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Abstract

D. K. Biss (Topology and its Applications 124 (2002) 355-371) introduced
the topological fundamental group and presented some interesting basic prop-
erties of the notion. In this article we intend to extend the above notion to
homotopy groups and try to prove some similar basic properties of the topo-
logical homotopy groups. We also study more on the topology of the topolog-
ical homotopy groups in order to find necessary and sufficient conditions for
which the topology is discrete. Moreover, we show that studying topological
homotopy groups may be more useful than topological fundamental groups.

1 Introduction and Motivation

Historically, J. Dugundji [3] in 1950, put, for the first time, a topology on funda-
mental groups of certain spaces and deduced a classification theorem for connected
covers of a space.

Recently, Biss [1] generalized the results announced by J. Dugundji. He equipped
the fundamental group of a pointed space (X, x) with the quotient topology inherited
from Hom((S1, 1), (X, x)) with compact-open topology and denoted by πtop1 (X, x).
He proved among other things that πtop1 (X, x) is a topological group which is in-
dependent of the base point in path components and πtop1 is a functor from the
homotopy category of based spaces to the category of topological groups which pre-
serves the direct product. He showed that πtop1 is discrete if and only if the space
X is semilocally simply connected. However, P. Fabel [5] mentioned that path con-
nectedness and locally path connectedness of X is necessary.
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P. Fabel [4], using Biss’ results, showed that the topological fundamental groups
can distinguish the homotopy type of topological spaces when the algebraic struc-
tures fail to do. On the other hand, in some cases, this topology does not be able
to separate spaces in terms of their homotopy types. For examples, if X is locally
contractible, then πtop1 (X) is discrete which is not interesting. In these situations
the higher homotopy groups seems to be useful and this is a motivation to define a
natural topology on homotopy groups of X. This topology, if it is compatible with
the topology of fundamental groups, can also distinguish the spaces with distinct
homotopy types even though the topology of their topological fundamental groups
are the same.

In this article, we are going to extend some basic results of Biss by introducing
a topology on nth homotopy group of a pointed space (X, x) as a quotient space
of Hom((In, İn), (X, x)) equipped with compact-open topology and denote it by
πtopn (X, x). We will show that πtopn (X, x) is a topological group which does not
depend on based point x in a path component. We will also prove that πtopn is a
functor from the homotopy category of pointed spaces to the category of topological
groups which preserves the direct product. Moreover, we present the notion of an
n-semilocally simply connected space and prove that the discreteness of πtopn (X, x)
implies that X is n-semilocally simply connected. By giving an example, it is shown
that the converse is not true, in general. However, we show that the nth homotopy
group of a locally n-connected metrizable space X is discrete.

Fabel in [5], clarified the relationship between the cardinality of π1(X, x) and
discreteness of πtop1 (X, x) and deduced that if X is a connected separable metric
space and πtop1 (X, x) is discrete, then π1(X, x) is countable. Here, we extend this
result to higher homotopy groups and show that the nth homotopy group of a
connected, locally n-connected separable metric space is countable. Finally, we give
an example of a metric space X such that πtop1 (X) is discrete whereas πtop2 (X) is
not. This shows that studying topological homotopy groups may be more useful
than topological fundamental groups.

2 Topological Homotopy Groups

Let (X, x) be a pointed space. Then the space of continuous based maps Hom(
(In, İn), (X, x)) can be given the compact-open topology; this topology has as a
subbase the sets 〈K,U〉 = {f : (In, İn) → (X, x)|f(K) ⊆ U}, where K ranges over
all compact subsets of In and U ranges over all open subsets of X. By considering
the natural projection

Hom((In, İn), (X, x))
pn

։ [(In, İn), (X, x)] = πn(X, x),

we are allowed to define a quotient topology on πn(X, x). By πtopn (X, x) we mean
the topological space πn(X, x) equipped with the above topology. In the following,
we are going to prove several basic properties of this topology.
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Theorem 2.1. Let (X, x) be a pointed space. Then πtopn (X, x) is a topological group
for all n ≥ 1.

