
x^{\prime \prime}+a(t) x-b(t) x^{l}+c(t) x^{2 k+1}=0, \tag{1}
\end{equation*}
$$

where $2 \leq l<2 k+1$ and $a(t), b(t), c(t)$ are T-periodic functions, subject to the constraints $0<a \leq a(t) \leq A, 0<c \leq c(t) \leq C$ and $|b(t)| \leq B$, for $a, A, b, B, C>$ 0 . Equation (1) comes from biomathematics, see for example [1].

The existence of periodic solutions to (1) for $(k, l)=(3,2)$ was previously considered in [2], [3] and [4], using different methods. Here we aim in the general case adopting methods similar to these in [3], basically a saddle point theorem due to Silva ([5]). The key point in the generalization of the results in [3] for arbitrary l and k is the proof of the existence of real positive zeroes for a $2 k$ degree polynomial.

In this paper we prove the existence of a nontrivial T-periodic solution for (11) using a saddle point theorem, under some specific assumptions on a, A, c, C, B to be given latter. For simplicity, we fix $T=2 \pi$.

Received by the editors May 2011.
Communicated by J. Mawhin.

2 Description of the main result

The starting point is to associate weak solutions of (1) with critical points of a functional. If $F(\alpha, \beta, \gamma)$ is a function of class $C^{2}, I: C^{1}[a, b] \rightarrow \mathbb{R}$ is defined as

$$
I(x)=\int_{a}^{b} F\left(x(t), x^{\prime}(t), t\right) d t
$$

and I has an extremum at $x_{0} \in S$, then x_{0} satisfies the Euler-Lagrange equation

$$
\frac{\partial F}{\partial \alpha}\left(x_{0}(t), x_{0}^{\prime}(t), t\right)-\frac{d}{d t} \frac{\partial F}{\partial \beta}\left(x_{0}(t), x_{0}^{\prime}(t), t\right)=0
$$

for $t \in[a, b]$.
Now we recall the Palais-Smale (PS) condition. Let H be a Hilbert space. A differentiable functional $J \in C^{1}(H, \mathbb{R})$ is said to satisfies the (PS) condition if every sequence $\left(x_{n}\right)_{n}$ in H such that $\left(J\left(x_{n}\right)\right)_{n}$ is bounded and $J^{\prime}\left(x_{n}\right) \rightarrow 0$ in H has a convergent subsequence in H.

The following saddle-point theorem is due to Silva ([5]).
Theorem 1. Let $E=X_{1} \oplus X_{2}$ a real Banach space, with X_{1} finite dimensional. Suppose $f \in C^{1}(E, \mathbb{R})$ with
(i) $f(x) \leq 0$, for $x \in X_{1}$,
(ii) $f(x) \geq 0$ for $x \in X_{2}$ with $\|x\|=\rho$, for some $\rho>0$,
(iii) $f(x) \leq \beta$ for $x=x_{1}+\lambda \xi \in X_{1} \oplus\langle\xi\rangle$, for some unitary $\xi \in X_{2}$ and $\beta>0$, with $\lambda>0$.

If f satisfies (PS) condition, then f has a nonzero critical point in E.
Now we present a criteria on the existence of positive zeroes for a polynomial. For a proof, see [6].

Theorem 2. Let $p(t)=a_{0}+a_{1} t+\ldots+a_{m} x^{m}$ be a polynomial. Consider the sequence $\bar{p}=\left(a_{0}, a_{1}, \ldots, a_{m}\right)$. Then the number of positive roots of p does not exceed the number of the changes of sign in the sequence \bar{p}.

Our main theorem is
Theorem 3. Consider $l, k \in \mathbb{Z}$ with $2 \leq l<2 k+1$ and let $a(t), b(t), c(t)$ be mensurable 2π-periodic functions with $|b(t)| \leq B, 0<c \leq c(t) \leq C, m^{2}<a \leq a(t) \leq A<$ $(m+1)^{2}, \frac{c(l+1)}{B(2 k+2)}>1$ and $\frac{\left(a-m^{2}\right)(l+1)}{2 B}>1$ for some integer $m \geq 0$. Then the equation

$$
x^{\prime \prime}+a(t) x-b(t) x^{l}+c(t) x^{2 k+1}=0
$$

has a nontrivial 2π periodic solution.
Example 4. Consider equation (1) with $a(t)=6+\sin (t), b(t)=\cos (t), c(t)=$ $2 k+3+\sin (t)$ and $m=2$. Define $a=5, A=7, B=1, c=2 k+2$ and $C=2 k+4$. As $l \geq 2$, Theorem 3 guarantees that the equation

$$
x^{\prime \prime}+(6+\sin (t)) x-\cos (t) x^{l}+(2 k+3+\sin (t)) x^{2 k+1}=0
$$

has a nontrivial 2π-periodic solution, for every $2 \leq l<2 k+1$.

