
Existence of periodic solutions for a

nonautonomous differential equation

Anderson Luis Albuquerque de Araujo

Ricardo Miranda Martins

Abstract

We consider the nonautonomous differential equation of second order
x′′ + a(t)x − b(t)xl + c(t)x2k+1 = 0, where a(t), b(t), c(t) are T-periodic func-
tions and 2 ≤ l < 2k+ 1. This is a generalization of a biomathematical model
of an aneurysm in the circle of Willis. We prove the existence of a T-periodic
solution for this equation, using a saddle-point theorem.

1 Introduction

We consider the nonautonomous differential equation

x′′ + a(t)x − b(t)xl + c(t)x2k+1 = 0, (1)

where 2 ≤ l < 2k + 1 and a(t), b(t), c(t) are T-periodic functions, subject to the
constraints 0 < a ≤ a(t) ≤ A, 0 < c ≤ c(t) ≤ C and |b(t)| ≤ B, for a, A, b, B, C >

0. Equation (1) comes from biomathematics, see for example [1].
The existence of periodic solutions to (1) for (k, l) = (3, 2) was previously

considered in [2], [3] and [4], using different methods. Here we aim in the general
case adopting methods similar to these in [3], basically a saddle point theorem
due to Silva ([5]). The key point in the generalization of the results in [3] for
arbitrary l and k is the proof of the existence of real positive zeroes for a 2k degree
polynomial.

In this paper we prove the existence of a nontrivial T-periodic solution for (1)
using a saddle point theorem, under some specific assumptions on a, A, c, C, B to
be given latter. For simplicity, we fix T = 2π.
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2 Description of the main result

The starting point is to associate weak solutions of (1) with critical points of a
functional. If F(α, β, γ) is a function of class C2, I : C1[a, b] → R is defined as

I(x) =
∫ b

a
F(x(t), x′(t), t) dt,

and I has an extremum at x0 ∈ S, then x0 satisfies the Euler-Lagrange equation

∂F

∂α
(x0(t), x′0(t), t) −

d

dt

∂F

∂β
(x0(t), x′0(t), t) = 0,

for t ∈ [a, b].
Now we recall the Palais-Smale (PS) condition. Let H be a Hilbert space. A

differentiable functional J ∈ C1(H, R) is said to satisfies the (PS) condition if
every sequence (xn)n in H such that (J(xn))n is bounded and J′(xn) → 0 in H has
a convergent subsequence in H.

The following saddle-point theorem is due to Silva ([5]).

Theorem 1. Let E = X1 ⊕ X2 a real Banach space, with X1 finite dimensional. Suppose
f ∈ C1(E, R) with
(i) f (x) ≤ 0, for x ∈ X1,
(ii) f (x) ≥ 0 for x ∈ X2 with ||x|| = ρ, for some ρ > 0,
(iii) f (x) ≤ β for x = x1 + λξ ∈ X1 ⊕ 〈ξ〉, for some unitary ξ ∈ X2 and β > 0, with
λ > 0.

If f satisfies (PS) condition, then f has a nonzero critical point in E.

Now we present a criteria on the existence of positive zeroes for a polynomial.
For a proof, see [6].

Theorem 2. Let p(t) = a0 + a1t + . . . + amxm be a polynomial. Consider the sequence
p = (a0, a1, . . . , am). Then the number of positive roots of p does not exceed the number
of the changes of sign in the sequence p.

Our main theorem is

Theorem 3. Consider l, k ∈ Z with 2 ≤ l < 2k + 1 and let a(t), b(t), c(t) be mensu-
rable 2π-periodic functions with |b(t)| ≤ B, 0 < c ≤ c(t) ≤ C, m2

< a ≤ a(t) ≤ A <

(m + 1)2,
c(l + 1)

B(2k + 2)
> 1 and

(a − m2)(l + 1)

2B
> 1 for some integer m ≥ 0. Then the

equation

x′′ + a(t)x − b(t)xl + c(t)x2k+1 = 0

has a nontrivial 2π periodic solution.

