Property (gw) and perturbations

M. H. M. Rashid

Abstract

The property (gw) is a variant of generalized Weyls theorem, for a boun-
ded operator T acting on a Banach space. In this note we consider the preser-
vation of property (gw) under a finite rank perturbation commuting with T,
whenever T is isoloid, polaroid, or T has analytical core K(Agl — T) = {0}
for some Ay € C. The preservation of property (gw) is also studied under
commuting nilpotent or under algebraic perturbations. The theory is exem-
plified in the case of some special classes of operators.

1 Introduction

Throughout this paper let B(X'), denote, the algebra of bounded linear operators
acting on an infinite dimensional Banach space X. If T € B(X') we shall write
ker(T) and R(T) (or ran(T)) for the null space and range of T, respectively. Also,
let a(T) := dimker(T), B(T) := dimR(T), and let 0(T), 04(T), 7»(T) denote the
spectrum, approximate point spectrum and point spectrum of T, respectively. An
operator T € B(X') is called Fredholm if it has closed range, finite dimensional null
space, and its range has finite codimension. The index of a Fredholm operator is
given by
ind(T) := a(T) — B(T).
An operator T is called a Weyl! if it is a Fredholm of index 0, and Browder if it is

Fredholm ”of finite ascent and descent”; equivalently, [33, Theorem 7.9.3]if T is
Fredholm and T — AI (Abbreviate T — A) is invertible for sufficiently small A # 0
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in C.

Recall that the ascent, a(T), of an operator T is the smallest non-negative in-
teger p such that ker(T?) = ker(TP*!). If such integer does not exist we put
a(T) = oo. Analogously, the descent, d(T), of an operator T is the smallest non-
negative integer g such that R(T9) = R(T7"!), and if such integer does not exist
we put d(T) = co. The essential spectrum or(T), the Weyl spectrum o (T) and
the Browder spectrum o3,(T) of T are defined by

op(T) := {A € C: T — Ais not Fredholm}

ow(T) :={A € C: T — Ais not Weyl}
and
0y(T) :={A € C: T — Ais not Browder}
respectively. Evidently

or(T) Cow(T) C oy(T) C op(T) Uacco(T)

where we write accK for the accumulation points of K C C.

For a bounded operator T and nonnegative integer 7, define T, to be the
restriction of T to R(T") viewed as a map from R(T") into R(T") (in particular
Tg) = T). If for some n the range R(T") is closed and T, is an upper (resp. a
lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-
Fredholm operator. In this case the index of T is defined as the index of the semi-
Fredholm operator T[n], see [18, 19]. Moreover, if T[n] is a Fredholm operator,
then T is called a B-Fredholm operator. A semi-B-Fredholm operator is an upper
or a lower semi-Fredholm operator. An operator T € B(X) is said to be a B-
Weyl operator if it is a B-Fredholm operator of index zero. the semi-B-Fredholm
spectrum ospp(T) and the B-Weyl spectrum oy of T are defined by

ospr(T) :={A €C:T— Al isnota semi-B-Fredholm operator},
ogw :={A € C: T — Al isnota B-Weyl operator} .
If we write isoK = K\ accK, then we let
Eo(T) :={A €isoo(T) : 0 < a(T — L) < oo}

and

0o(T) = o(T) \ op(T).
Given T € B(X'), we say that Weyl’s theorem holds for T (or that T satisfies
Weyl’s theorem, in symbol, T € W), see [26] if

o(T) \ow(T) = Eo(T),
and that Browder’s theorem holds for T (in symbol, T € B) if
o(T) \ ow(T) = mo(T).

Recall that an operator T € B(X) is a Drazin invertible if and only if it has a
finite ascent and descent, which is also equivalent to the fact that T = Tp @ 17,
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where Tj is nilpotent operator and T; is invertible operator, see [36, Proposi-
tion A]. The Drazin spectrum is given by

op(T) :={A €C:T— Al isnotDrazin invertible}.
We observe that op(T) = ¢(T) \ 7(T), where 7t(T) is the set of all poles. Define
E(T):={A €isoc(T) :0<a(T—A)},

we also say that the generalized Weyl’s theorem holds for T (in symbol, T € gWV) if
o(T) \ opw(T) = E(T),

and that the generalized Browder’s theorem holds for T (in symbol, T € ¢B) if
o(T) \ opw(T) = 7(T).

It is Known [21, 22, 23] that

W CgBUW  andthat gBUW CB.

Moreover, given T € ¢B3, then itis clear T € ¢W if and only if E(T) = 7t(T), see
[21, 23].

Let SF, (X') be the class of all upper semi-Fredholm operators, SF_ (X') be the
classof all T € SF, (X) with ind(T) <0, and forany T € B(X') let

oop (T)i={A €C: T— Al & SF(X)}.

Let Ej be the set of all eigenvalues of T of finite multiplicity which are isolated in
04(T). According to [42], we say that T satisfies a-Weyl’s theorem( and we write

T € aW) it
osp(T) = ou(T) \ Eg(T),

and that a-Browder’s theorem holds for T (in symbol, T € aB) if
0a(T) \ ogp(T) = mp(T),

where 715 (T) is the set of all left poles of finite rank.
Let SBF (X') be the class of all upper semi-B-Fredholm operators, and SBF_ (X')
the class of all T € SBFy (X') such that ind(T) < 0, and

USBF;(T) ={AeC:T—-A¢&SBF_(X)}.
Recall that an operator T € B(X') satisfies the generalized a-Weyl’s theorem (in sym-
bol, T € gaWV) if
‘TSBF;(T) = oq(T) \ E(T),

where E*(T) is the set of all eigenvalues of T which are isolated in o, (T).
Define a set LD(X') by

LD(X) := {T €B(X):a(T) <o and R(TDH) s dosed}.
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An operator T € B(#) is called left Drazin invertibleif a(T) < coand R(T*T)+1)
is closed (see [23, Definition 2.4]). The left Drazin spectrum is given by

op(T) :={A €C:T— Al isnotleft Drazin invertible}.

