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1. Introduction. The subject matter of this talk is at the crossroads of two 

areas which will turn out to have more than only an etymological kinship, 
namely numerical analysis and number theory. Like so many mixed breeds, it 
has its fascinations and attractions, but also its inherent dilemmas. A multi­
tude of concepts and devices dear to numerical analysts and computer users 
are, in open or disguised form, of an arithmetic nature, and problems arising 
in the computational workshop, especially those requiring effective methods, 
are now treated quite frequently with the powerful tools of the number 
theorist. This provides for a vivid interplay and is a source of enrichment for 
both disciplines. Of course, the occasion only permits us to look at a certain 
segment in the broad spectrum of activities. The leitmotif in our discussion 
will be the simulation of procedures containing an element of randomness by 
judiciously chosen deterministic schemes, with number theory playing a 

This is an expanded version of an invited address presented at the 83rd Annual Meeting of the 
Society in St. Louis, Missouri, on January 27, 1977, under the title, Quasi-Monte Carlo methods 
and pseudo-random numbers: Some applications of number theory; received by the editors 
September 23, 1977. 

AMS (MOS) subject classifications (1970). Primary 65-02, 65C05, 65C10, 65D30, 10F40, 
10K05; Secondary 10-02, 10A35, 10F10, 10F20, 10G05, 10K30, 12A15, 65D05, 65N05, 65R05, 
68A55. 

1 The author gratefully acknowledges support received from NSF grant MCS 77-01699. 
© American Mathematical Society 1978 

957 



958 HARALD NIEDERREITER 

prominent part in the construction of such schemes. 
Our exposition can be roughly divided into two parts, which will not 

preclude, however, some strong interrelations between these. §§2-5 are devo­
ted to deterministic versions of Monte Carlo techniques that have come to be 
known under the collective term "quasi-Monte Carlo methods". The widest 
range of applications, and indeed the historical origin of these methods, is 
found in numerical integration, but related matters such as interpolation 
problems and the numerical solution of integral equations can also be dealt 
with successfully. It does not seem to be too well known among the craftsmen 
of the trade that quasi-Monte Carlo methods possess two big assets not 
shared by standard Monte Carlo techniques, namely effectiveness and fast 
convergence. It is therefore hoped that this talk will help in the dissemination 
and eventual adoption of these more efficient methods. 

As we already indicated, the term "quasi-Monte Carlo" encompasses a 
variety of techniques. In their basic form, they all emerged sometime in the 
1950s, and another common bond between them is their heavy reliance on 
number-theoretic concepts. These methods fall into three main categories 
which are characterized by the titles of §§3-5. For the sake of completeness, 
we will present the (at least from the standpoint of the speciahst) classical 
foundations of these various techniques, but emphasize the refinements and 
extensions in scope achieved in recent years. This vigorous progress has been 
sustained by significant contributions from both the Russian school and the 
Western branch, with the Chinese doing more than just checking the balance. 

In the second part, comprising §§6-11, we are concerned with the vital 
matter of pseudo-random number generation. The limelight will be on the 
most popular generators, namely Lehmer's linear congruential pseudo­
random numbers. These appeared to fall into disfavor among theoreticians 
about ten years ago upon the disclosure of a certain undesirable lattice (or 
"crystalline") structure, but there is every indication that the practitioners did 
not care much about these squabbles and continued defiantly with their 
time-honored routines. Recent results of the author amount to a rehabil­
itation of these generators and justify a posteriori the woman (or man) at the 
computer in her (or his) preservative attitude. To sum up a complex matter 
succinctly, this research has shown that a proper choice of parameters in the 
generation procedure leads to a sequence of pseudo-random numbers 
enjoying excellent properties of statistical (almost-) independence among a 
given number of successive terms. The italicized part of the preceding 
sentence cannot be emphasized too much. Although not totally ignored, the 
matter of adequately selecting these parameters has all too frequently been 
left to chance or was based on insufficient evidence. If, as so often, generators 
with the said statistical independence properties are required, we can now 
provide for the first time reliable criteria for the choice of parameters which 
are buttressed by effective theoretical results. 

Lest a contrary impression be created, it should be pointed out that the 
existence of linear congruential pseudo-random numbers with desirable 
statistical independence properties does not negate the results about their 
unfavorable lattice structure. The fact is simply that the lattice structure does 
not detract from the usefulness of these generators as long as we use the 
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pseudo-random numbers for purposes in which only the statistical indepen­
dence of successive terms or a good distribution behavior are relevant.2 

Whoever finds that there is still an irreconcilable dilemma here, may want to 
ponder the following morphological principle: if one attempts to distribute 
points in a well-planned and equitable manner over a given domain, one will, 
intentionally or inadvertently, provide the resulting collection of points with 
an intrinsic structure. Consider a very simple example in which we are 
challenged to distribute denumerably many points on the real axis in what we 
deem the fairest way. We will most likely end up with an equally spaced 
arrangement3 and have thereby generated a point set with the structure of a 
one-dimensional lattice. Thus, a lattice structure may even be a virtue when 
good distribution properties are desired. More will be said about this in §§10 
and 11. 

The advance of our knowledge in this area of linear congruential pseudo­
random numbers has gone hand in hand with progress in pure number 
theory, namely the establishment of nontrivial estimates for exponential sums 
with linear recurring arguments. We have found it convenient to relegate 
these number-theoretic matters to a separate section (see §8). Apart from the 
topics already mentioned, we shall discuss related work on Lehmer's pseudo­
random numbers and similar generators as well as review their elementary 
properties. 

As to the list of references, we have attempted to be fairly complete 
concerning the literature on quasi-Monte Carlo methods since no compre­
hensive survey of this area was available up to now. With respect to 
pseudo-random numbers, the prolific output in this discipline has been 
assessed periodically in review articles and bibliographies (cf. [84], [100], [135], 
[207], [208], [322a]) and there are monographs covering the subject (cf. [80], 
[142], [154], [182], [193], [213]), so that we have only listed those works having 
a direct bearing on our discussion. 

Before we embark on our exposition proper, it is necessary to gain an 
understanding of the fundamental principle involved in the Monte Carlo 
method which is the progenitor of the great bulk of the theory to be 
expounded here. The Monte Carlo method (or "method of statistical trials") 
may be described in simple terms as a numerical method based on random 
sampling.4 We give an illustration below. The history of the method has been 
charted often enough. Its birth is assumed to have taken place in 1949 with 
the publication of [199], although it was definitely known earlier to a 
clandestine group5 working on U. S. Defense projects. Statisticians have 
intuitively used its principle long before that (cf. [334]), but it was only the 
computer age that could turn it into a systematic and viable technique. A 
number of excellent monographs explore the whole range of the method (cf. 

2 Most applications in numerical analysis are of this type. 
3 A Rorschach test could be set up interpreting deviations from this arrangement in psycho­

logical terms. 
4 As Sobol' [306, p. 9] points out correctly, the method is not of much help in trying to win at 

roulette. 
5 Mainly J. von Neumann, N. Metropolis, S. M. Ulam, H. Kahn, and their collaborators at the 

Los Alamos Scientific Laboratory. 
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[25], [28], [66], [106], [309]). We also recommend the survey article [100], the 
recent bibliography [84], and the elementary introduction in [306]. The main 
reason for the popularity of the Monte Carlo method is its applicability to a 
never-ending variety of problems in numerical analysis, statistics, applied 
mathematics, particle physics, engineering, systems analysis, and so on. We 
refer to [28],[29], [70], [83], [106], [151], [200], [323], [340] for accounts of some 
of these applications. For the general area of simulation, see [17], [27], [69], 
[79], [190], [201], [209]. 

