Open Access
March 2007 Maximum modulus principles for radial solutions of quasilinear and fully nonlinear singular P.D.E's
Agnieszka Kałamajska, Karol Lira
Bull. Belg. Math. Soc. Simon Stevin 14(1): 157-176 (March 2007). DOI: 10.36045/bbms/1172852251

Abstract

We obtain maximum modulus principles for solutions to some quasilinear and fully nonlinear ODEs and discuss their applications to quasilinear PDEs involving $p$-Laplacian. Our approach is convenient to deal with singular PDEs. Its idea can be tracked back to the old theory by Szegö on orthogonal polynomials.

Citation

Download Citation

Agnieszka Kałamajska. Karol Lira. "Maximum modulus principles for radial solutions of quasilinear and fully nonlinear singular P.D.E's." Bull. Belg. Math. Soc. Simon Stevin 14 (1) 157 - 176, March 2007. https://doi.org/10.36045/bbms/1172852251

Information

Published: March 2007
First available in Project Euclid: 2 March 2007

zbMATH: 1129.35018
MathSciNet: MR2327333
Digital Object Identifier: 10.36045/bbms/1172852251

Subjects:
Primary: 35B50
Secondary: 33C45 , 34C11 , 35J15

Keywords: $p$-Laplacian , maximum principles , quasilinear PDEs , radial solutions , Sturm-Liouville problem

Rights: Copyright © 2007 The Belgian Mathematical Society

Vol.14 • No. 1 • March 2007
Back to Top