Recall [23, Definition 2.5] that A € 0,,(T) is a left pole of T if T — AI is left Drazin
invertible operator and A € ¢,(T) is a left pole of finite rank if A is a left pole of
T and a(T — A) < co. We will denote 77(T) the set of all left pole of T. We have
o1p(T) = 04(T) \ ©(T). Note thatif A € 717(T), then it is easily seen that T — A
is an operator of topological uniform descent. Therefore, it follows from ( [21,
Theorem 2.5]) that A is isolated in ¢, (T). Following [23]if T € B(H) and A € C
is anisolated in 0, (T), then A € 71%(T) ifand only if A ¢ TsBE; (T)and A € 7§(T)
if and only if A ¢ ogp- (T).

We will say that generalized a-Browder’s theorem holds for T (in symbol T €
gabB) if

Cspr (T) = a(T) \ 7(T).

It is Known [23, 21, 42]that
gWUgBUaW U gaB C ga)V and that aBUW CalW and that B C aB3.

This article also deals with the single valued extension property. This property
has a basic role in the local spectral theory, see the recent monograph of Laursen
and Neumann [39] or Aiena [3]. In this article consider a localized version of
this property, recently studied by several authors [1, 4, 11, ?], and previously by
Finch [31].

Let Hol(o(T)) be the space of all functions that analytic in an open neighbor-
hoods of ¢(T). Following [31] we say that T € B(X') has the single-valued exten-
sion property (SVEP) at point A € C if for every open neighborhood U, of A, the
only analytic function f : Uy — H which satisfies the equation (T — ) f(y) =0
is the constant function f = 0. An operator T € B(H) is said to have the SVEP if
T has the SVEP at every point A € C.

An operator T € B(X') has the SVEP at every point of the resolvent p(T) :=
C \ ¢(T). The identity theorem for analytic functions ensures that for every
T € B(X), both T and T* have the SVEP at the points of the boundary oo (T)
of the spectrum ¢ (T). In particular, that both T and T* have the SVEP at ev-
ery isolated point of ¢(T) = ¢ (T*). The SVEP is inherited by the restrictions to
closed invariant subspaces, i.e., if T € B(X') has the SVEP at Ag and M is closed
T-invariant subspace then T'|j; has SVEP at Ay.

The quasinilpotent part Hy(T — AI) and the analytic core K(T — AI) of T — Al are
defined by

_ ._ T . naot_
Ho(T — AI) :={x € X : nhrr})o (T — AI)"x||» = 0}.
and

K(T — AI) = {x € X : there exists a sequence {x,} C X and § > 0 for which
x =xg, (T —A)xy41 = xpand  ||x,]| < 6"||x| forall n=1,2,---}.
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We note that Hy(T — AI) and K(T — AI) are generally non-closed hyper-inva-
riant subspaces of T — AI such that (T — AI)"7(0) € Ho(T — AI) for all p =
0,1,--- and (T — AI)K(T — AI) = K(T — AI). Recall that if A € iso(o(T)), then
Ho(T — AI) = x1({A}), where x7({A}) is the glocal spectral subspace consisting
of all x € H for which there exists an analytic function f : C\ {A} — X that
satisfies (T — uI)f(pu) = x forall u € C\ {A}(see [29]). From [2], the following
implication holds for every T € B(X),

Ho(T — AI) is closed = T has SVEP at A.

Definition 1.1. ([42]) An operator T € B(X) is said to satisfy property (w) if
Aa(T) = 0a(T) \ o5p (T) = Eo(T).

In [6], it is shown that the property (w) implies Weyls theorem. For
TTEMHLMA%D::dﬂ\mmﬂﬁmdﬁﬂjzvﬁﬂawﬁﬂyHT*
has the SVEP, then it is known from [39] that ¢(T) = ¢,(T) and from [12] we
have o (T) = gpp-(T). Thus E(T) = E°(T) and A%(T) = AS(T).

Definition 1.2. ([16]) An operator T € B(X) is said to satisfy property (gw) if
AS(T) = E(T).

The following diagram resume the relationships between generalized a-Weyls
theorem, generalized Weyl’s theorem, a-Weyls theorem, generalized a-Browders
theorem, a-Browders theorem, property (gw) and property (w), see [5,7, 8, 10,
16, 28].

Property (gw) == gW ——= gaW}W — galB

N T

Property (w) w %Y aBB

2 Results

We begin this section by some results about the structural of gal3 and galV.

Theorem 2.1. Let T € B(X). Then the following statements are equivalent:
(i) T € gabB;

(ii) U'SBF;(T) = U'ZD(T)/'

(iii) oo(T) = O'SBF;(T) UEY(T);

(iv) acc(oy(T)) C O'SBF;(T);

(v) 0a(T) \ ogpp-(T) S EX(T).

Proof. (i)= (ii). Suppose that T € gaB. Then o,(T) \ "'SBF;(T) = 1*(T). Let
A€ oq(T) \ OSBF; (T). Then A € *(T), and so T — AI is left Drazin invertible.
Therefore, A € 0,4,(T) \ 0;p(T), and hence o;p(T) C o I (T). On the other hand,
since o'gpp - (T) C o1p(T) is always verified for any operator T [21, Lemma 2.12.].
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(i))= (i). We assume that oc,—(T) = o;p(T) and we will establish that o, (T
SBF;
O'SBF;(T) = 11*(T). Suppose first that A € 0,,(T) \ O'SBF;(T). Then A € ,(T) \

op(T), and so T — Al is left Drazin invertible. Therefore, d = a(T) < oo and
ran(T9*1) is closed. Since A € ¢,,(T), wehave A € 7*(T). Thus o (T) \O'SBF;(T) C
e (T).