Proof. In order to show that the multiplication is continuous, we consider the fol-
lowing commutative diagram

Hom((In, İn), (X, x)) ×Hom((In, İn), (X, x))
m̃n //

pn×pn

��

Hom((In, İn), (X, x))

pn

��

πtopn (X, x) × πtopn (X, x)
mn // πtopn (X, x),

where m̃n is concatenation of n-loops, and mn is the multiplication in πn(X, x).
Since (pn × pn)

−1m−1
n (U) = m̃−1

n p−1
n (U) for every open subset U of πtopn (X, x),

it is enough to show that m̃n is continuous. Let 〈K,U〉 be a basis element in
Hom((In, İn), (X, x)). Put

K1 = {(t1, . . . , tn)|(t1, . . . , tn−1,
tn
2

) ∈ K}

and

K2 = {(t1, . . . , tn)|(t1, . . . , tn−1,
tn + 1

2
) ∈ K}.

Then
m̃−1
n (〈K,U〉) = {(f1, f2)|(f1 ∗ f2)(K) ⊆ U} = 〈K1, U〉 × 〈K2, U〉

is open in Hom((In, İn), (X, x)) × Hom((In, İn), (X, x)) and so m̃n is continuous.
To prove that the operation of taking inverse is continuous, let K be any compact
subset of In and put

K−1 = {(t1, . . . , tn−1, 1 − tn)|(t1, . . . , tn) ∈ K}.

Clearly an n-loop α is in ∩mi=1〈Ki, Ui〉 if and only if its inverse is in ∩mi=1〈K
−1
i , Ui〉,

where 〈Ki, Ui〉 are basis elements in Hom((In, İn), (X, x)). Hence the inverse map
is continuous.

From now on, when we are dealing with πtopn , by the notion ∼= we mean the
isomorphism in the sense of topological groups. The following result shows that the
topological group πtopn is independent of the base point x in the path component.

Theorem 2.2. Let γ : I → X be a path with γ(0) = x and γ(1) = y. Then
πtopn (X, x) ∼= πtopn (X, y).

Proof. Let α be a base n-loop at x in X. Define the following map

Aα : In × {0} ∪ İn × [0, 1] → X

by Aα(s, 0) = α(s) for all s ∈ In and Aα(s, t) = γ−1(t) for all (s, t) ∈ İn × [0, 1]. By
gluing lemma Aα is a continuous map. Now, we define

γ# : πtopn (X, x) −→ πtopn (X, y)
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by [α] 7−→ [Aα◦r(−, 1)], where r : In×[0, 1] → In×[0, 1]∪ İn×[0, 1] is the retraction
introduced in [7]. It can be shown that γ# is a group isomorphism (see [7]). Now, it
is enough to show that γ# is a homeomorphism. To prove γ# is continuous, consider
the following commutative diagram

Hom((In, İn), (X, x))
γ̃

//

pn

��

Hom((In, İn), (X, y))

pn

��

πtopn (X, x)
γ#

// πtopn (X, y),

where γ̃(α) = Aα ◦ r(−, 1) for all based n-loop α at x in X. For all basis elements
〈K,U〉 of Hom((In, İn), (X, x)) we have

γ̃(〈K,U〉) = {γ̃| α : (In, İn) → (X, x), α(K) ⊆ U}

= {Aα ◦ r(−, 1)| α : (In, İn) → (X, x), α(K) ⊆ U}

⊆ {β| β : (In, İn) → (X, y), β(K) ⊆ U}

= 〈K,U〉.

Hence γ̃ is continuous and so is γ#. It is easy to see that (γ−1)# is the inverse of γ#

and continuous. So the result holds.

It is known that πn is a functor from the homotopy category of based spaces to
the category of groups. So it is natural to ask whether πtopn is a functor. Suppose
f : (X, x) → (Y, y) is a pointed continuous map. It is enough to show that the
induced homomorphism f∗ : πtopn (X, x) → πtopn (Y, y) is continuous. Consider the
following commutative diagram

Hom((In, İn), (X, x))
f#

//

pn

��

Hom((In, İn), (X, y))

pn

��

πtopn (X, x)
f∗

// πtopn (X, y),

where f#(α) = f ◦ α. Clearly f−1
# (〈K,U〉) = 〈K, f−1(U)〉 for all basis elements

〈K,U〉 in Hom((In, İn), (X, x)). Since f is continuous, so are f# and f∗. Hence
we can consider πtopn as a functor from hTop∗ to the category of topological groups.
Now, we intend to show that the functor πtopn preserves the direct product of spaces.