Example 4. Consider equation (1) with a(t) = 6 + sin(t), b(t) = cos(t), c(t) =
2k + 3 + sin(t) and m = 2. Define a = 5, A = 7, B = 1, c = 2k + 2 and C = 2k + 4.
As l ≥ 2, Theorem 3 guarantees that the equation

x′′ + (6 + sin(t))x − cos(t)xl + (2k + 3 + sin(t))x2k+1 = 0

has a nontrivial 2π-periodic solution, for every 2 ≤ l < 2k + 1.
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3 Proof of Theorem 3

Let us denote

E = H1(0, 2π) =

{

∑
k∈Z

ckeikt; c−k = ck, ∑
k∈Z

(1 + k2)c2
k < ∞

}

normed with

||x||2 =
∫ 2π

0
(x′

2
+ x2) dx.

Note that for x = ∑k∈Z ckeikt ∈ E we have that

||x||2 = 2π ∑
k∈Z

(1 + k2)c2
k .

Consider

F(x, x′, t) =
1

2
x′

2
−

1

2
a(t)x2 +

1

l + 1
b(t)xl+1 −

1

2k + 2
c(t)x2k+2.

Recall that critical points of

f (x) =
∫ 2π

0
F(x, x′, t) dt

are weak solutions of

x′′ + a(t)x − b(t)xl + c(t)x2k+1 = 0.

Consider
X1 = {x ∈ E; x = ∑

k≤m2

ckeikt}

and
X2 = {x ∈ E; x = ∑

k≥(m+1)2

ckeikt}.

As we want to use Theorem 1, we shall estimate f (x) for x ∈ X1 and for
x ∈ X2.

Let x ∈ X1.

f (x) ≤ π ∑
k2≤m2

c2
k(k

2 − a) +
∫ 2π

0

(

1

l + 1
b(t)xl+1 −

1

2k + 2
c(t)x2k+2

)

dx

≤ π(m2 − a) ∑
k2≤m2

c2
k +

∫ 2π

0

(

1

l + 1
B|x|l+1 −

1

2k + 2
cx2k+2

)

dt

≤
∫ 2π

0
x2

(

m2 − a

2
+

1

l + 1
B|x|l−1 −

1

2k + 2
c|x|2k

)

(2)

Let q(x) =
m2 − a

2
+

1

l + 1
B|x|l−1 −

1

2k + 2
c|x|2k. The hypotheses of Theorem

3 guarantees that q(x) ≤ 0 for all x ∈ X1, so the last integral in (2) is negative and
the first item of Theorem 1 is true.
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Now let x ∈ X2.

f (x) ≥ π ∑
k2≥(m+1)2

c2
k(k

2 − A) +
∫ 2π

0

(

1

l + 1
b(t)xl+1 −

1

2k + 2
c(t)x2k+2

)

dt

≥
∫ 2π

0
x2

(

(m + 1)2 − A

2
−

1

l + 1
B|x|l−1 −

1

2k + 2
C|x|2k

)

dt

To verify (ii) in Theorem 1, we have to find ρ > 0 such that f (x) ≥ 0 for x ∈ X2

and ||x|| ≤ ρ. This is equivalent to find a positive solution of ∆(x) = 0, where

∆(x) =
(m + 1)2 − A

2
−

1

l + 1
Bxl−1 −

1

2k + 2
Cx2k.

The next lemma applied to the polynomial ∆(x) guarantee that it has a positive
root.

Lemma 5. A polynomial p(x) = p0 − p1xl−1 − p2x2k, with p0, p1, p2 > 0 and l <

2k + 1, always has a unique positive root.

Proof. As we have just one change of sign in the sequence of the coefficients of p,
follows from Theorem 2 that p has at most one positive real root. As p(0) > 0
and limy→+∞ p(y) = −∞, p has exactly one real root.

Now we check item (iii) of Theorem 1. Consider

ξ(x) =
1

√

π(1 + (m + 2)2)
cos(m + 2)x.