Conversely, suppose that A € 7%(T). Then T — Al is left Drazin invertible but not
bounded below. Since A is an isolated point of o (T), then T — A € SBF (X).
Therefore, A € o,(T) \ o'SBF;(T). Thus (T) 2 04(T) \ O'SBF;(T).

()= (iii). Let A € ou(T) \O'SBF;(T). Then A € 0,(T) \ o1p(T), and so T — AI
is left Drazin invertible but not bounded below. Therefore, A € E?(T). Thus
0.(T) C "'SBF;(T) U E?(T). Since the other inclusion is always true, we must
have 0,,(T) = O'SBF;(T) UE*(T).

(iii)= (ii). Suppose o, (T) = TSsBE; (T) UE*(T). To show that O'SBF;(T) = op(T).
it suffices to show that ogpp - (T) € a;p(T). Suppose that A € 0,,(T) \ TspE; (T).
Then T — Al € SBF,_(X') but not invertible. Since 0, (T) = OSBF; (T)UE™T), we

see that A € E?(T). In particular, A is an isolated point of ¢, (T). Hence T — Al is
left Drazin invertible, and so o5 I (T) = oyp(T).

(i) (iv). Suppose T € gal3. Then U'SBF;(T) = 0,(T) \ 7*(T). Let A € o (T) \
o'SBF;(T). Then A € 7%(T), and so A is an isolated point of ¢,(T). Therefore,
A€ 04(T) \ acc(o,(T)), and hence acc(c,(T)) C O'SBF;(T).

Conversely, let A € 0,(T) \ O'SBF;(T). Since acc(o,(T)) C O'SBF;(T), it follows
that A € iso(0,(T)) and T — AI € SBF_ (&X). It follows from [21, Theorem 2.8.]
that A € 7%(T). Therefore, 0,(T) \ g5 E; (T) € 7*(T). For the converse, suppose
A € t°(T). Then A is a left pole of the resolvent of T, and so A is an isolated point
of 0,(T). Therefore, A € o,(T) \ acc(c,(T)). It follows from [21, Theorem 2.11.]
that A € 0,(T) \ O'SBF;(T). Thus 7%(T) C 0,(T) \ O'SBF;(T), andso T € gaB5.
(iv)< (v). Suppose that acc(o,(T)) C O'SBF;(T), and let A € 0,(T) \ U'SBF;(T).
Then T — A € SBF, (X) but not bounded below. Since acc(o,(T)) C U'SBF;(T),

A is an isolated point of ¢, (T). It follows from [21, Theorem 2.8.] that A is a left
pole of of the resolvent of T. Therefore, A € 7(T), and hence 0, (T) \ ogp I (T) C

EX(T).

Conversely, suppose that o, (T) \ ‘TSBF;(T) C EYT) and let A € o0,(T) \
OB (T) C E(T).Then A € E*(T), and so A is an isolated point of ¢,(T). There-
fore, A € 0,(T) \ acc(c,(T)), which implies that acc(o,(T)) C OB (T). u

The next result gives simple necessary and sufficient conditions for an opera-
tor T € gaB to belong to the smaller class galV.

Theorem 2.2. Let T € gaB. The following statements are equivalent:
(i) T € gaw.

(ii) O'SBF;(T) NEYT) = Q.

(iil) 7*(T) = E*(T).
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Proof. (i)=-(ii). Assume T € gaWV, that is, 0,(T) \ "'SBF;(T) = E%(T). It then
easily that TSBF; (T) NE*(T) = @, as required for (ii).

(ii)=-(iii). Let A € E*(T). The condition in (ii) implies that A € ¢, (T) \O'SBF; (T),
and since T € gaBB, we must have A € 7%(T). It follows that E*(T) C 7*(T), and
since the reverse inclusion always holds, we obtain (iii).

(iii))=(i). Since T € gal3, we know that 0;,(T) \ TSBF; (T) = m*(T), and since we
are assuming E*(T) = n*(T), it follows that o (T) \ TsBE; (T) = E*(T), that is,
T € gaW. m

Theorem 2.3. ([16]) Let T € B(X'). The following statements are equivalent:

i) T satisfies property (gw);
ii) generalized a-Browders theorem holds for T and " (T) = E(T).

The following example show that property (gw) is not intermediate between
generalized Weyl’s theorem and generalized a-Weyl’s theorem.

Example 2.4. Let T be the hyponormal operator given by the direct sum of the
1-dimensional zero operator and the unilateral right shift R on ¢>(IN). Then
c(T) = D, D the closed unit disc in C. Moreover, 0 is an isolated point of ¢, (T) =
C(0,1)U {0}, C(0,1) the unit circle of C, 0 € E*(T) and TsBE; (T) = C(0,1) while
0 ¢ m*(T) = @since a(T) = a(R) = oo. Hence, T does not satisfy generalized
a-Weyls theorem. On the other hand E(T) = @, since o (T') has no isolated points,
so t*(T) = E(T). Since every hyponormal operator has SVEP we also know that
generalized a-Browders theorem holds for T, so from Theorem 2.3 we see that
property (gw) holds for T.

The following example shows that generalized a-Weyls theorem and general-
ized Weyls theorem does not imply property (gw).

Example 2.5. Let R € ¢2(IN) be the unilateral right shift and let U defined by
U(xy,x2,--+) = (0,x2,x3,...), (xy) € 2(N). If T = R® U, then ¢(T) = D(0,1)
the closed unit disc in C, isoo (T) = @ and 0,(T) = C(0,1) U {0}, where C(0,1)
is unit circle of C. It follows from [6, Example 2.14] that o I (T) = C(0,1). This
implies that

O'SBF;(T) =C(0,1) and o,(T)\ O'SBF;(T) = {0}

Moreover, we have E(T) = @ and E*(T) = {0}. Hence T satisfies generalized
a- Weyls theorem and so T satisfies generalized Weyls theorem. But T does not

satisfy property (gw).

