Abstract
Let $g:B\to \mathbb C^1$ be a holomorphic map of the unit ball $B$. We study the integral operators $$ T_gf(z)=\int_0^1f(tz)\Re g(tz)\frac{dt}{t}; \ \ L_gf(z)= \int_0^1 \Re f(tz) g(tz)\frac{dt}{t},\qquad z\in B. $$ The boundedness and compactness of the operators $T_g$ and $L_g$ on the Hardy space $H^2$ in the unit ball are discussed in this paper.
Citation
Songxiao Li. Stevo Stević. "Riemann-Stieltjes operators on Hardy spaces in the unit ball of $\mathbb C^n$." Bull. Belg. Math. Soc. Simon Stevin 14 (4) 621 - 628, November 2007. https://doi.org/10.36045/bbms/1195157131
Information