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Abstract

Let (R, m, k) be a commutative Noetherian local ring. It is well-known
that R is regular if and only if the flat dimension of k is finite. In this paper,
we show that R is Gorenstein if and only if the Gorenstein flat dimension of
k is finite. Also, we will show that if R is a Cohen-Macaulay ring and M is
a Tor-finite R-module of finite Gorenstein flat dimension, then the depth of
the ring is equal to the sum of the Gorenstein flat dimension and Ext-depth
of M. As a consequence, we get that this formula holds for every syzygy of
a finitely generated R-module over a Gorenstein local ring.

1 Introduction

Throughout this paper, we assume that R is a commutative Noetherian ring
with non-zero identity. In [16], Sharif and Yassemi have introduced Tor-finite
R-modules. The R-module M is called Tor-finite if for any finitely generated

R-module N, each TorR
i (N, M) for all i ≥ 1 is finitely generated. Obviously every

finitely generated R-module is Tor-finite and it is easy to see that every syzygy
of a Tor-finite module is also Tor-finite. Enochs, Jenda and Torrecillas [9] defined
and studied Gorenstein flat modules. Now recall that an R-module M is said to
be Gorenstein flat if there exists an exact sequence

. . . −→ F1 −→ F0 −→ F0 −→ F1 −→ . . .
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of flat R-modules with M = ker(F0 −→ F1) such that for any injective R-module
E, E ⊗R − leaves the sequence exact. We say that an R-module M has Gorenstein
flat dimension at most t, denoted Gfd M ≤ t, if there is an exact sequence

0 −→ Tt −→ Tt−1 −→ . . . −→ T1 −→ T0 −→ M −→ 0

with each Ti Gorenstein flat. If there is no shorter such sequence, we set Gfd M =
t. Also, if there is no such a t, we set Gfd M = ∞. We note that the notion of
Gorenstein flat generalizes flat and so Gorenstein flat dimension generalizes flat
dimension.
We start in section 2 by studying the Gorenstein flat, Gorenstein flat dimension,
cotorsion and cotorsion flat modules. Recall that an R-module C is called cotor-
sion if Ext1

R(F, C) = 0 for all flat modules F. If F is flat and cotorsion, then it
was proved in [6] that F can be written uniquely in the form F ∼= ⊓p∈Spec(R)Tp,

where Tp
∼= HomR(E(R/p), E(R/p)(X)) for some set X. This result is similar to

the Matlis theorem for injective modules. Also, we characterize the Gorenstein
local rings by Gorenstein flat dimension of modules. We then proceed in section
3 to study Tor-finite Gorenstein flat R-modules and we show that if (R, m, k) is
a Cohen-Macaulay local ring and M is a non-flat Tor-finite R-module, then M
Gorenstein flat implies that Ext-depth M = depth R ( see Proposition 3.5), where

Ext-depth(M) = inf{i : Exti
R(k, M) 6= 0}. Ext-depth is called E-depth in [ 17,

Definition 5.3.6]. Also, by the above hypothesis we prove that if Gfd M < ∞,
then Gfd M + Ext-depth M = depth R. This result is an improvement of the
Auslander-Bridger formula ( see [1]). To obtain these results, we will repetitively
make use of the following. If (R, m, k) is a local ring and x ∈ m is an R-regular ele-

ment, then we have an exact sequence 0 −→ TorR
1 (R/xR, M) −→ M

x
−→ M −→

M/xM −→ 0. If M is a Gorenstein flat R-module, then TorR
1 (R/xR, M) = 0 since

fd R/xR ≤ 1 (see [4, Lemma 3.3]). So if x is R-regular, then x is M-regular for any
Gorenstein flat module.

2 Gorenstein flat dimension

We start this section with the following lemma.

Lemma 2.1. Let M be an R-module with finite Gorenstein flat dimension. Then the
following are equivalent:
(i) M is Gorenstein flat;

(ii) Exti
R(M, F) = 0 for all cotorsion flat modules F and all i ≥ 1;

(iii) Ext1
R(M, F) = 0 for all cotorsion flat modules F;

(iv) Exti
R(M, L) = 0 for all cotorsion modules L with finite flat dimension and all i ≥ 1.

Proof. (i) =⇒ (ii). Let F be a cotorsion flat module. Then F is a summand of
a module HomR(E, E′) where E and E′ are injective ( see [6, Lemma 2.3]). Hence

it is enough to prove that Exti
R(M, HomR(E, E′)) = 0 for all i ≥ 1. By the follow-

ing isomorphisms Exti
R(M, HomR(E, E′)) ∼= HomR(TorR

i (M, E), E′) and by using

[12, Theorem 3.6], we have Exti
R(M, HomR(E, E′)) = 0 for all i ≥ 1.