The class of operators T € B(X') for which K(T) = {0} was introduced and
studied by M. Mbekhta in [40]. It was shown that for such operators, the spec-
trum is connected and the SVEP holds.

Theorem 2.6. Let T € B(X). If there exists A such that K(T — A) = {0}, then
f(T) € gaBB, for every f € Hol(o(T)). Moreover, if in addition ker(T — A) = 0, then

property (gw) holds for f(T)
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Proof. Since T has the SVEP, then by Theorem 3.2 of [14], generalized a- Brow-
der’s theorem holds for f(T). Lety € o (f(T)), then

f(z) =v1 = P(2)8(2),

where g is complex-valued analytic function on a neighborhood of ¢ (T) without
any zeros in o (T) while P is a complex polynomial of the form P(z) =" ;(z —
Al )% with distinct roots A1,---,A, € o(T). Since g(T) is invertible, then we
deduce that

ker(f(T) —yI) = ker(P(T)) = P ker(T — A;1)".
=1

On the other hand, it follows from [40, Proposition 2.1] that ¢,(T) C {A}.If
we assume that ker(T — AI) = 0, then T — A[ is an injective and consequently
0y(T) = @. Hence ker(f(T) — AI) = 0. Therefore, 0, (f(T)) = ©@. To prove that
property (gw) holds for f(T), by Theorem 2.3 it then suffices to prove that

m(f(T)) = E(f(T))-

Obviously, the condition o, (f(T)) = @ entails that

E(f(T)) = E*(f(T)) = ©.

On the other hand, the inclusion 7t%(f(T)) C E?(f(T)) holds for every operator
T € B(X). So also n?(f(T)) = @. By Theorem 2.6 of [16] it then follows that
property (gw) holds for f(T). ]

Theorem 2.7. Let T be a bounded linear operator on X satisfying the SVEP. If T — Al
has finite descent at every A € E?(T), then property (gw) holds for f(T*), for every
f € Hol(o(T)).

Proof. Let A € E*(T), then p = d(T — AI) < oo and since T has the SVEP it
follows that a(T — AI) = d(T — AI) = p and hence A is a pole of the resolvent
of T of order p, consequently A is an isolated point in ¢, (T). Then X = K(T —
AD) & Ho(T — AI), with K(T — AI) = R(T — AI)? is closed, Therefore, A € 7%(T).
Hence, T is a-polaroid. Now the result follows now from Theorem 2.11 of [16]. =

A bounded operator T € B(X) is said to be polaroid (respectively, a-polaroid)
if isoo(T) = @ or every isolated point of ¢(T) is a pole of the resolvent of T
(respectively, if isoo,(T) = @ or every isolated point of ¢,(T) is a pole of the
resolvent of T).
In [41] Oudghiri introduced the class H(p) of operators on Banach spaces for
which there exists p := p(A) € N such that

Ho(AI = T) = ker(T — AI)? forall A € C.

Let P(X') be the class of all operators T € B(X') having the property H(p). The
class P(&X') contains the classes of subscalar, algebraically totally paranormal and
transaloid operators on a Banach space, x-totally paranormal, M-hyponormal,



Property (gw) and perturbations 643

p-hyponormal (0 < p < 1) and log-hyponormal operators on a Hilbert space
(see [25, 26, 27, 32, 35]).

It is known that if Ho(T — AI) is closed for every complex number A, then T
has the SVEP ( see [3, 38]). So that, the SVEP is shared by all the operators of
P(X). Moreover, T is polaroid, see [5, Lemma 3.3].

Theorem 2.8. Suppose that T € B(X') is generalized scalar. Then T satisfies property
(gw) if and only if T satisfies generalized Weyl's theorem

Proof. If T is generalized scalar then both T and T* has SVEP. Moreover, T is
polaroid since every generalized scalar has the property H(p). Then T satisfies
property (gw) by Theorem 2.10 of [16]. The equivalence then follows from [16,
Theorem 2.7]. [ |

Theorem 2.9. Let T € P(X') be such that o(T) = o,(T) then property (gw) holds for
f(T), for every f € Hol(o(T)).

Proof. Since o (T) = ,(T), it follows that
EY(T) = 0p(T) Niso(0a(T)) = op(T) Niso(e(T)) = E(T).

Let A € EY(T) = E(T) Since T € P(X), then there exists d), € IN such that
Ho(T — AI) = ker(T — AI)“r. Since A is isolated in o (T) then, by [3, Theorem
3.74],

X = Hy(T — AI) @ K(T — AI) = ker(T — AI)™ @ K(T — Al),

from which we obtain
R((T — AI)™) = (T — A (K(T — AI)) = K(T — AI),

SO
X =ker(T —AD™ @ R((T — AI)™),

which implies, by [3, Theorem 3.6], that a(T — AI) = d(T — AI) < d,, hence

A is a pole of the resolvent, so that T is polaroid. As T* has the SVEP and T is

polaroid, then f(T) satisfies property (gw) for every f € Hol(c(T)) by Theorem
2.1 of [16]. .

Theorem 2.10. Let T a bounded operator on X. If there exists a function ¢ € Hol (o (T))
non constant in any connected component of its domain, and such that g(T*) € P(X™),
then property (gw) holds for f(T), for every f € Hol(o(T)).