Theorem 2.3. Let {(Xi, xi)|i ∈ I} be a family of pointed spaces. Then

πtopn (
∏

i∈I

(Xi, xi)) ∼=
∏

i∈I

πtopn (Xi, xi).

Proof. Consider the commutative diagram

M =
∏
i∈I Hom((In, İn), (Xi, xi)) //

Q=Πi∈Ip
i
n

��

Hom((In, İn), (Xi, xi))
ψ

oo

pn

��

N =
∏
i∈I π

top
n (Xi, xi) // πtopn (

∏
i∈I(Xi, xi)) ,

ϕ
oo
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where ψ and ϕ are natural homomorphism and isomorphism, respectively (see [8]).
To show that ϕ is a homeomorphism, it is enough to show that Q is a quotient map.
Let Q−1(U) be an open subset of M for some subset U of N . By product topology
of M , Q−1(U) is the union of basic opens of the form

∏
i∈I Vi, where Vi’s are open in

Hom((In, İn), (Xi, xi)) and Vi = Hom((In, İn), (Xi, xi)) for all i /∈ J , for some finite
subset J of I. Suppose V =

∏
i∈J V

′

i is a maximal open set having the property that
W = V ×

∏
i/∈J Hom((In, İn), (Xi, xi)) is a subset of Q−1(U). Since W is open and

maximal, it is of the form Q−1 (
∏
i∈I Ui), where

∏
i∈I Ui is a basic open in N . Since

Q−1(U) is constructed with open sets like the above, we have covered U with open
sets and so U is open.

3 The Topology of πtopn (X)

In this section, we are going to study more on the topology of πtopn (X), specially we
intend to find necessary and sufficient conditions for which πtopn (X) is discrete.

Definition 3.1. A topological space X is called n-semilocally simply connected if
for each x ∈ X there exists an open neighborhood U of x for which any n-loop in U
is nullhomotopic in X. In other words the induced homomorphism of the inclusion
i∗ : πn(U, x) → πn(X, x) is zero.

Theorem 3.2. If πtopn (X) is discrete, then X is n-semilocally simply connected.

Proof. For each x ∈ X, since πtopn (X, x) is discrete, there exists an open neighbor-
hood W in Hom((In, İn), (X, x)) of the constant n-loop at x such that each element
of W is homotopic to the constant loop at x. By compact-open topology, we can
consider W as ∩mi=1〈Ki, Ui〉, where Ki’s are compact subsets of In and Ui’s are open
in X. Consider U = ∩mi=1Ui as a nonempty open neighborhood, then 〈In, U〉 ⊆ W .
Therefore any n-loop in U at x belongs to W and so is nullhomotopic in X. Hence
X is n-semilocally simply connected.

Note that the following examples show the inverse of Theorem 3.2 is not true,
in general. In both of them, we use the fact that the compact-open topology on
Hom((I2, İ2), (X, 0)) is equivalent to the uniformly convergence topology when X
is a metric space [6].

Example 3.3. Let X = ∪n∈NSn, where

S1 = {(x, y, z) | (x−
1

2
)2 + y2 + z2 =

1

4
},

Sn = {(x, y, z) | (x−
n− 1

2n
)2 + y2 + z2 = (

n− 1

2n
)2},

for each n ≥ 2. Then {Sn} as a sequence of 2-loops in X at p = (0, 0, 0) uni-
formly converges to S1. Now [S1] is a limit point in πtop2 (X, x), nevertheless X is
2-semilocally simply connected.
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Figure-1

Example 3.4. Let X denotes the following subspace of R
3:

X = [0, 1] × [0, 1] × {0, 1} ∪ [0, 1] × {0, 1} × [0, 1] ∪ {0, 1,
1

2
,
1

3
, . . .} × [0, 1] × [0, 1]

Let p = (0, 0, 0). Consider the following sequence of 2-loops at p

Xn = [0,
1

n
] × [0, 1] × {0, 1} ∪ [0,

1

n
] × {0, 1} × [0, 1] ∪ {

1

n
} × [0, 1] × [0, 1].