(ii) =⇒ (iii) is trivial.
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(iii) =⇒ (i). Let I = HomZ(R, Q/Z). Then I is injective cogenerator for all R-
modules and hence, by [6, Lemma 2.1], HomR(E, I) is a cotorsion flat module for

all injective R-modules E. Therefore, by the isomorphism Ext1
R(M, HomR(E, I)) ∼=

HomR(TorR
1 (M, E), I), we have TorR

1 (M, E) = 0 for all injective R-modules E.
Hence, by [12, Theorem 3.14], M is Gorenstein flat.
(iv) =⇒ (ii) is trivial.
(ii) =⇒ (iv). Let L be a cotorsion module with fd L = n. We use induction on n.
If n = 0, then L is cotorsion flat and there is nothing to prove. Now, we assume
that fd L = n > 0. Let F be a flat cover of L with kernel K such that F is flat and
cotorsion ( see [6, Corollary 2.2]). Then, by the exact sequence

0 −→ K −→ F −→ L −→ 0

where K is cotorsion and of flat dimension n − 1, we have the following exact
sequence

Exti
R(M, K) −→ Exti

R(M, F) −→ Exti
R(M, L) −→ Exti+1

R (M, K)

for all i ≥ 1. Hence, by induction hypothesis, Exti
R(M, L) = 0 for all i ≥ 1.

Theorem 2.2. Let M be an R-module with finite Gorenstein flat dimension. Let n be a
non-negative integer. Then the following are equivalent:
(i) Gfd M ≤ n;
(ii) Exti

R(M, L) = 0 for all i > n and all cotorsion modules L with finite flat dimension;

(iii) Exti
R(M, F) = 0 for all i > n and all cotorsion flat R-modules F;

(iv) Extn+1
R (M, F) = 0 for all cotorsion flat R-modules F.

Proof. (i) =⇒ (ii). By [12, Theorem 3.14], we have the following exact se-
quence

0 −→ Kn −→ Gn−1 −→ . . . −→ G1 −→ G0 −→ M −→ 0

such that G0, . . . , Gn−1 and Kn are Gorenstein flats. By Lemma 2.1, it is easy to see

that Exti
R(M, L) ∼= Ext1

R(Kn, L) = 0 for all i > n.
(ii) =⇒ (iii) and (iii) =⇒ (iv) are trivial.
(iv) =⇒ (i) follows by [12, Theorem 3.14] and by using the same proof as Lemma
2.1((iii) =⇒ (i)).

Corollary 2.3. Let (R, m, k) be a local ring. Let M be an R-module of finite Gorenstein

flat dimension such that Exti
R(M, Tp) = 0 for all i ≥ 1 and all p ∈ Spec(R) \ {m}.

Then
Gfd M = sup{i : Exti

R(M, Tm) 6= 0}.

Proof. Let Gfd M = t and Kt be a t-th syzygy of M. Hence Kt is Gorenstein flat

and so Exti
R(M, Tm) ∼= Exti−t

R (Kt, Tm) = 0 for all i > t. It therefore follows that

sup{i : Exti
R(M, Tm) 6= 0} ≤ t. We shall prove the assertion of the corollary by

assuming that sup{i : Exti
R(M, Tm) 6= 0} < t and deriving a contradiction. Let

Kt−1 be a (t − 1)-th syzygy of M. Then Exti
R(Kt−1, Tm) ∼= Ext

i+(t−1)
R (M, Tm) = 0

for all i ≥ 1. Since Exti
R(Kt−1, F) = 0 for all i ≥ 1 and all cotorsion flat modules F

and Kt−1 has finite Gorenstein flat dimension, we have Kt−1 Gorenstein flat and
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so Gfd M ≤ t − 1. But this contradicts with Gfd M = t, and so we must have
sup{i : Exti

R(M, Tm) 6= 0} = t.
The following theorem is an improvement of [3, Theorem 5.2.10].

Theorem 2.4. Let (R, m, k) be a local ring. Then the following are equivalent:
(i) R is Gorenstein;
(ii) Gfd k is finite;
(iii) Gfd M is finite for any finitely generated R-module M;
(iv) Gfd M is finite for any R-module M.