Proof. Suppose that g(T*) € P(X*), then by [41, Theorem 3.4], we have T* €
P(X*). Since T* has the SVEP, then as it had been already mentioned, we have

0.(T) = o(T), O'SBF;(T) = opw(T), ET)=E(T) and AS(T)= A.(T),

it suffices to show that 7t(T) = E*(T). For this let A € E*(T), then A is isolated
eigenvalue of 0;,(T). So X* = Hy(T* — A) & K(T* — 1), where the direct sum is
topological. Since T* € P(X*), then there exists d) € IN such that Hy(T* — AI) =
ker(T* — AI)%, and hence X* = ker(T* — )% @ K(T* — A). Since

R((T — AI)™) = (T — )™ (K(T — AI)) = K(T — AI),
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SO
X =ker(T — A)"™ @ R((T — AI)™),

which implies, by [3, Theorem 3.6], that a(T* — AI) = d(T — AI) < d,, hence
Ais a pole of the resolvent of T*, so that T* is polaroid. Hence we have X* =
ker((T* — AI)%™ @ R(T* — AI)“r) and R(T* — AI)“1) is closed. Therefore, R(T —
AI)™) is closed and X = ker((T* — AI)™)Lt @ R(T* — AI)™)t = ker((T —
AW @ R(T — AI)™). So A € m*(T). As T* has the SVEP and T is polaroid,
then f(T) satisfies property (gw) for every f € Hol(c(T)) by Theorem 2.11 of
[16]. [ ]

As an easy consequence of the previous theorem, we have the following corol-
lary

Corollary 2.11. If T* € P(X™), then property (gw) holds for for f(T), for every f €
Hol(co(T)).

Example 2.12. Property (gw), as well as generalized Weyl’s theorem, is not trans-
mitted from T to its dual T*. To see this, consider the weighted right shift
T € ({*(N)), defined by

TmﬁyH%IQETﬁHJmeQMGmN)

Then
X2 X3

2737
Both T and T* are quasi-nilpotent, and hence are decomposable, T satisfies gen-
eralized Weyls theorem since o (T) = opw(T) = {0} and E(T) = n(T) = @
and hence T has property (gw). On the other hand, we have ¢(T*) = ,(T*) =
O'SBF;(T*) = EY(T*) = opw(T*) = E(T*) = {0} and *(T*) = @, so T* does
not satisfy generalized Weyl’s theorem (and nor generalized a-Weyl’s theorem).
Since T* has SVEP, then T* does not satisfy property (gw).

T*(x1, X0, ) == ( --) forall (x,) € /2(N).

Lemma 2.13. Suppose that T € B(X) satisfying property (gw) and F is a finite opera-
tor commuting with T such that o,(T + F) = 0,(T). Then t*(T +F) C E(T +F).

Proof. Let A € m*(T + F) be arbitrary given. Then A € is00,(T + F) and A ¢
orp(T 4+ F) and so T + F — Al is left Drazin invertible. Hence m = a(T + F —
Al) < oo and R((T + F — A)"*1) is closed. Since (T + F — A)"™*! has closed
range, the condition A € ¢, (T + F) entails that a((T + F — A)"™*!) > 0. There-
fore,, in order to show that A € E(T + F), we need only to prove that A is an
isolated of o (T + F).

We know that A € isoc,(T). We also have Al — (T +F) —F = Al —T € gaBB
sothat A € 0,(T) \ O'SBF;(T) = *(T).

Now, by assumption T satisfies property (gw), so, by Theorem 2.3, 7%(T) =
E(T). Moreover, T satisfies generalized Weyl’s theorem and hence, by [20, Corol-
lary 2.6],

E(T) = n(T) = o(T) \ ow(T).
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Therefore, T — AI € gB and hencealso T + F — Al € ¢B, so
0<a(T+F—AI)=d(T+F—-AI) <o

and hence A is a pole of the resolvent of T + F. Consequently, A an isolated point
of o(T + F), as desired. u

Recall that a bounded operator T € B(X) is said to be isoloid (respectively, a-
isoloid) if every isolated point of o (T') (respectively, every isolated point of ,,(T))
is an eigenvalue of T. Every a-isoloid operator is isoloid. This is easily seen: if T
is a-isoloid and A € isoo(T) then A € 0, (T) or A & 0(T). In the first case T — A
is bounded below, in particular upper semi-Fredholm. The SVEP of both T and
T* at A then implies that a(T — AI) = d(T — AI) < oo, s0 A is a pole. Obviously,
also in the second case A is a pole, since by assumption T is a-isoloid. However,
the converse is not true . Consider the following example: Let U & Q, where U
is the unilateral forward shift on 2 and Q is an injective quasinilpotent on ¢2,
respectively. Then o(T) = {A €C:|A| <1} and 0,(T) = {A€C:|A|=1}U
{0} . Therefore, T is isoloid but not a-isoloid.

Theorem 2.14. Suppose that T € B(X') is a-isoloid and F is a finite rank operator
commuting with T such that 0,(T + F) = 0,(T). If T satisfies property (gw), then
T + F satisfies property (gw).

Proof. Suppose that T satisfies property (gw). Then, by Theorem 2.3, T € gal3,
and hence also T + K € gaB.

By Theorem 2.3, in order to show that T + K satisfies property (gw) it suffices
only to prove the equality 7?(T + F) = E(T + F). The inclusion (T + F) C
E(T + F) follows from Lemma 2.13, so we need only to show the opposite inclu-
sion (T + F) 2 E(T + F).

We first show the inclusion

E(T +F) C n(T). (2.1)

Let A € E(T + F). By assumption A € isoo(T + F) and a(T +F —AI) > 0
so A € isoo,(T + F), and hence A € isoo,(T). Since T satisfies property (gw)
we then conclude that A is an isolated point of ¢ (T). Furthermore, Since T is a-
isoloid, we have also 0 < a(T — AI). Therefore, the inclusion E(T + F) C 7(T)
is proved. Now, since property (gw) entails that T satisfies generalized Weyl's
theorem, by [20, Corollary 2.6], we then have E(T + F) C n(T +F) = n(T)
and hence the inclusion 2.1 is established. Consequently, if A € E(T + F), then
T — AI € gB. By Theorem 2.1 of [37] it then follows that T + F — AI € ¢B3, hence

Aco(T+F)\opw(T+F)=n(T+F)Cn*(T+F),
so the proof is achieved. n

In the sequel we shall consider nilpotent perturbations of operators satisfying
property (gw). It easy to check that if N is a nilpotent operator commuting with
T,then o(T) = (T + N) and 0,(T) = 0,(T + N).
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Lemma 2.15. Suppose that T € B(X') satisfying property (gw) and N is a nilpotent
operator commuting with T. Then (T + N) C E(T + N).

