Open Access
November 2007 Achievement of continuity of $(\varphi,\psi)$-derivations without linearity
S. Hejazian, A. R. Janfada, M. Mirzavaziri, M. S. Moslehian
Bull. Belg. Math. Soc. Simon Stevin 14(4): 641-652 (November 2007). DOI: 10.36045/bbms/1195157133

Abstract

Suppose that $\frak A$ is a $C^*$-algebra acting on a Hilbert space $\frak K$, and $\varphi, \psi$ are mappings from $\frak A$ into $B(\frak K)$ which are not assumed to be necessarily linear or continuous. A $(\varphi, \psi)$-derivation is a linear mapping $d: \frak A \to B(\frak K)$ such that $$d(ab)=\varphi(a)d(b)+d(a)\psi(b)\quad (a,b\in \frak A).$$ We prove that if $\varphi$ is a multiplicative (not necessarily linear)\ $*$-mapping, then every $*$-$(\varphi,\varphi)$-derivation is automatically continuous. Using this fact, we show that every $*$-$(\varphi,\psi)$-derivation $d$ from $\frak A$ into $B(\frak K)$ is continuous if and only if the $*$-mappings $\varphi$ and $\psi$ are left and right $d$-continuous, respectively.

Citation

Download Citation

S. Hejazian. A. R. Janfada. M. Mirzavaziri. M. S. Moslehian. "Achievement of continuity of $(\varphi,\psi)$-derivations without linearity." Bull. Belg. Math. Soc. Simon Stevin 14 (4) 641 - 652, November 2007. https://doi.org/10.36045/bbms/1195157133

Information

Published: November 2007
First available in Project Euclid: 15 November 2007

zbMATH: 1138.46041
MathSciNet: MR2384460
Digital Object Identifier: 10.36045/bbms/1195157133

Subjects:
Primary: 46L57
Secondary: 46L05 , 47B47

Keywords: $(\varphi,\psi)$-derivation , $*$-mapping , $C^*$-algebra , $d$-continuous , ‎automatic continuity , derivation‎

Rights: Copyright © 2007 The Belgian Mathematical Society

Vol.14 • No. 4 • November 2007
Back to Top