Proof. (iv) =⇒ (iii) and (iii) =⇒ (ii) are trivial.
(ii) =⇒ (i). Let t ≥ 0. One has the following isomorphism

TorR
t (k, E(k)) ∼= TorR

t (k, D D(E(k))) ∼= D(Extt
R(k, D(E(k))) ∼= D(Extt

R̂
(k, R̂)),

where R̂ is the completion of R in m-adic topology and D(−) = HomR(−, E(k)).
Now, by using [5, P. 178], we have idR̂ R̂ = Gfd k < ∞. Hence R̂ and so R are
Gorenstein.
(i) =⇒ (iv) follows from [3, Theorem 5.2.10].

In the following theorem we use the notion of Gorenstein injective dimension
and the notion of Gorenstein projective dimension. The reader is referred to [8]
for more results in this direction.

Theorem 2.5. Let R be a ring. Then the following are equivalent:
(i) R is n-Gorenstein;
(ii) Gid M ≤ n for all R-modules M;
(iii) Gfd M ≤ n for all R-modules M;
(iv) Gfd M ≤ n for all finitely generated R-modules M;
(v) Gpd M ≤ n for all R-modules M;
(vi) Gpd M ≤ n for all finitely generated R-modules M.

Proof. (i) =⇒ (ii). Let R be n-Gorenstein. Then, by [8, Theorem 10.1.13],
Gid M ≤ n for all R-modules M.
(ii) =⇒ (i) follows by [13, Theorem 2.1].
(iii) =⇒ (iv) and (v) =⇒ (vi) are trivial.
(iii) ⇐⇒ (v) and (iv) ⇐⇒ (vi) conclude by [11, Theorem B].
(i) =⇒ (iii) follows by [8, Theorem 10.3.13].
(iii) =⇒ (ii). By [11, Theorem B], [13, Theorem 2.6] and [12, Theorem 2.28] we
have fd E(R/m) ≤ n for every maximal ideal m of R. Then by [19, Theorem 5.1.2]
and [8, Theorem 10.1.13] the result follows.
(iv) =⇒ (i). Let Gfd M ≤ n for all finitely generated modules M. Then, by [3,
Lemma 5.1.3], Gfd Mp ≤ n for all p ∈ Spec(R) and all finitely generated modules
M. Hence, by Theorem 2.4, Rp and so R are n-Gorenstein.
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3 Gorenstein flat dimension and Ext-depth

Lemma 3.1. Let (R, m, k) be a local ring and let x be an R-regular element of m. If M is
a Gorenstein flat R-module, then M/xM is a Gorenstein flat R/xR-module.

Proof. Set R̄ = R/xR and X̄ = X ⊗R R̄. Let

. . . −→ F1 −→ F0 −→ F0 −→ F1 −→ . . .

be a complete flat resolution of M. Then, by [4, Lemma 3.3],

. . . −→ F̄1 −→ F̄0 −→ F̄0 −→ F̄1 −→ . . .

is a complete flat resolution of the R̄-module M̄ since fd R̄ ≤ 1. We only need
to show that this sequence exact when E ⊗R̄ − is applied to it for any injective
R̄-module E. But E ⊗R̄ F̄ ∼= E ⊗R F and idR(E) = 1 by [18, Exercise 4.3.3]. So, by
[4, Lemma 3.3], the result follows.

Lemma 3.2. Let (R, m, k) be a local ring and let M be a Tor-finite R-module. Then
fd M = sup{i : TorR

i (k, M) 6= 0}.

Proof. This is clear by [16, Theorem 2.6 and Proposition 2.5].

Lemma 3.3. Let (R, m, k) be a local ring and let M be a Tor-finite R-module of finite flat
dimension. Then fd M ≤ depth R.

Proof. We can assume that fd M = t ≥ 1. So, by Lemma 3.2, TorR
t (k, M) 6=

0. Now, we assume that x1, . . . , xn ∈ m be a maximal R-sequence. Then m ∈
Ass(R/(x1 , . . . , xn)R) and so by the exact sequence

0 −→ k −→ R/(x1, . . . , xn)R,

we have the exact sequence

0 −→ TorR
t (k, M) −→ TorR

t (R/(x1 , . . . , xn)R, M).

It therefore follows that TorR
t (R/(x1 , . . . , xn)R, M) 6= 0. On the other hand

fd R/(x1, . . . , xn)R = n. Then n ≥ t and the result follows.

Theorem 3.4. Let (R, m, k) be a local ring and let M be a Tor-finite R-module. Then
Ext-depth M ≤ dim R.

Proof. Tor-depth M ≤ dim R by Lemma 3.3 and [16, Lemma 2.4]. Hence, by
[17, Corollary 6.1.10], the result follows.