To present a simple example of a Monte Carlo calculation, we consider the 
problem of computing the area of a region E of complicated shape contained 
in the unit square [0, 1] X [0, 1]. The idea is now to select at random N points 
from the unit square by performing N independent trials. In practice, N 
should be fairly large, say N « 104. If xl9..., xN are the points resulting 
from the sampling process, then the Monte Carlo approximation is 

1 N 

a r e a o f £ « ^ 2 cE(xn), (1.1) 

where cE is the characteristic function of E. In other words, the fraction of the 
sample points falling into E is taken as an approximate value for the area of 
E. This procedure can be generalized immediately if one recognizes the 
left-hand side of (1.1) as the (Lebesgue) integral of cE over the unit square 
(provided that E is Lebesgue-measurable, of course). Thus, for a given 
dimension s > 1 let Is = [0, If be the ^-dimensional unit cube and let 
ƒ * ƒ(t) be a bounded6 Lebesgue-integrable function on/5. Then the Monte 
Carlo approximation for the Lebesgue integral of ƒ over Is is 

f f(t)dt~j- îf(xn), (1.2) 

where xl9... ,xN are random points from Is obtained by N independent 
trials. Therefore, the basic principle of integration by the Monte Carlo 
method is to replace a continuous average by a discrete average over 
randomly selected points. In the same vein, if E is a Lebesgue-measurable 
subset of Is, then we may say on the basis of (1.2) that 

ƒ fit) dt=f f(t)cE(t) dt « ± 2 f(xn)cE(xn), 
JE JIs M R s i 

and so the Monte Carlo approximation is taken to be 

ff(t)dt~± 2 ƒ(*»)> 0-3) 
x„(EE 

where x^ . . . , x^ are as in (1.2). 
The strong law of large numbers guarantees that the numerical integration 

procedure (1.2) converges almost surely. Moreover, it follows from the central 
limit theorem that the expected integration error is 0(JV~1/2). The remark-
able feature here is that this order of magnitude does not depend on the 

6 This condition is adopted to avoid technicalities and can be relaxed. 
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dimension. This explains the interest in the Monte Carlo method for large 
dimensions, where classical techniques perform poorly. It should be 
mentioned, however, that the implied constant in this estimate depends on a 
certain variance factor through which the dimension may enter. The idea of 
reducing this variance by suitable transformations plays an important role in 
the Monte Carlo method (cf. [66], [100]). 

For the practical implementation of the Monte Carlo method, the funda­
mental question is, of course, how to produce a random sample. There is no 
ready-made answer since no satisfactory definition of randomness exists (see 
§6 for an elaboration on this point). Some people use tables of "random" 
numbers such as [251] or physical devices for generating random numbers 
such as white noise. But there is now an ever expanding school of thought 
which has come to realize that instead of trying to cope with the impalpable 
concept of randomness, one should select points according to a deterministic 
scheme that is well suited for the problem at hand. This is the underlying idea 
of a quasi-Monte Carlo method. For instance, in the area of numerical 
integration it turns out to be quite irrelevant whether the sample points or 
"nodes" are truly random; of primary importance is really the even distribu­
tion of the points over Is (compare with §2). Thus, rather than worrying 
about random selection procedures, one should be concerned with finding 
sets of nodes having an optimally fair distribution (see §3). 

If we want to emphasize the distinction between quasi-Monte Carlo meth­
ods and the standard Monte Carlo method, we will employ the term 
"statistical Monte Carlo method" for the latter. There is another differen­
tiation in language that will occur in the course of our discussion and that is 
sometimes regarded as artificial, namely that between quasi-random points 
(or numbers) and pseudo-random numbers. Although no clear-cut line can be 
drawn, there is a subtle distinction here, in the sense that the use of 
quasi-random points is customarily restricted to numerical integration or very 
closely related applications and that, consequently, they only have to show an 
acceptable distribution behavior, whereas pseudo-random numbers are 
supposed to serve a multitude of purposes and should therefore perform well 
under a battery of statistical tests. 

PART I. QUASI-MONTE CARLO METHODS 

2. Quasi-Monte Carlo integration. We noted already that numerical 
integration by a quasi-Monte Carlo method depends on the judicious choice 
of nodes from the integration domain or a superset thereof. This poses the 
question as to the precise criteria according to which the nodes should be 
selected. To find out, let us first consider the case where the integration 
domain is Is = [0, If. Here we use the Monte Carlo approximation 

j f(t)dt~± Î f(x„). (2.1) 

For the sake of this discussion, we adopt a simpler model by replacing the 
large set of nodes xl9... 9xN by an infinite sequence xl9 x 2 , . . . of points in 
Is. Then as we increase N in (2.1), we obviously want the integration error to 
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become negligible. Thus we require that 

Km ± 2/W-f/(t)A (2.2) 
JV-*oo iV n a B j Jjs 

This limit relation should hold for a reasonable class of integrands, say for all 
continuous functions ƒ on Is. The resulting condition on the sequence xl9 

x 2 , . . . is precisely one of the well-known criteria for this sequence to be 
uniformly distributed in Is. This concept is usually defined as follows. The 
sequence x1? x 2 , . . . of points in Is is called uniformly distributed in Is if 

Jim j- 2 OOO-M 

holds for all subintervals J of Is, where | / | denotes the ^-dimensional 
Lebesgue measure (= volume) of J. Intuitively, this means that the points x,, 
x 2 , . . . are spread out over the unit cube Is according to the principle of 
proportional representation. A detailed treatment of uniformly distributed 
sequences can be found in the book of Kuipers and Niederreiter [174]. 

In case the sequence x„ x 2 , . . . is uniformly distributed in I\ the relation 
(2.2) actually holds for all Riemann-integrable functions ƒ on Is (cf. [174, pp. 
3, 52]). On the other hand, (2.2) need not hold for arbitrary Lebesgue-
integrable functions; e.g., it fails if ƒ is the characteristic function of the set 
{x„ x 2 , . . . }. In fact, (2.2) characterizes Riemann-integrability in the fol­
lowing sense: if ƒ is a real-valued function on Is such that the limit in (2.2) 
exists for all uniformly distributed sequences in Is, then ƒ must be Riemann-
integrable on Is (de Bruijn and Post [54], Binder [22]). Therefore, numerical 
integration by a quasi-Monte Carlo technique should only be employed for a 
Riemann-integrable integrand since only in this case can we guarantee 
convergence. On the theoretical level, this is a significant difference as 
compared to a statistical Monte Carlo method, for which the strong law of 
large numbers affirms the almost sure convergence in (2.2) for any bounded 
Lebesgue-integrable ƒ. But for practical purposes, the restriction to Riemann-
integrable functions in quasi-Monte Carlo methods is not of a serious nature. 

We turn now to the general case of an integration domain E Ç Is. As we 
have seen in (1.3), the Monte Carlo approximation attains the form 

f / ( t ) *«± 2 /(*«). 
x„€E£ 

If we use again an infinite sequence as a model, then by what we have already 
learned, the sequence xl9 x 2 , . . . should be uniformly distributed in Is. 
Further inspection shows that the integration domain E cannot be quite 
arbitrary if we want convergence of the method. For even if we take a simple 
integrand such as the constant function ƒ = 1 (i.e., if we are asked to 
calculate the volume of E), we arrive at the convergence condition 

Km jz 2 cE(xn)^l c£(t)dt, 
AT->oo iV naml Jjs 

which need only hold if cE is Riemann-integrable, or, equivalently, if E itself 
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is Jordan-measurable (= has an elementary volume). In toto9 we get conver­
gence in a quasi-Monte Carlo integration procedure if the integrand ƒ is 
Riemann-integrable, the integration domain E C Is is Jordan-measurable, 
and the sequence x„ x 2 , . . . of nodes is uniformly distributed in Is. 

Returning from the question of convergence to the original setup, namely 
that of a finite collection of nodes, we realize that such a discrete set can 
never constitute a completely fair distribution over Is since there will always 
be subintervals J of Is (possibly of very small volume) which do not contain 
any one of the given points. Thus, the uniform distribution property is an 
idealization, and in actual practice we have to settle for an approximation. 
The model of an infinite sequence has provided the clue to the proper 
criterion for selecting nodes, viz. the even distribution of the nodes over Is. 
Therefore, we shall introduce a quantity which measures the uniformity of 
distribution of a given set of nodes. 