Note that ξ(x) ∈ X2. Also observe that ||ξ|| = 1. If x = ∑k2≤m2 ckeikt + λξ, with
λ ≥ 0, then, by the equivalence of the p-norms in the finite dimensional space
X1 ⊕ 〈ξ〉, we have that

f (x) ≤ πt2(m + 1)2 +
B

l + 1

∫ 2π

0
|x|l+1 dt −

c

2k + 2

∫ 2π

0
x2k+2 dt

≤
(m + 1)2

2
||x||22 +

B

l + 1
||x||l+1

l+1 −
c

2k + 2
||u||2k+2

2k+2

≤
(m + 1)2

2
||x||22 + δ1

B

l + 1
||x||l+1

2 − δ2
c

2k + 2
||x||2k+2

2 ,

with δ1, δ2 > 0. Put ϕ(t) =
(m + 1)2

2
t2 + δ1

B

l + 1
tl+1 − δ2

c

2k + 2
t2k+2.

As limt→±∞ ϕ(t) = −∞, ϕ is bounded from above by a constant β > 0, so
f (x) ≤ β and item (iii) of Theorem 1 is verified.

Now it rests to check (PS) condition. Denote g(t, x) = c(t)x2k+1 − b(t)xl . Con-

sider G(t, x) =
∫ x

0
g(t, y) dy. Take θ = l + 1. Then

θG(t, x) =
l + 1

2k + 2
c(t)x2k+2 − b(t)xl+1

≤ c(t)x2k+2 − b(t)xl+1

= xg(t, x).
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Note also that G(t, x) > 0 for larger values of x. This shows that g satisfies the
Rabinowitz’s condition.

Let (un) be a (PS) sequence for f in E. There exists a constant c0 such that for
ν ∈ (2, θ)

c0 +
1

ν
‖un‖ ≥ f (un)−

1

ν
( f ′(un), un)

≥

(

1

2
−

1

ν

)

‖un‖
2 −

(

1

2
−

1

ν

)

(m2 + 1)‖un‖
2
2

+
1

ν

∫ 2π

0
ung(x, un)dx −

∫ 2π

0
G(x, un)dx

≥

(

1

2
−

1

ν

)

‖un‖
2 −

(

1

2
−

1

ν

)

(m2 + 1)‖un‖
2
2

+

(

θ

ν
− 1

)

∫ 2π

0

(

1

2k + 2
c(t)x2k+2 −

1

l + 1
b(t)xl+1

)

dx

≥

(

1

2
−

1

ν

)

‖un‖
2 −

(

1

2
−

1

ν

)

(m2 + 1)‖un‖
2
2

+
c

2k + 2

(

θ

ν
− 1

)

‖un‖
2k+2
2k+2 −

B

l + 1

(

θ

ν
− 1

)

‖un‖
l+1
l+1

≥

(

1

2
−

1

ν

)

‖un‖
2 −

(

1

2
−

1

ν

)

(m2 + 1)β1‖un‖
2
2k+2

+
c

2k + 2

(

θ

ν
− 1

)

‖un‖
2k+2
2k+2 −

B

l + 1

(

θ

ν
− 1

)

β2‖un‖
l+1
2k+2,

with β1, β2 > 0. So the sequence (xn) is bounded in E because 2k + 2 > l + 1 > 2.
Assume the weak convergence xn ⇀ u in E, the strong convergence xn → u in
L2(0, 2π) and the uniform convergence xn → u in C[0, 2π].

Note that x is a critical point of f , as

0 = limn→∞ ( f ′(xn), y)

= lim
n→∞

∫ 2π

0

(

x′ny′ − a(t)xny + b(t)xl
ny − c(x)x2k+1

n y
)

dt

=
∫ 2π

0

(

x′y′ − a(t)xy + b(t)xl y − c(t)x2k+1y
)

dt,

so

||xn||
2 =

(

f ′(xn), xn

)

+
∫ 2π

0

(

(a(t) + 1)x2
n + xng(t, xn)

)

dt

→
∫ 2π

0

(

(a(t) + 1)x2 + xg(t, x)
)

dt

= ||x||.

As weak convergence and convergence of the square of the norm implies con-
vergence, the proof is complete.
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