Obviously, this sequence is uniformly convergent to the nullhomotopic loop X0 =
{0} × [0, 1] × [0, 1]. Thus πtop2 (X) is not discrete, however one can see that X is 2-
semilocally simply connected. (see Figure-1)

We recall the following definitions in [9].

Definition 3.5. A space X is said to be n-connected for n ≥ 0 if it is path connected
and πk(X, x) is trivial for every base point x ∈ X and 1 ≤ k ≤ n. X is called locally
n-connected if for each x ∈ X and each neighborhood U of x, there is a neighborhood
V ⊆ U ⊆ X containing x so that πk(V ) −→ πk(U) is zero map for all 0 ≤ k ≤ n
and for all basepoint in V .

Theorem 3.6. Let X be a locally n-connected metric space. Then for any x ∈ X,
πtopn (X, x) is discrete.

Proof. We know that πtopn (X, x) is the set of path components of loop space Ωn(X, x)
topologized with the quotient topology under the canonical surjection pn satisfying
pn(f) = pn(g) if and only if the n-loops f and g belong to the same path component
of Ωn(X, x), see[7,Lemma 2.5.5]. To prove πtopn (X, x) is discrete,it is sufficient to
show that the path components of Ωn(X, x) are open. Suppose f ∈ Ωn(X, x) and
fk → f uniformly. We must prove that f and fk are homotopic, for sufficiently large
k.
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Since X is locally n-connected and Im(f) is compact, so there exists ǫ > 0 such
that if x ∈ Im(f) and αx is an m-loop based at x (m ≤ n), with diam(αx) < ǫ,
then αx is null-homotopic.

Since f ∪ {f1, f2, · · · } is an equicontinuous collection of maps and Im(f) and
Im(fk)’s are compact, then for the ǫ as above, there exists δ > 0 such that each
subcube Ĩ ⊆ In with diam(Ĩ) < δ, the images f(Ĩ) and fk(Ĩ)’s have diameters less
than ǫ. Take a partition {In1 , · · · , I

n
l } of In, with diam(Ini ) < δ, i = 1, · · · , l, then

diam(f(Ini )) < ǫ and diam(fk(I
n
i )) < ǫ.

Let vij , j = 1, ..., 2n be the vertices of Ini . First, by local path connectivity of X,
we can connect the vertices f(vij) and fk(v

i
j) by small path, for each i = 1, ..., l and

j = 1, ..., 2n and sufficiently large k. The boundary of the rectangles with corners
f(vij) and fk(v

i
j) induce 1-loops which are homotopic to the constant loop. By local

n-connectivity of X, we can fill in the homotopy across the sides of these rectangles.
Similarly and by induction on k, we construct inessentials k-loops for each k ≤ n
and then again fill in the homotopy across the sides of induced k-rectangles. In this
way, in the nth step, we obtain a homotopy from f | Ini to fk | I

n
i . Now, the gluing

lemma yields a homotopy from f to fk.

With the added assumption that X is locally (n − 1)-connected, the inverse of
the Theorem 3.2 holds.

Theorem 3.7. Suppose X is a locally (n−1)-connected metrizable space and x ∈ X.
Then the following are equivalent:

(1) πtopn (X, x) is discrete.
(2) X is n-semilocally simply connected at x.

The following result presents relationship between the cardinality of πn(X, x)
and discreteness of πtopn (X, x).

Theorem 3.8. Suppose X is a connected separable metric space such that πtopn (X, x)
is discrete. Then πn(X, x) is countable.

Proof. Since X is a separable metric space, it follows from the proof of the Urysohn
metrization theorem [6, Theorem 4.1] that X can be embedded as a subspace of the
Hilbert cube Q = Π∞i=1[0, 1]. The space Hom(In, Q) is separable and metrizable,
and hence the subspace Hom((In, İn), (X, x)) is separable. Since πn(X, x) is the
continuous image of Hom((In, İn), (X, x)), the space πtopn (X, x) is separable. In
particular, if πtopn (X, x) is discrete, then πn(X, x) is countable since πtopn (X, x) is the
only dense subspace of πtopn (X, x).