We consider first the one-dimensional case. Let xl9..., xN be N numbers 
in ƒ = [0, 1]. If E is a subset of ƒ, then 

A(E;N)=J: cE{xn) 

counts the number of n, 1 < n < N, with xn E E. 
2.1. DEFINITION. The discrepancy DN of the N numbers xl9..., xN in I is 

defined by 

A(J;N) 
DN = sup 

j N 
(2.3) 

where / runs through all subintervals of I and | / | denotes the length of / . 
It is immaterial whether one considers closed, open, half-open, or arbitrary 

intervals / since any one category leads to the same value of the supremum in 
(2.3), as can be seen from [174, p. 99]. A useful variant of the above definition 
is the following. 

2.2. DEFINITION. The discrepancy D% of the N numbers xï9..., xN in / is 
defined by 

D% = sup 
0 < / < l 

A([0,t);N) 

N " 

Finite sequences of nodes with small discrepancy DN resp. D% provide a 
valid approximation to uniform distribution, in the sense that for an infinite 
sequence both lim^^^ DN = 0 and lim^^^ D% = 0 are equivalent to the 
sequence being uniformly distributed in I (cf. [174, Chapter 2, §1]). Here DN 

resp. D% stands for the discrepancy of the first N terms of the sequence. 
In nonparametric statistics the method of measuring the deviation between 

the empirical distribution of JC„ . . . , xN and the uniform distribution on I by 
the quantity D% is also known as the two-sided Kolmogorov test. The 
discrepancy D% may also be thought of as the supremum norm of the 
function 

RN(0 = N-lA([09 t);N)-t9 0 < * < 1. 
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By taking various other norms of this function, one arrives at further concepts 
of discrepancy, the most commonly used among these being the L2 dis-
crepancy TN given by 

^ = (jfV(o2<&) • 
See [220] for further information about the L2 discrepancy. One may also 
consider discrepancies with respect to distribution functions different from 
the uniform distribution ([125], [219]) and with respect to other summation 
methods ([121], [222], [223]). 

The significance of the discrepancy stems from the fact that it occurs in the 
effective error estimates for quasi-Monte Carlo integration. The precise form 
of these estimates depends on the regularity of the integrand. 

2.3. THEOREM (KOKSMA [156]). Iff is a function of bounded variation V(f) 
on I and xl9..., xN are numbers in I with discrepancy D%, then 

jf £ f{*n)-ff{t)dt < V(f)D*. (2.4) 

This error bound is particularly appealing since the influences on the 
integration error are clearly separated: the regularity of the integrand is 
reflected in the factor V(f) and the uniformity of distribution of the nodes is 
controlled by the discrepancy D%. 

If ƒ is of bounded variation and continuous on ƒ, then Koksma's inequality 
can be proved very quickly using integration by parts. For 

Ç RN{t)df{t) = ± £ Ccl04xn)df{t)-ftdf(t) 

= £ £ (/(l) - /(*„)) - /O) + jf /(<) * 

- - i £ f(x„)+Cnt)dt, 

and so 

Jf £ f(xn)-ff(t)dt\ = \(lRN(t)df(t) 
* «=i •'o Ko 

< V(f) sup |^(0I -V{f)Dt. 
0 < / < l 

The general case is shown by a slight variation of this argument (see [174, p. 
143]). 

2.4. THEOREM (NIEDERREITER [217]). Iff is a continuous function on I with 
modulus of continuity M and xl9..., xN are numbers in I with discrepancy D%, 
then 



QUASI-MONTE CARLO METHODS 965 

if £ ƒ(*„) - f 7(0 d\ <M(Z>£). 

A general error estimate valid for any Riemann-integrable integrand was 
established by Hlawka [120]. Analogues of the above inequalities can be 
shown for other summation methods ([222], [223, pp. 148-149], [303, Chapter 
2]) and for other distribution functions ([110], [125], [307]). Estimates in terms 
of the L2 discrepancy7 are also available ([292], [295], [366]) and are obtained 
by applying the Cauchy-Schwarz inequality at a certain stage in the argu­
ment. For instance, if ƒ has a continuous derivative on I and xl9..., xN are 
numbers in I with L2 discrepancy TN, then 

1 N r\ \ ( r\ -> \ 1 / 2 

Jf jS ƒ to » f0 / (0 * < [f0 (/'(O) dj TN. 

Error bounds of a different nature result from measuring the regularity of a 
periodic integrand by the size of its Fourier coefficients ([140], [214]). 

We turn now to the multidimensional case in which quasi-Monte Carlo 
methods are usually applied. Let Is = [0, l]5 be the ^-dimensional unit cube. 
For N given points xl9... ,xN in Is and a subset E of Is, we introduce the 
counting function 

A(E;N)=Jt cE(xn). 

We use | J? | to denote the ^-dimensional Lebesgue measure of E. To unify 
various definitions of discrepancy that we shall need, we start from a general 
concept. 

2.5. DEFINITION. Let 9H be a nonempty family of Lebesgue-measurable 
subsets of Is. Then the discrepancy DN((dïi) of the N points x^ . . . , x v in Is 

is defined by 

A(E;N) 

*N 

DN (9IL) = sup 
£e9H N -1*1 

2.6. DEFINITION. The discrepancy DN of the N points x„ . . . , x^ in Is is 
defined by DN = DN($\ where ^ is the family of all subintervals of Is, and 
the discrepancy D% is defined by D% = DN(fy*), where %* is the family of 
subintervals of Is of the form [0, tx) X • • • X [0, ts). 

For an infinite sequence of points in Is, we have as in the one-dimensional 
case that both lim^^^D^ = 0 and lim^^Z^ = 0 are equivalent to the 
sequence being uniformly distributed in Is (cf. [174, Chapter 2, §1]). 

In order to generalize Koksma's inequality, we have to set up an 
appropriate concept of total variation for functions of several variables. For a 
function ƒ on Is and an interval / = [a{l\ a^] X • • • X [a[s\ a£>] C Is, we 
put 

7 More generally, the integration error can be estimated in terms of an appropriately defined 
Lp discrepancy [303, Chapter 2]. 
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e , - l 2 (-ïr-^VK0,...,^)-
To define a partition <$ of Is

 9 we start from s finite sequences of the form 
0 - i?^ < IJP < • • • < i j ^ = 1 (J = h 2 , . . . , s). The partition then 
consists of all the intervals [ri^\ ry/̂ J X • • • X [TJ<5), I J $ , ] with 0 < *} < m, 
for y * 1 , 2 , . . . , s. 

2.7. DEFINITION. For a function ƒ on ƒJ, we set 

r<'>(/) = sup 2 |A(/;/)|, 

where the supremum is extended over all partitions ^ of Is. If V^Xf) is 
finite, then ƒ is said to be of bounded variation on Is in the sense of Vitali. 

For functions ƒ * f(tl9.. ,,ts) that are sufficiently regular, V(s\f) can be 
represented by an integral; namely, 

**>(ƒ)-f1-., f d'f 
dU &, 

dtx- - - dt, (2.5) 

whenever the indicated partial derivative is continuous on Is. If ƒ actually 
depends on less than s variables, then we always have A(/; / ) = 0, and so 
Vis\f) * 0. Since such a function ƒ may still be highly irregular, we have to 
consider a more suitable notion of variation which is obtained by taking into 
account the behavior of ƒ on the various faces of Is. 

2.8. DEFINITION. Let ƒ be a function on Is. For 1 < k < s and 1 < ix < i2 

< • • • < ik < s9 we denote by V{k\f\ il9..., ik) the fc-dimensional variation 
in the sense of Vitali of the restriction of ƒ to /,*...,; =* {(*i , . . . , ( , ) E I': 

tj » 1 for y =5* i"i,..., ik). If all variations Vik\f; /„ . . . , ik) are finite, then ƒ 
is said to be of bounded variation on Is in the sense of Hardy and Krause. 

Since Vis\f) = V(s\f; 1, 2 , . . . , s), a function of bounded variation in the 
sense of Hardy and Krause is automatically of bounded variation in the sense 
of Vitali.8 

2.9. THEOREM (HLAWKA [111]). Iff is a function of bounded variation on Is 

in the sense of Hardy and Krause and xx,... ,xN are points in Is
 y then 

N Ï /CO 
# 1 - 1 

•ff(t)di\ 

<2 2 V«\ ƒ ; / „ . . . , ik)D*N ( ƒ „ . . . , ik), (2.6) 
K / i < / 2 < • • • < ' * < * 

where D%{ix,..., ik) is the discrepancy in /,*...^ of the points obtained by 
orthogonal projection ofxx,... ,xN onto ƒ,*... /ft. 