Proof. Suppose that A € (T + N). Then
A€ oy(T+N)\ o'SBF;(T—F N) = 0,(T) \ o'SBF;(T) = "(T).

Since T satisfies property (gw) we then have, by Theorem 2.3, 7*(T) = E(T).
Hence A is an isolated point of ¢(T) = ¢(T*) and Therefore, both T and T*
have SVEP at A. Since T — AI € gaBB it then follows that0 < m = a(T — AI) =
d(T — AI) < oo. Furthermore, since A € E(T) we also have a(T — AI) > 0, thus
T — Al € gaBB and hence also T + N — Al € galB, by Theorem 2.1 of [37]. Hence
A is an isolated point of ¢(T + N) and a(T + N — AI) > 0.

On the other hand, (T + N — AI)"*! has closed range and since A € (T +
N) it then follows that «(T + N — AI) > 0. Thus A € E(T + N). u

Theorem 2.16. Suppose that T € B(X) is a-isoloid and N is a nilpotent operator that
commutes with T. If T satisfies property (gw), then T + N satisfies property (gw).

Proof. Observe first that a3 < galBB by Theorem 2.2 of [15], B < ¢B by Theorem
2.1 of [15]. Then it follows from Theorem 1.2 of [7] that o7 p(T + N) = o1p(T)
and ogpp- (T+N) = OsBE; (T). Since T € gaBB, by Theorem 1.3 of [24], it then
follows that o p(T + N) = U'SBF;(T + N),ie. T+ N € gaB. By Theorem 2.6 of
[16] and Lemma 2.15 we have only prove the inclusion

E(T + N) C n%(T + N). (2.2)

Let A € E(T + N) be arbitrary given. There is no harm if we assume A = 0.
Clearly, 0 € isoo(T + N) = isoo(T). Let s € IN be such that N° = 0. If x €
ker(T + N), then

T°x = (—1)°T°x =0,
then ker(T + N) C ker(T®). Since by assumption a(T + N) > 0 it then follows
that #(T°) > 0 and this is obviously implies that a(T) > 0. Therefore, 0 € E(T)
and consequently E(T + N) C E(T). Now, since T € g}V we have

E(T) = n(T) C n°(T).

The inclusion 2.2 will be then proved if we show that (T + N) = 7?(T). But
this is immediate, since 0, (T + N) = 0,(T) and o p(T+ N) = TspE- (T+N),so
the proof is achieved. n

Recall that T € B(H) is said to be a Riesz operator if T — AI is a Fredholm op-
erator for all A # 0. Evidently, quasi-nilpotent operators and compact operators
are Riesz operators. A bounded operator T € B(#H) is said to be finite-isoloid if
every isolated spectral point is an eigenvalue having finite multiplicity.

Theorem 2.17. Suppose that T € B(X') and Q is a quasi-nilpotent operator that com-
mutes with T. Then

Ospr (T +Q) = ogpp(T).
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Proof. Itis well known thatif T € SBF, (X') and K is a Riesz operator commuting
with T, then T + AK € SBF, (X) forall A € C. Suppose that A ¢ TSBF; (T). There

is no harm if we suppose that A = 0. Then T € SBF_ (X) and hence T + uQ €
SBF, (X) forall u € C.Clearly, T and T 4 Q belong to the same component of the
open set SBF; (X)), so ind(T) = ind(T + Q) < 0, and hence 0 ¢ ‘TSBF;(T + Q).

This shows ogp E; (T+Q) C og BE (T). By symmetry then

Ospp-(T) = 0gpr (T+Q - Q) S ogpp (T+Q),
so the equality gpp- (T+Q) = TspE; (T) is proved. ]

Theorem 2.18. Suppose that T € B(X) and Q an injective quasi-nilpotent operator
that commutes with T. If T satisfies property (gw), then T + Q satisfies property (gw).

Proof. Since T satisfies property (gw) from Theorem 2.17 we have
7a(T+ Q) \ ogpr (T + Q) = 0a(T) \ 0gpp_(T) = E(T). (2.3)
To show property (gw) for T + Q it suffices to prove that
E(T) = E(T+Q) = @.

Suppose that E(T) # @ and let A € E(T). From Equation 2.3 we know that
T — Al € SBF (X), and hence by Lemma 2.11 of [7] it then follows that a(T —
AI) =0, a contradiction.

To show that E(T + Q) = @. Suppose that E(T + Q) # @ and let A € E(T +
Q). Then a(T + Q — AI) > 0 so there exists x # 0 such that (T + Q — Al)x = 0.
Since Q commutes with T 4+ Q — Al then by Lemma 2.11 of [7] it follows that
a(T + Q — AI) = 0, a contradiction. u

Theorem 2.19. Suppose that T € B(X) is polaroid, N € B(X') a nilpotent operator
commuting with T.

(i) If T has SVEP then T* + N* satisfies property (gw), or equivalently generalized a-
Weyls theorem holds for T* + N*.

(ii) If T* has SVEP then T + N satisfies property (gw), or equivalently generalized
a-Weyls theorem holds for T + N.

Proof. (i) If T has SVEP then T 4+ N has SVED, see Corollary 2.12 of [3]. Moreover,
by Theorem 2.10 of [9] T + N is polaroid. By Theorem 2.10 of [16] it then follows
that property (gw) holds for T* + N*, or equivalently, since T + N has SVEP,
generalized a-Weyls theorem holds for T* + N*.

