Translator Disclaimer
december 2011 Singular behavior of the solution of the Cauchy-Dirichlet heat equation in weighted $L^p$-Sobolev spaces
Colette De Coster, Serge Nicaise
Bull. Belg. Math. Soc. Simon Stevin 18(5): 769-780 (december 2011). DOI: 10.36045/bbms/1323787165

Abstract

We consider the heat equation on a polygonal domain $\Omega$ of the plane in weighted $L^p$-Sobolev spaces \begin{equation} \label{ab1} \begin{array}{cl} \partial_t u -\Delta u = h, & \mbox{in } \Omega \times {]0,T[}, \\ u=0,& \mbox{on } \partial\Omega \times {[0,T]}, \\ u(\cdot, 0)=0,& \mbox{in } \Omega. \end{array} \end{equation} Here $h$ belongs to $L^p(0,T;L^p_\mu(\Omega))$, where $L^p_\mu(\Omega)=\{v \in L^p_{loc}(\Omega): r^\mu v\in L^p(\Omega)\},$ with a real parameter $\mu$ and $r(x)$ the distance from $x$ to the set of corners of $\Omega$. We give sufficient conditions on $\mu$, $p$ and $\Omega$ that guarantee that problem (\ref{ab1}) has a unique solution $u\in L^p(0,T;L^p_\mu(\Omega))$ that admits a decomposition into a regular part in weighted $L^p$-Sobolev spaces and an explicit singular part.

Citation

Download Citation

Colette De Coster. Serge Nicaise. "Singular behavior of the solution of the Cauchy-Dirichlet heat equation in weighted $L^p$-Sobolev spaces." Bull. Belg. Math. Soc. Simon Stevin 18 (5) 769 - 780, december 2011. https://doi.org/10.36045/bbms/1323787165

Information

Published: december 2011
First available in Project Euclid: 13 December 2011

zbMATH: 1235.35059
MathSciNet: MR2918644
Digital Object Identifier: 10.36045/bbms/1323787165

Subjects:
Primary: 35B65, 35K15

Rights: Copyright © 2011 The Belgian Mathematical Society

JOURNAL ARTICLE
12 PAGES


SHARE
Vol.18 • No. 5 • december 2011
Back to Top