The above estimate is often called the Koksma-Hlawka inequality. A 
proof9 of this result based on multidimensional integration by parts was given 

8 Information about these concepts of variation can be found in Hobson [127] and the 
literature in [174, p. 158]. 

9 For sufficiently regular integrands, Hlawka [112] presents a simplified proof of the inequality, 
with the variations replaced by the corresponding integrals in (2.5). 
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by Zaremba [366] and is reproduced in [174, Chapter 2, §5]. 
One obtains a simplified form of (2.6) if one defines the variation V{f) of ƒ 

on Is in the sense of Hardy and Krause to be 

* - l 1 < I , < J 2 < • • • <ik<s 

Obviously, V(f) is finite if and only if ƒ is of bounded variation on Is in the 
sense of Hardy and Krause. By using (2.5), V(f) can be written in terms of 
integrals for sufficiently regular/. Since we always have 

DH(iu...9ik) < Z>£(1,2, . . . , * ) - />& 
it follows from (2.6) that 

jf 2 /(x„)-f/(t)J < V{f)D*N. (2.7) 

This inequality is completely analogous to (2.4). 
The Koksma-Hlawka inequality can be generalized to more abstract 

settings ([214], [278]). Error estimates for other than equal-weight formulas 
are also known ([222], [223, pp. 148-149]). Inequalities for Riemann-
integrable functions ([120]) and error bounds in terms of an appropriately 
defined L2 discrepancy TN ([292], [366], [101]) or an L1 discrepancy ([292], 
[303, Chapter 8]), and more generally for an IS discrepancy ([303, Chapter 
8]), have been established as well. See [126] for the case of a nonuniform 
distribution function. 

A measure for the evenness of distribution different from the discrepancy 
has also been considered in the literature. To introduce this concept, we need 
some preliminaries. By a dyadic interval, we mean a subinterval of I of the 
form [j2~m

9 (J + l)2"m) with integers m > 1 and 0 < j < m, and with the 
stipulation that the interval be closed if its right endpoint is 1. In the 
^-dimensional case, a dyadic box is meant to be a cartesian product of any s 
dyadic intervals. Given a dyadic box B in Is, we split it into two parts as 
follows. For the moment, we move the origin of the coordinate system to the 
center of B and denote by £ t , . . . , £ the new coordinates. Then the union of 
those "quadrants" of B in which sgn(£j • • • £) = ( - 1 / is called the positive 
part B+ of By whereas the remaining portion of B is the negative part B~. Let 
now xx,..., Xjy be N given points in Is. Then we define the s-dimensional 
nonuniformity of these points to be 

sup \A(B+;N)-A(B-;N)\, 
B 

where the supremum is extended over all possible dyadic boxes B in Is. 
Furthermore, we project the given points orthogonally onto the various 
A:-dimensional faces of Is (1 < k < s) and calculate the ^-dimensional non-
uniformity of the projected points in the respective face. Finally, the largest 
value among the ^-dimensional nonuniformity and all these lower-dimen­
sional nonuniformities is said to be the nonuniformity y^N) of the points 
x„ . . . , xN (Sobol' [291]). It is always a positive integer < N. The motivation 
for this definition comes from the theory of Haar functions (compare with 
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[303]). For 1 < q < oo, an Lq analogue <pg(N) has also been introduced 
(Sobol' [289]). If Xj, x 2 , . . . is a sequence of points in Is, then %(N), 
I < q < oo, is the appropriate nonuniformity of the first N terms of the 
sequence. For any q, 1 < q < oo, we have the criterion that a sequence is 
uniformly distributed in Is if and only if lim^^W/N = 0 ([289], [294]). 
A comparison with the definition of discrepancy leads easily to the inequality 

<pO0(N)<2*NDN (2.8) 

for any AT points in Is. 
Estimates for integration errors can also be established in terms of nonuni-

formities. For instance, if /(t) = f(tl9...,/,) is such that all its mixed partial 
derivatives 

3*/ -r- TT , 1 < /, < U < • • • < L < s, 1 < k < s, 
OL • • • Of, * z K 

exist and are continuous on Is, then 

l i 2 f(xn)-ff(t)dt 
I N n~l JIS 

where C(f) is a constant depending on ƒ that reflects, as usual, the amount of 
oscillation of the integrand and <?«,(#) is the nonuniformity of the nodes 
x„ . . . , xN (Sobol' [291], [303, Chapter 4]). Analogous estimates using the 
nonuniformities %(N), 1 < q < oo, are also available ([289], [303, Chapter 
4]). 

So far, we have only considered the case where the integration domain is 
15, or what amounts to the same (modulo a simple change of variable), where 
the integration domain is an interval. We shall now study a much wider class 
of integration domains, namely that of bounded Jordan-measurable sets (= 
sets having a finite elementary volume). By applying, if necessary, a 
translation and a contraction, we can assume that such an integration domain 
is contained in Is. We have already seen in (1.3) what the Monte Carlo 
approximation should look like in this case. We also noted earlier that 
Jordan-measurable subsets of Is form the most general category of 
integration domains for which a quasi-Monte Carlo technique can be applied 
successfully. 

The integration error can again be estimated effectively in terms of a 
suitable notion of discrepancy. We need some preliminaries before we can 
enunciate this result. Let d(-9 • ) be the standard Euclidean distance in Rs. 
For a subset E of Is and e > 0, we define 

££ = { x 6 Is: d(x, y) < e for some y G E}9 

E_e = {xŒF:d(x9y) > e for all y G Is \E). 

The set Ee is a superset of E open in the relative topology in Is, whereas E_e 

is a closed subset of E. We classify now the Jordan-measurable subsets E of 
Is according to the measure of what may be called the "e-collars" of E. 

2.10. DEFINITION. Let b = b(e) be a positive nondecreasing function 
defined for all e > 0 and satisfying limc^0+6(6) = 0. Then 9R^ is defined as 

<C(f) 
<pœ(N)\ogN 

N 
(2.9) 
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the family of all Lebesgue-measurable subsets E of Is for which the inequal­
ities 

\Ee \E\< b(e) and \E \ E_e\ < b(e) 

hold for all e > 0. 
It is easily seen that every E E 91^ is actually Jordan-measurable and 

that, conversely, every Jordan-measurable subset of Is belongs to some ^ ^ 
(cf. [220, pp. 168-169]). Therefore, the families tylb provide a complete 
classification of all Jordan-measurable subsets of Is. The larger the function 
b, the more irregularly shaped can be the sets that are allowed in ?f\Lb. 

For an integration domain E E ty\Lb9 an error bound for quasi-Monte 
Carlo integration can now be given in terms of a discrepancy Z>iV((3fIlc) 
defined according to Definition 2.5, where c is a function closely related to b. 

2.11. THEOREM (NIEDERREITER [220]). For a function ƒ of bounded variation 
V{f) on Is in the sense of Hardy and Krause, an integration domain E E ($\Lb9 

and points xl9... 9xN in Is we have 

A 2 /(*„) -ƒƒ(*) dt\ <{V{f) + \f{\9...9\)\)DN{%c)9 (2.10) 

XnE:E 

where c is the function c(e) = b(e) + Isefor e > 0. 

One might wonder why the term | / ( l , . . . , 1)| appears in this estimate. The 
reason is that, in contrast to earlier inequalities, the left-hand side of (2.10) is 
not invariant under the shift from ƒ to ƒ + C, where C is a constant. 
Therefore, the upper bound in (2.10) depends also on the magnitude off 

There are two important facts buttressing the usefulness of the families 
9Rfr. First, the discrepancy DN(?l\Lb) can be estimated effectively in terms of 
the discrepancy DN, as we shall see in Theorem 3.10, so that we ultimately 
have control over the size of Z>Ar(

(f)TL̂ ) for the common choices of nodes. 
Secondly, the discrepancy £>Ar(

<3ILft) still satisfies l i m ^ ^ DN(?fïib) = 0 for 
any infinite sequence uniformly distributed in Is, and uniform conditions on 
the measure of the "e-collars" of sets £ in a family 911 (such as those 
imposed on the members of ?fïib) are necessary to guarantee this property for 
DN(tyll) by a result of BiUingsley and Topsoe [21]. Thus, the approach based 
on the families 911̂  is essentially the most general one in quasi-Monte Carlo 
integration. 