Proposition 3.5. Let (R, m, k) be a Cohen-Macaulay local ring and let M be a Tor-finite
Gorenstein flat R-module. Then Ext-depth M = depth R.

Proof. Let depth R = n. If n = 0, then the maximal ideal m is nilpotent and
since Ass(0 :M m) = Ass(0 :M mt) for all t ≥ 1 we have HomR(R/m, M) 6=
0. Hence Ext-depth M = 0. Now, suppose that n ≥ 1. Then there exists an
R-regular element x ∈ m. By Lemma 3.1 and [14, P.140] M/xM is a Tor-finite
Gorenstein flat R/xR-module. But R/xR is a Cohen-Macaulay ring of dimension
n − 1. Hence, by induction hypothesis, Ext-depthR/xR(M/xM) = n − 1. Since
x is a non-zero divisor on M, then Ext-depthR/xR(M/xM) = Ext-depth(M) − 1.
Therefore Ext-depth(M) = n, as required.

The following result is a dual of [7, Theorem 4.8].
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Theorem 3.6. Let (R, m, k) be a Cohen-Macaulay local ring and let M be a non-flat
Tor-finite R-module. If M is of finite Gorenstein flat dimension, then

Gfd M + Ext-depth M = depth R.

Proof. We proceed by induction on n = depth R. If n = 0, then R is com-
plete and by [3, Corollary 5.2.15] Gfd M = 0 and Ext-depth M = 0 by Propo-
sition 3.5. Now, suppose that n ≥ 1. Then there exists an R-regular element
x ∈ m. By [14, P.140] and [15, Theorem 3.11] M/xM is a Tor-finite R/xR-module
of finite Gorenstein flat dimension. Also, R/xR is Cohen-Macaulay ring of di-
mension n − 1. Now, by induction hypothesis, we have GfdR/xR(M/xM) +
Ext-depthR/xR(M/xM) = depth R/xR. By using [15, Theorem 3.11] and [14,
P.140], we have Gfd M + Ext-depth M = depth R, as required.

Proposition 3.7. Let (R, m, k) be a local ring and let M be a cotorsion flat R-module.
Then Ext-depth M < ∞ if and only if Tm is a summand of M. In this case, Ext-depth M =
depth R.

Proof. Since M is cotorsion flat, then we have M ∼= ⊓p∈Spec(R)Tp in which

Tp
∼= HomR(E(R/p), E(R/p)(X)) for some set X. Hence, by [2, Theorem 3],

Exti
R(k, M) ∼= Exti

R(k,⊓p∈Spec(R)Tp) ∼= ⊓p∈Spec(R) Exti
R(k, Tp)

∼= ⊓p∈Spec(R) Exti
R(k, HomR(E(R/p), E(R/p)(X)))

∼= ⊓p∈Spec(R) HomR(TorR
i (k, E(R/p)), E(R/p)(X)).

On the other hand, if p 6= m, then TorR
i (k, E(R/p)) = 0 for all i ≥ 0. It therefore

follows Exti
R(k, M) ∼= ⊓p∈Spec(R) Exti

R(k, R̂(X)) and so if Tm is a summand of M,

then Ext-depth M = depth R̂(X) = depth R̂ = depth R. If Tm is not a summand of

M, then Exti
R(k, M) = 0 for all i ≥ 0 and so Ext-depth M is infinite.

Theorem 3.8. Let (R, m, k) be a Cohen-Macaulay local ring and let M be a syzygy of
finitely generated R-module N. If M is of finite Gorenstein flat dimension, then

Gfd M + Ext-depth M = depth R.

Proof. It is easy to see that M is Tor-finite and so by Theorem 3.6 the result
follows.

Theorem 3.9. Let (R, m, k) be a Gorenstein local ring and let M be a syzygy of a finitely
generated R-module N. Then

Gfd M + Ext-depth M = depth R.

Proof. This is immediate by Theorems 2.4 and 3.8.
It is a natural to ask ”is there a non-flat and a non-finitely generated Tor-finite

module?” The answer is positive:

Example 3.10. Let (R, m) be a local Gorenstein integral domain with dim R = 1.

Set M = E(R/m). TorR
1 (R/p, M) = 0 for all p ∈ Spec(R) with p 6= m and

TorR
1 (R/m, M) is finitely generated and hence by [16, Lemma 2.1] M is Tor-finite.

Whereas M is not finitely generated and not flat since fd(M) = 1 by [8, P. 238].
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