3 Proof of Theorem [3

Let us denote

$$
E=H^{1}(0,2 \pi)=\left\{\sum_{k \in \mathbb{Z}} c_{k} e^{i k t} ; c_{-k}=\overline{c_{k}}, \sum_{k \in \mathbb{Z}}\left(1+k^{2}\right) c_{k}^{2}<\infty\right\}
$$

normed with

$$
\|x\|^{2}=\int_{0}^{2 \pi}\left(x^{\prime 2}+x^{2}\right) d x
$$

Note that for $x=\sum_{k \in \mathbb{Z}} c_{k} e^{i k t} \in E$ we have that

$$
\|x\|^{2}=2 \pi \sum_{k \in \mathbb{Z}}\left(1+k^{2}\right) c_{k}^{2}
$$

Consider

$$
F\left(x, x^{\prime}, t\right)=\frac{1}{2} x^{\prime 2}-\frac{1}{2} a(t) x^{2}+\frac{1}{l+1} b(t) x^{l+1}-\frac{1}{2 k+2} c(t) x^{2 k+2}
$$

Recall that critical points of

$$
f(x)=\int_{0}^{2 \pi} F\left(x, x^{\prime}, t\right) d t
$$

are weak solutions of

$$
x^{\prime \prime}+a(t) x-b(t) x^{l}+c(t) x^{2 k+1}=0
$$

Consider

$$
X_{1}=\left\{x \in E ; x=\sum_{k \leq m^{2}} c_{k} e^{i k t}\right\}
$$

and

$$
X_{2}=\left\{x \in E ; x=\sum_{k \geq(m+1)^{2}} c_{k} e^{i k t}\right\}
$$

As we want to use Theorem 1, we shall estimate $f(x)$ for $x \in X_{1}$ and for $x \in X_{2}$.

Let $x \in X_{1}$.

$$
\begin{align*}
f(x) & \leq \pi \sum_{k^{2} \leq m^{2}} c_{k}^{2}\left(k^{2}-a\right)+\int_{0}^{2 \pi}\left(\frac{1}{l+1} b(t) x^{l+1}-\frac{1}{2 k+2} c(t) x^{2 k+2}\right) d x \\
& \leq \pi\left(m^{2}-a\right) \sum_{k^{2} \leq m^{2}} c_{k}^{2}+\int_{0}^{2 \pi}\left(\frac{1}{l+1} B|x|^{l+1}-\frac{1}{2 k+2} c x^{2 k+2}\right) d t \tag{2}\\
& \leq \int_{0}^{2 \pi} x^{2}\left(\frac{m^{2}-a}{2}+\frac{1}{l+1} B|x|^{l-1}-\frac{1}{2 k+2} c|x|^{2 k}\right)
\end{align*}
$$

Let $q(x)=\frac{m^{2}-a}{2}+\frac{1}{l+1} B|x|^{l-1}-\frac{1}{2 k+2} c|x|^{2 k}$. The hypotheses of Theorem 3 guarantees that $q(x) \leq 0$ for all $x \in X_{1}$, so the last integral in (2) is negative and the first item of Theorem 1 is true.

Now let $x \in X_{2}$.

$$
\begin{aligned}
f(x) & \geq \pi \sum_{k^{2} \geq(m+1)^{2}} c_{k}^{2}\left(k^{2}-A\right)+\int_{0}^{2 \pi}\left(\frac{1}{l+1} b(t) x^{l+1}-\frac{1}{2 k+2} c(t) x^{2 k+2}\right) d t \\
& \geq \int_{0}^{2 \pi} x^{2}\left(\frac{(m+1)^{2}-A}{2}-\frac{1}{l+1} B|x|^{l-1}-\frac{1}{2 k+2} C|x|^{2 k}\right) d t
\end{aligned}
$$