The case of a convex integration domain deserves special attention since it 
occurs quite frequently. Information about this class of integration domains 
is, of course, implicitly contained in the above considerations since every 
convex subset of Is belongs to ^tb with b(e) = 2se for e > 0. By using special 
properties of convex sets, it is, however, possible to obtain stronger results. 

2.12. DEFINITION. The isotropic discrepancy JN of the N points xl9... 9xN 

in Is is defined by JN = DN(Q)9 where Q is the family of all convex subsets of 

r. 
The use of JN was suggested by Hlawka [115] and the term "isotropic 

discrepancy" was coined by Zaremba [370]. This type of discrepancy figures 
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in the error estimate for convex integration domains. 

2.13. THEOREM (ZAREMBA [370]). Iff is a function of bounded variation V(f) 
on Is in the sense of Hardy and Krause, E is a convex subset of Is, and 
xl9... >xN are points in Is with isotropic discrepancy JN9 then 

* / i - l JE I 
<(V(f) + \f(l,...,l)\)JN. 

x„SE 

Up to now, all the integrands considered were bounded functions. Sobol' 
[311] succeeded in constructing quasi-Monte Carlo methods for improper 
integrals in which the behavior of the integrand at the singularity is under 
control. In a sense, the paper of Hardy and Littlewood [108] may be 
considered the first contribution to this subject.* 

The study of quasi-Monte Carlo integration on the infinite-dimensional 
unit cube was initiated by Cencov [33] and Sobol' [293]. See also [279], [301], 
[303, Chapter 7], [313], [314]. 

The results appearing in this section as well as in the three following ones 
should be compared with the features of classical techniques for computing 
simple and multiple integrals. We refer to [53], [95], [173], [329] for expository 
accounts of these techniques. Summarizing in a nutshell what transpires from 
this comparison, one can say that conventional methods are without doubt 
superior in the one-dimensional case, whereas quasi-Monte Carlo methods 
should be considered more and more favorable as the dimension increases. 
For simple integrals with integrands of a low degree of regularity, the results 
are basically equivalent. 

Quasi-Monte Carlo methods have been employed for other purposes be­
sides numerical integration. We mention here only those works that are based 
on the general principles of such methods. In later sections, we will indicate 
further applications using the special techniques to be described. 

There are, of course, several important problems in numerical analysis that 
can be reduced to the approximate calculation of integrals, and under such 
circumstances quasi-Monte Carlo methods may be applied readily. A case in 
point is the numerical solution of integral equations; see [114], [116], [124], 
[313]. Applications to integro-differential equations occur in [210], [212], to 
linear partial differential equations in [211], and to the theory of turbulence in 
[15]. A method of determining surface areas by means of uniformly distribu­
ted sequences is discussed in [175]. Interesting connections with complex 
analysis appear in [118], [123], regarding problems of interpolation and 
analytic continuation, respectively. Quasi-Monte Carlo methods can also be 
used to approximate the extreme values of a function ([3], [122], [232], [317]) 
and the greatest and smallest real part of the eigenvalues of a matrix [318]. On 
the basis of ideas in [34], applications to the simulation of Markov chains are 
studied in [312]-[314]. 

3. Quasi-random points. A scrutiny of the various error estimates in §! 
provides convincing evidence that what we should employ in a quasi-Monte 
Carlo integration is a set of nodes with very small discrepancy. Finite or 

*See also R. S. Lehman, Pacific J. Math. 5 (1955), 93 -102 . 
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infinite sequences with this property are called low-discrepancy sequences and 
their terms are loosely referred to as quasi-random points (or quasi-random 
numbers in the one-dimensional case). Strictly speaking, we have dealt not 
only with one, but with several concepts of discrepancy, so that the 
expression "low-discrepancy sequence" would seem to call for further 
explanation. It turns out, however, that the various notions of discrepancy are 
related to DN in a known manner. Thus, D% and DN are linked by the 
inequalities 

Z>* < DN < TD% (3.1) 

in the ^-dimensional case (see [174, p. 93]), and JN as well as DN{c?^Lb) can 
also be estimated in terms of DN (see (3.21) and Theorem 3.10). Moreover, 
the L2 discrepancy 7^ of any N points in Is satisfies 

CM+2)/2< TN < DZ 
with a constant Cs > 0 only depending on s (cf. [220, Theorem 4.2]). There­
fore, "low discrepancy" will be interpreted to mean low discrepancy DN. 

The discrepancy of the average sequence of points in Is is under control 
because of the law of the iterated logarithm established by Chung [40] in the 
one-dimensional case and Kiefer [150] in the multidimensional case, accor­
ding to which we have 

V2N D* 
lim sup — = 1 
*->*> Vlog log N 

with probability 1, in the sense of an appropriate product measure on the 
sequence space.10 Together with (3.1) we get 

DN = 0(N~ X'2 (log log N)l/2) 

almost surely. In combination with the error estimates in §2 (in particular, 
Theorem 2.3 and (2.7)), this ties in rather nicely with the probabiustic error 
bound for the Monte Carlo method. It is to be expected, however, that clever 
constructions should produce sequences that behave much better than the 
average sequence. As a matter of fact, we shall exhibit examples of finite 
sequences of N points in Is for which DN = 0(N~ *(log NJ~ *). Quasi-Monte 
Carlo integration with such quasi-random points involves then effective error 
bounds that are considerably smaller than the probabilistic Monte Carlo 
bound 0(JV~1/2). Thus, as far as numerical integration is concerned, quasi-
Monte Carlo methods based on determinate low-discrepancy sequences are, 
on the whole, preferable to statistical Monte Carlo methods. 

We discuss now in detail the relevant properties of the various notions of 
discrepancy. We start with the one-dimensional case in which all the basic 
questions have been settled. Here the discrepancy D% can be calculated in an 
easy manner by arranging the numbers xl9..., xN in nondecreasing order of 
magnitude, which obviously does not affect the value of D%. We obtain then 
the formula11 

10 See also [30], [242], [243], [372]. 
11 See [215]. For generalizations of this formula referring to other distribution functions or 

other summation methods, see [219], [222]. 
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1 . I 2n — I I /o o\ 
« xrr + max \xH ^rj— . (3.2) 

2N l<n<N J * 2N I 
We deduce from (3.2) that D% > l/(2N) for any N numbers in 7, and that 
D% » X/ÇLN) exactly for the sequence 

2N ' 2N ' ' ' • ' 2iV * " ' 
or one of its rearrangements. A simple argument shows that DN > \/N for 
any N numbers in I (cf. [174, p. 90]), and DN = \/N holds for the sequence 
(3.3) and its rearrangements, but also for some other sequences. A formula 
similar to (3.2) can be obtained for the L2 discrepancy TN9 namely 

N UN2 N n% \X» 2N ) 

provided that xx < x2 < • • • < xN (cf. [220, p. 135]). This shows that the L2 

discrepancy of any N numbers in I is > 1/(VÏ2 N) and that the lower 
bound.is attained precisely for the sequence (3.3) and its rearrangements.12 It 
is interesting to note that the nodes in (3.3) are also used in a classical 
integration method, namely the iV-point midpoint rule (see [53, p. 40]). The 
integration error implied by the use of sequences equal or close to (3.3) was 
Studied by Chui [37], [38], [39]. 

The terms of the optimal sequence (3.3) depend on the chosen value of N. 
In computational practice, it is often convenient to be able to change the 
value of N without losing the previously obtained data. For this purpose, it is 
advantageous to work with an infinite sequence and then to take its first N 
terms whenever the value of N has been decided upon. In this way, we may 
increase N if we desire greater accuracy and still use the results of the earher 
computation. 