(ii) If T is polaroid then by Theorem 2.5 of [9] T* is polaroid. Clearly, N* is
nilpotent, since (N*)" = (N")* for some n € IN. Therefore, T* + N* is polaroid,
by Theorem 2.10 of [9]. Since T* + N* has SVEP, by Corollary 2.12 of [3], it
then follows, by Theorem 2.10 of [16], that T + N satisfies property (gw), or
equivalently generalized a-Weyls theorem holds for T + N. n

Theorem 2.20. Suppose that T € B(X) is polaroid, N € B(X') a nilpotent operator
commuting with T. If T* has SVEP and f € Hol(o(T)) then property (gw) holds for
f(T) + N, or equivalently generalized a-Weyls theorem holds for f(T) + N.
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Proof. By Theorem 2.10 of [16], T satisfies property (gw), or equivalently, by
Theorem 2.7 of [16] generalized a-Weyls theorem holds for T. The SVEP for
T* implies that ¢(T) = o,(T), so every isolated point of ¢,(T) is a pole of the
resolvent of T. It follows from [16, Theorem 2.11] that property (gw) holds for
f(T). Finally, by Theorem 2.16 f(T) + N satisfies property (gw). Since f(T*) =
f(T)* has the SVED, see [3, Theorem 2.40], by Theorem 2.7 of [16] it then follows
that property (gw) and generalized a-Weyls theorem are equivalent. m

Remark A. It is somewhat meaningful to ask what we can say about the operators
f(T + N), always under the assumptions of Theorem 2.20. Now, if T is polaroid
then T + N is polaroid, by Theorem 2.10 of [9]. Moreover, by T* + N* = (T + N)*
has SVEP by Corollary 2.12 of [3]. Hence by [16, Thoeorem 2.11] f(T + N)
satisfies property (gw) for every f € Hol (o (T)).

Theorem 2.21. Suppose that isoo,(T) = @. If T satisfies property (gw) and F is a
finite rank operator commuting with T, then T + F satisfies property (gw).

Proof. By Theorem 2.3 T satisfies generalized a-Browder’s theorem, it follows
from [37, Theorem 2.1] that T + F satisfies generalized a-Browder’s theorem. By
Lemma 2.6 of [8], 04(T +F) = 0,(T), by Lemma 2.13 we have n*(T + F) C
E(T +F).

It is easily seen that E(T + F) is empty. Indeed, suppose that E(T + F) # @. Let
A € E(T + F). By assumption A € isoo (T + F) and «(T + F — AI) > 0. Clearly,
A is an isolated of ¢ (T + F) = ¢,(T), and this is impossible since isoc, (T) = @.
Therefore, E(T 4+ F) = (T + F) = @, soby Theorem 2.3 T + F satisfies property

(gw). [

Theorem 2.22. Suppose that T € B(X') is isoloid and F is a finite rank operator com-
muting with T.

()If T* has SVEP and T satisfies property (gw), then T + F satisfies property (gw).
(ii) If T has SVEP and T* satisfies property (gw), then T* + F* satisfies property (gw).

Proof. (i) The SVEP of T* implies that o(T) = o,(T). Since T satisfies property
(gw) then T satisfies generalized Weyl's theorem, so it follows from Lemma 3.2 of
[23] that T is polaroid. By Lemma 2.9 of [23], T + F is polaroid. Since T* + F* =
(T 4+ F)* has SVEP by Theorem 2.14 of [9]. Therefore, property (gw) holds for
T + F by Theorem 2.10 of [16].

(ii)The argument is analogous to that of part (i). The SVEP of T implies that
o(T*) = o,(T*). Since T* satisfies property (gw) then T* satisfies generalized
Weyl’s theorem, so it follows from Lemma 3.2 of [23] that T* is polaroid. By
Lemma 2.9 of [23], T* + F* is polaroid. Since (T + F) has SVEP by Theorem 2.14
of [9]. Therefore, property (gw) holds for = (T + F)* = T* 4+ F* by Theorem
2.10 of [16]. [ |

Theorem 2.23. Suppose that T € B(X) is polaroid and K is a finite rank operator
commuting with T.

(i) If T* has SVEP then f(T) + K satisfies property (gw) for every f € Hol(o(T)).
(ii) If T has SVEP then f(T*) + K* satisfies property (gw) for every f € Hol(c(T)).
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Proof. (i) By [3, Corollary 2.45] the SVEP of T* implies o (T) = 0,(T). Since T is
polaroid, by Theorem 2.11 of [16] it then follows that f(T') has property (gw) for
every f € Hol(c(T)). Now, by Theorem 2.40 of [3] f(T*) = f(T)* has SVEP, so
that, by Theorem 2.7 of [16] generalized a-Weyl’s theorem holds for f(T). Since
f(T) and K commutes, T is a-polaroid, by Theorem 3.2 of [10] and Corollary
3.10 of [23] we then obtain f(T) + K satisfies generalized a-Weyl’s theorem. By
Lemma 2.8 of [8] f(T*) + K* = (f(T) + K)* has SVEP. This implies that property
(gw) and generalized a-Weyl’s theorem for f(T) + K are equivalent, again by
Theorem 2.7 of [16], so the proof is achieved.

(ii) The argument is analogous to that of part (i). Just observe that o (T*) = ¢, (T*)
by [3, Corollary 2.45], so that T* is a-polaroid. Moreover, by Theorem 2.11 of
[16] it then follows that f(T*) has property (gw) for every f € Hol(o(T)). By
Theorem 2.40 of [3] f(T) has SVEP, so that, by Theorem 2.7 of [16] generalized
a-Weyl'’s theorem holds for f(T*). Since f(T*) and K* commutes, by Theorem 3.2
of [10] and Corollary 3.10 of [23] we then obtain f(T) + K satisfies generalized
a-Weyl’s theorem. By Lemma 2.8 of [8] f(T) + K has SVEP, so that property (gw)
and generalized a-Weyl’s theorem for f(T*) 4+ K* are equivalent, by Theorem 2.7
of [16]. [ |

A bounded linear operator T on a Hilbert space H is said to be quasi-class A

if
T*|T?|T > T*|T|T.