To verify (ii) in Theorem 1, we have to find $\rho>0$ such that $f(x) \geq 0$ for $x \in X_{2}$ and $\|x\| \leq \rho$. This is equivalent to find a positive solution of $\Delta(x)=0$, where

$$
\Delta(x)=\frac{(m+1)^{2}-A}{2}-\frac{1}{l+1} B x^{l-1}-\frac{1}{2 k+2} C x^{2 k}
$$

The next lemma applied to the polynomial $\Delta(x)$ guarantee that it has a positive root.
Lemma 5. A polynomial $p(x)=p_{0}-p_{1} x^{l-1}-p_{2} x^{2 k}$, with $p_{0}, p_{1}, p_{2}>0$ and $l<$ $2 k+1$, always has a unique positive root.
Proof. As we have just one change of sign in the sequence of the coefficients of p, follows from Theorem [that p has at most one positive real root. As $p(0)>0$ and $\lim _{y \rightarrow+\infty} p(y)=-\infty, p$ has exactly one real root.

Now we check item (iii) of Theorem 1. Consider

$$
\xi(x)=\frac{1}{\sqrt{\pi\left(1+(m+2)^{2}\right)}} \cos (m+2) x
$$

Note that $\xi(x) \in X_{2}$. Also observe that $\|\xi\|=1$. If $\bar{x}=\sum_{k^{2} \leq m^{2}} c_{k} e^{i k t}+\lambda \xi$, with $\lambda \geq 0$, then, by the equivalence of the p-norms in the finite dimensional space $X_{1} \oplus\langle\xi\rangle$, we have that

$$
\begin{aligned}
f(\bar{x}) & \leq \pi t^{2}(m+1)^{2}+\frac{B}{l+1} \int_{0}^{2 \pi}|\bar{x}|^{l+1} d t-\frac{c}{2 k+2} \int_{0}^{2 \pi} \bar{x}^{2 k+2} d t \\
& \leq \frac{(m+1)^{2}}{2}\|\bar{x}\|_{2}^{2}+\frac{B}{l+1}\|\bar{x}\|_{l+1}^{l+1}-\frac{c}{2 k+2}\|u\|_{2 k+2}^{2 k+2} \\
& \leq \frac{(m+1)^{2}}{2}\|\bar{x}\|_{2}^{2}+\delta_{1} \frac{B}{l+1}\|\bar{x}\|_{2}^{l+1}-\delta_{2} \frac{c}{2 k+2}\|\bar{x}\|_{2}^{2 k+2}
\end{aligned}
$$

with $\delta_{1}, \delta_{2}>0$. Put $\varphi(t)=\frac{(m+1)^{2}}{2} t^{2}+\delta_{1} \frac{B}{l+1} t^{l+1}-\delta_{2} \frac{c}{2 k+2} t^{2 k+2}$. As $\lim _{t \rightarrow \pm \infty} \varphi(t)=-\infty, \varphi$ is bounded from above by a constant $\beta>0$, so $f(\bar{x}) \leq \beta$ and item (iii) of Theorem 1 is verified.

Now it rests to check (PS) condition. Denote $g(t, x)=c(t) x^{2 k+1}-b(t) x^{l}$. Consider $G(t, x)=\int_{0}^{x} g(t, y) d y$. Take $\theta=l+1$. Then

$$
\begin{aligned}
\theta G(t, x) & =\frac{l+1}{2 k+2} c(t) x^{2 k+2}-b(t) x^{l+1} \\
& \leq c(t) x^{2 k+2}-b(t) x^{l+1} \\
& =x g(t, x)
\end{aligned}
$$

Note also that $G(t, x)>0$ for larger values of x. This shows that g satisfies the Rabinowitz's condition.

Let $\left(u_{n}\right)$ be a $(P S)$ sequence for f in E. There exists a constant c_{0} such that for $v \in(2, \theta)$