It requires a deeper analysis to determine the behavior of the discrepancy 
for infinite sequences. In the first place, the discrepancy DN of an infinite 
sequence cannot be uniformly of the order of magnitude N~l. An important 
theorem of W. M. Schmidt [282] has established that for any infinite sequence 
of numbers in I there exist infinitely many N such that DN> D% > 
(log JV)/(100 N). On the other hand, infinite sequences with DN — 
0(N~l log N) have been known for several decades. For instance, if a is an 
irrational number for which the partial quotients in the continued fraction 
expansion are uniformly bounded, then the discrepancy DN of the sequence 
{a}, { 2 a } , . . . , {na},... of fractional parts13 satisfies DN < CN~\l + 
log N) for all N > 1, where C is an explicit constant (compare with [220, 
Theorem 3.2], [174, p. 125]). 

12 A similar statement holds for the L1 discrepancy according to a result in [292] that also 
appeared in an essentially equivalent form in [236, Chapter 10]. 

13 The fractional part {/} of / e R is defined by {t} » / - [fj, where [f] is the greatest integer 
< I. We always have 0 < {t} < 1. 
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Another example, the so-called van der Corput sequence, is more impor­
tant for two reasons: first, the known discrepancy estimate is better than for 
the above example, and second, this sequence consists only of dyadic 
fractions and is therefore perfectly well adapted for the use in binary 
computers. The sequence can be conveniently defined in terms of a "radical-
inverse function". If g > 2 is an integer, then every nonnegative integer n has 
an expansion in the base g of the form 

k 

n - 2 aiSl w i t h 0, E {0, 1 , . . . , g - 1} for 0 < i < k, (3.4) 

and this representation is unique apart from adding on higher powers of g 
with zero coefficients. Now the radical-inverse function <t>g is given by the 
well-defined expression 

M") = £ «w-'-1- (3-5) 
#=0 

The action of this function may be described as follows. Write the expansion 
of n in the base g as a string of digits ak • • • axa0; then <t>g(ri) results from this 
by reflection about the "decimal point", i.e., <f>g(ri) is the g-adic fraction given 
by 0.a0ax • • • ak. The condition on the at in (3.4) implies that 0 < $g{ri) < 1 
for all n > 0. 

The van der Corput sequence, which made its first appearance in [341], is 
now defined as the sequence <f>2(0), <J>2(1)> • • • > ^iin\ • • • m [0> !)• According 
to unpublished results of Tijdeman, its discrepancy D% satisfies 

ND% < | log2AT+ 1 forallAT>l 

and 

lim sup (ND% - \ log2AT) > f + | log23, 
N->oo 

where log2 denotes the logarithm to the base 2. The fact that the coefficient | 
of log2AT is best possible was already shown earlier by Haber [92]. For a quick 
proof of DN = 0(N~l log N), see [174, p. 127]. At present, we know of no 
infinite sequence in I whose discrepancy is uniformly smaller than that of the 
van der Corput sequence.* 

There are various ways of estimating the discrepancy of a one-dimensional 
sequence (see [217] for a survey). The most common procedure is to reduce 
the estimation of the discrepancy to the problem of estimating associated 
exponential sums. The theoretical basis for this technique is a general prin­
ciple of quantitative Fourier inversion. We need the following notion: if Fis a 
function of bounded variation on I, then its Fourier-Stieltjes transform F is 
given by 

F(h)= f elltiht dF(t) for all integers h. 

•ADDED IN PROOF. Better sequences have recently been constructed by R.Bejian and H.Faure. 
For further information about the van der Corput sequence, see the joint paper of these authors 
in C. R. Acad. Sci. Paris Sér. A 285 (1977), 313-316. 
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3.1. THEOREM (NIEDERREITER AND PHILIPP [234]). Let F be a nondecreasing 
function on I with F(0) = 0 and F(\) = 1, and suppose the function G on I 
satisfies the Lipschitz condition \G(u) — G(v)\ < L\u — v\ for u9 v E ƒ, as 
well as G(0) = 0 and G (I) = 1. Then for every positive integer m we have 

sup \(F(v)-F(u))-(G(v)-G(u))\ 
U,V>ELI 

4L 
m + 1 * .LU-^yw-^i-

3.2. COROLLARY. Le/ j q , . . . , xN be any real numbers. Then the discrepancy 
DN of the finite sequence of fractional parts {xx}9..., {xN} satisfies 

D"<irr\ f ^ U /M + 1 / 
1 * 

— y, 
72irihxn 

for every positive integer m. 

The corollary results from Theorem 3.1 by setting F(t) = ^4([0, t); N)/N 
and G (J) » t for 0 < f < 1. The inequality in Corollary 3.2, without the 
specified constants, is due to Erdös and Turân [64]. For a special class of 
sequences, there exists a simplified version of this inequality which will be 
useful later on. It is convenient here to introduce for an integer m > 2 the 
summation symbol 2/,(m0dm) which designates a sum over the complete 
residue system mod m consisting of all integers h with - m/2 < h < m/2. 
The summation symbol S*(modW) refers to the same sum, but with h = 0 
deleted from the range of summation. 

3.3. LEMMA. Let m > 2 andy0,... ,JV-i be integers. Then the discrepancy 
DN of the finite sequence of fractional parts {^o/w}> • • • » {^Ar-i/m} satisfies 

N< m * kj«m> rnsm(<ir\h\/m) 
JL V e2mhyH/m\ 
N w-0 

To make the relationship with the earlier inequality even more transparent, 
we use sin mt > 2/ for 0 < t < \ and get 

, lm/2] 

DN < - + S T 1 

It should not come as a surprise that we obtain smaller constants in the 
special case. 

The proof of Lemma 3.3 nicely illustrates the principles involved in these 
types of inequalities. For an integer k, let A (k; N) be the number of n, 
0 < n < N - 1, witl ij = k (mod m). Then we can write 

A(k;N) 
#i*0 

where ck is the characteristic function of the coset k + mZ of Z/mZ. Now 
with the abbreviation e(t) = e2™' for f E R we have 
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* O 0 - £ 2 e(h(y-k)/m) îoryŒZ, 
A (mod m) 

so that 

and 

Mk; N) = ±- 2 e(-hk/m)N2 e(hyn/m) 
/i(mod m) w-0 

tf 1 A T — 1 

,<(*;*) -£-£ 2* e(-A*/m) 2 «(W»0- (3.6) 
m m A(modm) «*0 

Let ƒ = [u, v) be an arbitrary half-open subinterval of I. We choose the 
largest closed subinterval of J of the form [a/m, b/m] with integers a < b, 
which we denote again by [a/m, b/m]. The case where no such subinterval 
exists can be dealt with easily, since we have then A (J; N) = 0 and v — u < 
\/m, hence 

\A(J;N)/N-\J\\ = \J\<l/m. (3.7) 

In the remaining case, we obtain 

A(J; N) - N\J\ = | {A(k;N)-Z) + Z(b-a+l)- N\J\ 

± 
m ( ia «(-«/«>)( Y «(*./«)) + * ( ft"^+1 - M) 

A (mod m 

by using (3.6). It follows that 

A(J;N) 

N -\J\ < ̂  T I 2 «(*fc/«)| I ̂  's1 «(*-/») 
m A(modw) U - a | | i Y n«0 

ft-a+ 1 
m - m (3.8) 

Now for 0 < \h\ < m/2 we have 

2 e(Afc/m) 
= \e(h(b - a+ \)/m) - 1| 

KA/m) - 1| 

2 1 
\e(h/m) - 1| sin(?r|/i|/m) 

From the definition of a and b it follows that 

a/m = u + ^ with 0 < 01 < 1/m 

and 
Z>//w = v - 02

 w i t h 0 < #2 < l/w> 
so that 

(3-9) 

b- a + 1 
m - | / | •0, - 9: <-L. 

m 
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By combining this with (3.8) and (3.9), we arrive at 

A(J;N) 
N - m 

i <—+ s* — 
m /i(modm) msm(<ir\h\/m) 

In view of (3.7), this inequality holds for all / , and forming the supremum 
over J on the left-hand side completes the proof of Lemma 3.3. 

There is another inequality for DN in terms of exponential sums that is 
more of theoretical interest. The following general inequality improves and 
corrects a result of Elliott [63]. 