Corollary 3.9. If X is a connected, locally n-connected separable metric space, then
πn(X, x) is countable.

Proof. By Theorems 3.6 and 3.8, the result follows immediately.

Remark 3.10. It is known that if X is path connected, locally path connected,
semilocally simply connected and p : X̃ → X is a covering space of X, then p∗ :
πtop1 (X̃) → πtop1 (X) is an embedding, see [1,4,5]. However, by our results, if X is
locally n-connected then p∗ : πtopn (X̃) → πtopn (X) is also an embedding.
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Recall a well-known theorem in Algebraic Topology [8] asserting the isomor-
phism

πn(X, x) ∼= π1(Ω
n−1(X, x), x̃),

where x̃ is the constant loop x̃(t) = x and Ωn−1(X, x) is the (n − 1)-loop space
of X at x equipped with compact-open topology. Using the above isomorphism
we can consider another topology on πn(X, x) induced by πtop1 (Ωn−1(X, x), x̃). We
denote this topological group by πΩ

n (X, x). Note that πΩ
n is the composition of the

two functors πtop1 and Ωn−1 [1,6]. Therefore the operation πΩ
n is a functor from the

homotopy category of topological based spaces to the category of topological groups.
Now, it is natural and interesting to ask the relationship between the two topological
groups πtopn (X, x)and πΩ

n (X, x). Consider the following diagram:

Hom((In, İn), (X, x)) Hom((I, İ), (Ωn−1(X, x), x̃))

πtopn (X, x) πΩ
n (X, x),

-

-

? ?
q2q1

ψ

η

where q1 and q2 are quotient maps which have been defined and the mapping ψ
maps f : ((I × Sn−1)/ ∼, ∗) −→ (X, x) to f# : (I, İ) −→ (Ωn−1(X, x), x̃), for
which f#(t) = f#

t ∈ Ωn−1(X, x) and f#
t (z) = f([t, z]) for each z ∈ Sn−1 ( note

that (Sn, 1) ≈ (I × Sn−1)/ ∼, ∗) ). By [8, Theorem 11.12], there exists a bijection
η : πtopn (X, x) −→ πΩ

n (X, x) which commutes the above diagram. Thus, in order
to show that η is a homeomorphism, it is enough to show that ψ is a homeomor-
phism. Now suppose X is a metric space, since I is locally compact and Hausdorff
then the two compact-open topologies of the right hand sight of the above diagram
are equivalent to the uniform convergence topology [6]. It is easy to see that a se-
quence {fn} is convergent to f in Hom((In, İn), (X, x)) if and only if the sequence
{f#

n } is convergent to f# in Hom((I, İ),Ωn−1(X, x)). Hence the two topological
groups πtopn (X, x) and πΩ

n (X, x) are isomorphic and so we can consider two topolo-
gies on πn(X, x) which are equivalent when X is a metric space. By homeomorphism
πtopn (X, x) ∼= πtop1 (Ωn−1(X, x)), we have the following assertions, (see [1,5]).

(a) Let Ωn−1(X, x) be path connected, locally path connected and semilocally
simply connected. Then πtopn (X, x) is discrete.

(b) Suppose Ωn−1(X, x) is a connected separable space such that πtopn (X, x) is
discrete. Then πn(X, x) is countable.

(c) Let Ωn−1(X, x) be connected, locally path connected and separable. Also, let
πn(X, x) be free, then πtopn (X, x) is discrete.

The following example shows that studying topological homotopy groups may be
more useful than topological fundamental groups.

Example 3.11. Let X = ∪n∈NSn, where Sn = {(x, y, z)|(x− 1
n
)2 + y2 + z2 = 1

n2},
be a subspace of R

3. It is easy to see that each 1-loop in X is nullhomotopic (note
that Sn’s are simply connected). Therefore πtop1 (X) is trivial. the sequence {[Sn]} is
convergent to identity element of πtop2 (X, 0), implying that πtop2 (X, 0) is not discrete
(see figure-2).
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Remark 3.12. In general, if {Xi} forms an inverse system of topological spaces for
which each Xi contains an essential n-loop, then πtopn (lim

←
Xi) is not discrete.

Figure-2
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