The quasi-class A operators were introduced , and their properties were stud-
ied in [34]. (see also [30, 43, 44] ). In particular, it was shown in [34] that
the class of quasi-class A operators contains properly classes of class A and p-
quasihyponormal operators. Quasi-class A operators were independently intro-
duced by Jeon and Kim [34]. They gave an example of a quasi-class A operator
which is not paranormal nor normaloid. Jeon and Kim example show that neither
the class paranormal operators nor the class of quasi-class A contains the other. A
bounded operator T € B(X) is said to be algebraically quasi-class A if there exists
a non-trivial polynomial & such that i(T) is quasi-class A, see [17]. Itis shown in
[17] operators of algebraically quasi-class A are polaroid and has SVEP.

Corollary 2.24. Suppose that T € B(H), H is a Hilbert space and K is a finite rank
operator commuting with T.

(i) If T* is an algebraically quasi-class A then f(T) + K satisfies property (gw ) for every
f € Hol(o(T)).

(i) If T is an algebraically quasi-class A then f(T*) + K* satisfies property (gw) for
every f € Hol(c(T)).

In general, property (gw) is not transmitted under commuting finite rank per-
turbation.

Example 2.25. Let S : /2 — (2 be an injective quasinilpotent operator which is
not nilpotent and let U : 2 — (2 be defined by U(x1,xp,---) := (=x1,0,---),
xy € £?(IN). Define on X := ¢? @ (? the operators T and K by T := [ & S where I
is the identity on /2 and K := U & 0.

It is easily that o(T) = {0,1} ,E(T) = {1} and 0p,(T) = {0} . Hence T satisfies
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generalized Weyl’s theorem. Now K is finite rank operator and TK = KT, and
since T* has a finite spectrum then T* has SVEP and consequently property (gw)
holds for T. Moreover, o(T + K) = {0,1} and E(T + K) = {0,1}. As 0p(T +
K) = 0p»(T) = {0}, Then T + K does not satisfy generalized Weyl’s theorem
and hence T + K does not has the property (gw) by Theorem 2.7 of [16].

Example 2.26. This example shows that the commutativity hypothesis in Theo-
rem 2.18 is essential. Let ¥ = ¢?(IN) and T and F be defined by

X1 X
T(x1,%2, ) = (0, 71 32 ), {xn} € A(N)
and
L —X1 2
F(xl,xp_,---).— (O,T,O,"'), {xn}eﬁ (N)

Clearly, F is a nilpotent operator and hence of finite rank operator, and T is a
quasi-nilpotent satisfying generalized Weyl’s theorem since ¢ (T) = op,(T) =
{0} and E(T) = @. Now T and F do not commute, (T + F) = ow(T + F) =
Eo(T+F) = {0}, and T + F does not satisfy Weyl’s theorem. So T + F ¢ ¢W and
hence T + F does not satisfy property (gw).

The basic role of SVEP arises in local spectral theory since for all decompos-
able operators both T and T* have SVEP. Every generalized scalar operator on a
Banach space is decomposable (see [39] for relevant definitions and results). In
particular, every spectral operators of finite type is decomposable.

Corollary 2.27. Suppose that T € B(X) is generalized scalar and K is a finite rank
operator commuting with T. Then property (gw) holds for both f(T) + K and f(T*) +
K*. In particular, this is true for every spectral operator of finite type.

Proof. Both T and T* have SVEP. Moreover, every generalized scalar operator is
polaroid. The second statement is clear: every spectral operators of finite type is
generalized scalar. m

Recall that a bounded operator T is said to be algebraic if there exists a non-
trivial polynomial % such that #(T) = 0. From the spectral mapping theorem it
easily follows that the spectrum of an algebraic operator is a finite set. A nilpotent
operator is a trivial example of an algebraic operator. Also finite rank operators K
are algebraic; more generally, if K" is a finite rank operator for some n € IN then
K is algebraic. Clearly, if T is algebraic then its dual T* is algebraic.

Theorem 2.28. Suppose that T € B(X) and K € B(X) is an algebraic operator com-
muting with T .

(1) If T € P(X) then property (gw) holds for T* 4+ K*.

(ii) If T* € P(X) then property (gw) holds for T + K.

Proof. (i) If T € P(X) then T has SVEP and hence T + K has SVEP by Theorem
2.14 of [9]. Moreover, T is polaroid so also T + K is polaroid by Theorem 2.14 of
[9]. By Theorem 2.10 of [16], then property (gw) holds for T* + K*.

(ii) If T* € P(X) then T* has SVEP and hence T* + K* has SVEP by Theorem 2.14
of [9]. Moreover, T* is polaroid so also T* + K* is polaroid by Theorem 2.14 of
[9]. By Theorem 2.10 of [16], then property (gw) holds for T + K. [



Property (gw) and perturbations 651

A bounded linear operator T on a Banach space X is said to be paranormal if
ITx|? < HTZxH |x|| holds for all x € X.

The class of paranormal operators properly contains a relevant number of
Hilbert space operators, among them p-hyponormal operators, log-hyponormal
operators, and the class A operators. Note that, in general, paranormal operators
do not satisfy property H(p), see [13] for a counter-example. A bounded op-
erator T € B(X') is said to be algebraically paranormal if there exists a non-trivial
polynomial % such that i(T) is paranormal. Note that every paranormal opera-
tor on a Hilbert space H has SVED, see [9, Page 1799]. Moreover, algebraically
paranormal operators are polaroid.

Corollary 2.29. Suppose that T € B(H), H is a Hilbert space and K € B(X) is an
algebraic operator commuting with T .

() If T is algebraically paranormal then property (gw) holds for T* 4+ K*.

(i) If T* is algebraically paranormal then property (gw) holds for T + K.

Proof. Proceed as in the proof of Theorem 2.28. ]
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