3.4. THEOREM (NIEDERREITER [222]). Let F and G be two functions on I 
satisfying the conditions in Theorem 3.1. Then, 

sup \(F(v) - F(u)) - (G(v) - G(u))\ 
U,VELI 

^â^-^f-
3.5. COROLLARY (LEVEQUE [177]). Let xl9...9xN be any real numbers. 

Then the discrepancy DN of the finite sequence of fractional parts 
{xx}9..., {xN} satisfies 

,1/3 

DN < 
•n1 àx h2 

1 N 
Zirihx. 

21 

The difficulties in the multidimensional case start already with the fact that 
there is no analogue of the simple formula (3.2). One can only provide certain 
estimates which allow the approximate calculation of D% in relatively few 
steps and with a reasonable degree of accuracy (cf. [215]). As a consequence, 
it is impossible to give an easy description of the finite sequences of iV points 
in Is with minimal discrepancy D%, as was done in (3.3) for s = 1. Finding 
these sequences is a laborious computational task, which is nontrivial even for 
the limited range considered in [361], namely s — 2 and 1 < N < 6. 

With increasing dimension, the requirement on a sequence to have a small 
discrepancy becomes more stringent. This is reflected in the known lower 
bounds for the discrepancy, which depend on the dimension. Roth [261] 
established a general lower bound on the L2 discrepancy TN, and conse­
quently on D%. In detail, for any JV points in Is we have 

D%> TN>CsN-\\ogN) (s-D/2 (3.10) 

with a positive constant Cs only depending on s. According to [174, p. 102] we 
may take C, = 2"45((^ - l)log 2)(1"5>/2 for s > 2. An improvement on the 
order of magnitude of this bound for D% is only known for 5 = 2, where W. 
M. Schmidt [282] showed14 

14 The constant appearing 
109]. 

here is better than in the original paper and was obtained in [174, p. 
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log AT 
" » > (132 log 4) N <3"> 

for any N points in I2. For infinite sequences of points in Is, it follows from 
(3.10) and a standard argument (cf. [174, p. 105]) that 

D* > C/AT"1 (logN)s/2 (3.12) 

for infinitely many AT, where C/ is an effective positive constant only 
depending on s. A sharper bound is only available f or s = 1 and was 
mentioned in the discussion of the one-dimensional case. 

The lower bound (3.11) f or s = 2 is best possible as far as the order of 
magnitude is concerned. A sequence of N points in I2 with D% = 
0(N~l log N) was, for instance, constructed by Roth [261]. It consists of the 
points (n/N, <t>2(n)% n = 0, 1 , . . . , N — 1, where <f>2 is the radical-inverse 
function from (3.5). In case AT is a power of 2, this sequence is known as the 
Roth sequence. For such N, the constant implied in Roth's estimate was 
improved by Gabai ([75], [76]) and an exact formula was obtained by Halton 
and Zaremba [103], in which the leading term for ND% is (l/3)log2Af (see [92] 
for an estimate with this leading term). 

In the 2-dimensional case, the lower bound for the L2 discrepancy TN in 
(3.10) is also best possible apart from the value of the constant. Curiously 
enough, this lower bound is not reached by the Roth sequence, for Vilenkin 
[346] gave an exact formula15 for NTN with leading term (l/8)log2 N (see [92] 
for an estimate with this leading term). Finite sequences with TN = 
0(AT_1(log N)X/1) were first constructed by Davenport [50]. His sequences 
are basically of the form (n/N, {na}), n = 0, 1 , . . . , N — 1, where a is an 
irrational with bounded partial quotients in its continued fraction expansion. 
Examples of such sequences involving only dyadic fractions (as is the case in 
the Roth sequence) were first obtained by Vilenkin [346] by introducing a 
perturbation in the Roth sequence. His exact formula for NTN has leading 
term ((l/24)log2 N)l/2. Another example (called the Zaremba sequence) 
yielding the even smaller leading term ((5/192)log2 N)l/2 was found by 
Halton and Zaremba [103], using a different perturbation of the Roth 
sequence.16 The Zaremba sequence may be described as follows. Let AT be a 
power of 2, say N = 2k, k > 1; then the sequence consists of the N points 

( ak ak* ax a\ a2 a'k \ 

— + -^—- + • • • + — — + — + • • • + — \ G I2 

2 22 2* ' 2 + 22 2* / 
where al9..., ak take independently of each other the values 0 and 1, while 
a\ = q for i even, a\ = 1 — at for i odd. Not surprisingly, the discrepancy D% 
of the Zaremba sequence is smaller than that of the Roth sequence; in fact, 
the exact formula in [103] for ND% involves the leading term (l/5)log2 N. See 
also [100] for a summary of these results. White [360] considered analogues of 
the Roth and Zaremba sequences using an arbitrary base in the construction 
(rather than the base 2 in the original sequences) and gave formulas for their 

15 This formula was shown independently by Halton and Zaremba [103]. 
16 See also Roth [262] and Vilenkin [347]. 
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L2 discrepancies (compare also with [357]). 
The construction techniques described above can be used for an arbitrary 

dimension s > 2. The so-called Hammersley sequence (of order N) was 
introduced in [105] (see also [99]) and is composed of the N points (n/N9 

<t>gl(n), . . . , 4>gs_x(n% n = 0, 1, . . . , N - 1, in Is, where the bases 
£i» • • • 9&-1 of the radical-inverse functions are supposed to be pairwise 
relatively prime. Usually, one takes for gv . . . , gs_x the first s — 1 primes. 
The discrepancy DN of the Hammersley sequence was estimated in [99], with 
the result that DN < CN~\logNy-1 for all N > 2, where the constant C 
only depends on gl9..., gs_v An infinite sequence with uniformly small 
discrepancy was constructed in [99] and is nowadays called the Halton 
sequence. Its terms are the points (<t>gl(ri)9..., <f>gs(n))9 n = 0, 1 , . . . , in I\ 
where g„ . . . , gs are pairwise relatively prime bases. A convenient algorithm 
for fast computer generation of these points is available in [102]. The 
discrepancy DN of the Halton sequence has the order of magnitude 
AT-1(log NY, as shown in [99]. Better constants were obtained by Meijer 
[195], and his estimate yields 

NDN<2% g,.+ (21ogiV)* f[ ^ — forN>l. 

A higher-dimensional analogue of the Zaremba sequence was proposed in 
[357]. We may summarize the above results as follows. 

3.6. THEOREM (HALTON [99]). For any dimension s > 1, there exists an 
infinite sequence of points in Is such that 

DN = 0(N-l(logNY). (3.13) 

In addition, for every N > 2 there exists a finite sequence of Npoints in Is such 
that 

DN = 0(N-l(logN)s~l). (3.14) 

This result is significant since it guarantees that for any dimension there 
exist quasi-Monte Carlo techniques that perform substantially better than the 
statistical Monte Carlo method. 

It is a widely held belief that the orders of magnitude in (3.13) and (3.14) 
are best possible. In (3.13) this is known only for s = 1 (see the result of W. 
M. Schmidt [282] quoted in the discussion of the one-dimensional case), and 
in (3.14) only for s = 1 (cf. [174, p. 90]) and s = 2 (by (3.11)). Otherwise, there 
remains the gap between (3.13) and (3.12) on the one hand and between 
(3.14) and (3.10) on the other. 

K. F. Roth has informed the author about an important development 
concerning the L2 discrepancy TN for higher dimensions. In his forthcoming 
paper [263], Roth shows for any N > 2 the existence of a sequence of N 
points in I3 with TN = 0(N~l log N), and in [264] he establishes for s > 4 
and any N > 2 that there are sequences of AT points in Is with TN = 
0(N~l(}ogNfs-1^2). Therefore, the lower bound for TN in (3.10) is best 
possible. Calculations of L2 discrepancies for interesting sequences in 
dimensions 2 < s < 9 were carried out in [357]. As to the Lx discrepancy, 



QUASI-MONTE CARLO METHODS 979 

Sobol' [299] has given a lower bound for any dimension that is of the order 
AT""1. This is best possible for j - 1. For s > 1, W. M. Schmidt [284a] 
recently obtained an improved lower bound of the order 

N ' ! (log log JV)/log log log N, 

and in the same paper it is shown that in (3.10) the L2 discrepancy TN can be 
replaced by the Lp discrepancy for any/? > 1. 

