Translator Disclaimer
December 2009 The Fermat cubic and special Hurwitz loci in $\overline{\mathcal{M}}_g$
Gavril Farkas
Bull. Belg. Math. Soc. Simon Stevin 16(5): 831-851 (December 2009). DOI: 10.36045/bbms/1260369402

Abstract

We compute the class of the compactified Hurwitz divisor $\overline{\mathfrak{TR}}_d$ in $\overline{\mathcal{M}}_{2d-3}$ consisting of curves of genus $g=2d-3$ having a pencil $\mathfrak g^1_d$ with two unspecified triple ramification points. This is the first explicit example of a geometric divisor on $\overline{\mathcal{M}}_g$ which is not pulled-back form the moduli space of pseudo-stable curves. We show that the intersection of $\overline{\mathfrak{TR}}_d$ with the boundary divisor $\Delta_1$ in $\overline{\mathcal{M}}_g$ picks-up the locus of Fermat cubic tails.

Citation

Download Citation

Gavril Farkas. "The Fermat cubic and special Hurwitz loci in $\overline{\mathcal{M}}_g$." Bull. Belg. Math. Soc. Simon Stevin 16 (5) 831 - 851, December 2009. https://doi.org/10.36045/bbms/1260369402

Information

Published: December 2009
First available in Project Euclid: 9 December 2009

zbMATH: 1184.14041
MathSciNet: MR2574363
Digital Object Identifier: 10.36045/bbms/1260369402

Subjects:
Primary: 14H10

Rights: Copyright © 2009 The Belgian Mathematical Society

JOURNAL ARTICLE
21 PAGES


SHARE
Vol.16 • No. 5 • December 2009
Back to Top