$$
\begin{aligned}
c_{0}+\frac{1}{v}\left\|u_{n}\right\| \geq & f\left(u_{n}\right)-\frac{1}{v}\left(f^{\prime}\left(u_{n}\right), u_{n}\right) \\
\geq & \left(\frac{1}{2}-\frac{1}{v}\right)\left\|u_{n}\right\|^{2}-\left(\frac{1}{2}-\frac{1}{v}\right)\left(m^{2}+1\right)\left\|u_{n}\right\|_{2}^{2} \\
& +\frac{1}{v} \int_{0}^{2 \pi} u_{n} g\left(x, u_{n}\right) d x-\int_{0}^{2 \pi} G\left(x, u_{n}\right) d x \\
\geq & \left(\frac{1}{2}-\frac{1}{v}\right)\left\|u_{n}\right\|^{2}-\left(\frac{1}{2}-\frac{1}{v}\right)\left(m^{2}+1\right)\left\|u_{n}\right\|_{2}^{2} \\
& +\left(\frac{\theta}{v}-1\right) \int_{0}^{2 \pi}\left(\frac{1}{2 k+2} c(t) x^{2 k+2}-\frac{1}{l+1} b(t) x^{l+1}\right) d x \\
\geq & \left(\frac{1}{2}-\frac{1}{v}\right)\left\|u_{n}\right\|^{2}-\left(\frac{1}{2}-\frac{1}{v}\right)\left(m^{2}+1\right)\left\|u_{n}\right\|_{2}^{2} \\
& +\frac{c}{2 k+2}\left(\frac{\theta}{v}-1\right)\left\|u_{n}\right\|_{2 k+2}^{2 k+2}-\frac{B}{l+1}\left(\frac{\theta}{v}-1\right)\left\|u_{n}\right\|_{l+1}^{l+1} \\
\geq & \left(\frac{1}{2}-\frac{1}{v}\right)\left\|u_{n}\right\|^{2}-\left(\frac{1}{2}-\frac{1}{v}\right)\left(m^{2}+1\right) \beta_{1}\left\|u_{n}\right\|_{2 k+2}^{2} \\
& +\frac{c}{2 k+2}\left(\frac{\theta}{v}-1\right)\left\|u_{n}\right\|_{2 k+2}^{2 k+2}-\frac{B}{l+1}\left(\frac{\theta}{v}-1\right) \beta_{2}\left\|u_{n}\right\|_{2 k+2^{\prime}}^{l+1}
\end{aligned}
$$

with $\beta_{1}, \beta_{2}>0$. So the sequence $\left(x_{n}\right)$ is bounded in E because $2 k+2>l+1>2$. Assume the weak convergence $x_{n} \rightharpoonup u$ in E, the strong convergence $x_{n} \rightarrow u$ in $L^{2}(0,2 \pi)$ and the uniform convergence $x_{n} \rightarrow u$ in $C[0,2 \pi]$.

Note that x is a critical point of f, as

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left(f^{\prime}\left(x_{n}\right), y\right) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{2 \pi}\left(x_{n}^{\prime} y^{\prime}-a(t) x_{n} y+b(t) x_{n}^{l} y-c(x) x_{n}^{2 k+1} y\right) d t \\
& =\int_{0}^{2 \pi}\left(x^{\prime} y^{\prime}-a(t) x y+b(t) x^{l} y-c(t) x^{2 k+1} y\right) d t
\end{aligned}
$$

so

$$
\begin{aligned}
\left\|x_{n}\right\|^{2} & =\left(f^{\prime}\left(x_{n}\right), x_{n}\right)+\int_{0}^{2 \pi}\left((a(t)+1) x_{n}^{2}+x_{n} g\left(t, x_{n}\right)\right) d t \\
& \rightarrow \int_{0}^{2 \pi}\left((a(t)+1) x^{2}+x g(t, x)\right) d t \\
& =\|x\| .
\end{aligned}
$$

As weak convergence and convergence of the square of the norm implies convergence, the proof is complete.

References

[1] G. Austin. Biomathematical model of aneurysm of the circle of willis I: The Duffing equation and some approximate solutions. Mathematical Biosciences 11 (1971) 163-172.
[2] M.R. Grossinho, L. Sanchez. A note on periodic solutions of some nonautonomous differential equations. Bull. Austral. Math. Soc. 34 (1986) 253-265.
[3] M.R. Grossinho, L. Sanchez, St. A. Tersian. Periodic solutions for a class of second order differential equations. Applications of mathematics in engineering (Sozopol, 1998), 67-70, Heron Press, Sofia, 1999.
[4] S. Li, M. Willem. Applications of local linking to critical point theory. J. Math. Anal. and Appl. 189 (1995) 6-32.
[5] E. A. B. Silva. Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal. 16 (1991), no. 5, 455-477.
[6] V. V. Prasolov. Polynomials. Algorithms and Computation in Mathematics 11. Springer-Verlag, Berlin, 2004.

DMA-UFV, Av. Peter Henry Rolfs, s / n, 36570-000, Viçosa (MG), Brazil anderson.araujo@ufv.br

IMECC-UNICAMP, 13083-970, Campinas (SP), Brazil rmiranda@ime.unicamp.br