The distribution behavior of sequences such as the van der Corput and 
Roth sequences has led I. M. Sobol' to the development of a general theory of 
sequences possessing certain uniformity properties with respect to dyadic 
boxes. Here it is convenient to count also ƒ as a dyadic interval, so that I may 
now be used in the formation of dyadic boxes (compare with §2). We 
consider first the case of a finite sequence.17 

3.7. DEFINITION (SOBOL' [298], [300]). For a nonnegative integer T, a finite 
sequence of points in Is is called a Pr-net if it contains 2k points, where k > r 
is an integer, and if every dyadic box of volume 2T~k contains exactly 2T 

points of the sequence. 
For instance, every initial segment of the van der Corput sequence 

containing 2k points, where k > 1, is a P0-net in ƒ, and the Roth sequence is a 
P0-net in I2. The parameter T cannot be selected quite arbitrarily since its 
choice is limited in a certain way by the dimension s. For example, there exist 
arbitrarily long P0-nets in ƒ, 72, and 13, but no P0-net in Is, s > 4, containing 
more than 2 points (Sobol' [300]). Let the least value of r for which there exist 
arbitrarily long PT-nets in Is be denoted by T(S). Thus, T(1) = r(2) = T(3) =* 
0; moreover, T(4) = l and, in general, r(s) = 0(s log s) according to [303, 
Chapter 6]. The number r(s) may be thought of as a geometric characteristic 
of the ^-dimensional unit cube. Explicit constructions of PT-nets in Is for 
T > T(S) can be found in [300], [303, Chapter 6]. These constructions involve 
only very simple digital operations with dyadic fractions, so that PT-nets may 
be generated easily in binary computers. 

If T is small, one would expect a PT-net to display an excellent distribution 
behavior. This is reflected in a general inequality for the nonuniformity 
9^(2*) of a PT-net in Is containing 2k points, namely 

^ ( 2 * ) < 2 - l + * . (3.15) 

It should be emphasized that this bound does not depend on k. In other 
words, the nonuniformity of a PT-net is 0T(1) in terms of the length of the net. 
In the light of the error estimate (2.9), this guarantees the usefulness of 
PT-nets for the purposes of numerical integration. We can have equality in 
(3.15); e.g., if s = 1, 2, or 3 and k > s - 1, then every P0-net in Is containing 
2k points satisfies yj?) = 2s'l (cf. [303, Chapter 6]). There is also a 
discrepancy estimate for PT-nets, to the effect that the discrepancy D% of a 
PT-net in Is containing N = 2k points satisfies 

ND% < T'S (* 7 T) (3.16) 

17 The Russian literature uses the concise term "net". 
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provided that k > s - 1 + T ([298], [300]). Since k is of the order of magni­
tude log N9 the inequality (3.16) leads to the estimate D% = 
Or(N ~l(log Ny~l). In other words, the performance of PT-nets with small T 
can be compared to that of the Hammersley sequence. In fact, if we take for a 
given dimension s a PT-ne* in Is with minimal T, i.e., with T = r(s), then an 
analysis of the constants implied by (3.16) and by the known discrepancy 
estimate for the Hammersley sequence reveals that, at least for sufficiently 
large s, such PT-nets actually "beat" the Hammersley sequence ([300], [303, 
Chapter 6]). The expected integration error implied by the use of PT-nets and 
an integrand chosen at random from a class of functions with rapidly 
convergent Haar series was estimated in [308], with an improvement in [310]. 

We turn now to the analogous theory for infinite sequences. We use the 
following terminology: if XQ, x„ . . . is an infinite sequence, then by a binary 
segment thereof we mean a block consisting of those xn with hi1 < n < 
(h + 1)2', where h > 0 and i > 1 are fixed integers. 

3.8. DEFINITION (SOBOL' [298], [300]). For a nonnegative integer T, an 
infinite sequence of points in Is is called an LPT-sequence if each of its binary 
segments containing at least 2T+1 points is a PT-net. 

The simplest example is provided by the van der Corput sequence, which 
forms an LP0-sequence in I. It is clear from the definitions that LPT-sequen-
ces can only exist for r > T(S). But more care has to be taken since we have, 
for instance, T(3) = 0, but there are no LP0-sequences in I3; on the other 
hand, I2 still contains LP0-sequences (cf. [303, Chapter 6]). As to the explicit 
construction of LPT-sequences, the principles pertaining to PT-nets also apply 
here. For every dimension s, concrete values of r are known for which 
LPT-sequences in Is exist. 

On the basis of their definition, Li^-sequences should be very evenly 
distributed. More explicitly, every LPT-sequence in Is satisfies 

VviN) < 2'"1+T for all AT > 1, (3.17) 

so that v^iN) = 0(1) as a function of N (cf. [298], [300]). From the criterion 
for uniform distribution in terms of cp̂  it follows then that every LPT-
sequence is uniformly distributed. We also infer from (3.17) that the van der 
Corput sequence satisfies (p^iN) = 1 for all N > 1, a fact already established 
in [294], and since we have y^N) > 2 for any N points in I2 with N > 2 
([303, Chapter 4]), there is a sequence in I2 with (p^iN) = 2 for all N > 2. 
Analogous questions for 13 have been discussed in [305]. For the discrepancy 
D% of an LPT-sequence in Is one has the estimate 

JVZ>£<2T2 ( m 7 ^ J " 1 ) + 2 T - l foriV >2*~1+T, (3.18) 

where m = [log2 JV] (cf. [298], [300]). In terms of orders of magnitude we 
obtain D% = 0(N~xQog NJ\ as for the Halton sequence. If one chooses for 
a given dimension s the minimal T for which an Li^-sequence in Is is known 
to exist, then it turns out that the bound in (3.18) is asymptotically better than 
the corresponding one for the Halton sequence, in the sense that the implied 
constant is smaller for sufficiently large s (cf. [300], [303, Chapter 6]). 
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LPT-sequences in I* possessing additional uniformity properties, e.g., with 
respect to the 2s cubes into which Is is divided by the hyperplanes Xj = 1/2 
(1 < j < s), have been considered in [315], [316]. 

A program for calculating LPT-sequences was written up in [317]. Tables 
for generating such sequences are available in [303, Chapter 6], [309, Appen­
dix], [316] and extend now to the dimension s = 51. The only detailed 
expository account of the theory of PT-nets and LPT-sequences is in Russian 
(cf. [303]). 

Quasi-Monte Carlo methods based on LPT-sequences have been employed 
in various contexts. We mention applications to search algorithms ([3], [309, 
Chapter 8], [317]), to the problem of bounding the real parts of the eigenval­
ues of a matrix [318], and to the simulation of systems [353]. 

Following this discussion of special sequences, we add some remarks 
concerning the estimation of discrepancy in the multidimensional case. Be­
cause of later applications and the fact that the points in many of the 
interesting finite sequences have rational coordinates, we state a generaliza­
tion of Lemma 3.3 that is proved in the same way as before. For an integer 
m > 2, the summation symbol 2£ (modm) designates a sum over all lattice 
points h = (hl9 ...,hs)GZs with - m / 2 < hj < m/2 for 1 < j < s and h ^ 
0. For a lattice point in this range, we define 

r(h, m) = r(hl9 m) • • • r(hs9 m), (3.19) 

where r(h, m) « m sin(7r|A|/m) for h ^ 0 and r(0, m) = 1. 

3.9. LEMMA. Let y 0 , . . . , yAr_1 be s-dimensional lattice points. Then for any 
integer m > 2, the discrepancy DN of the finite sequence of fractional parts 18 

{(\/m)lo}> • • • » {Q/™)yN-\} satisfies 

i N~x I 
J_ ^ e27T/h-y„/m 

where the dot denotes the standard inner product in Rs. 

There is also a multidimensional version of the general inequality stated in 
Theorem 3.1 (see [234]). The special case contained in Corollary 3.2 had been 
generalized earlier ([157], [331]); see also [174, p. 116]. Extensions of the 
results in Theorem 3.4 and Corollary 3.5 to higher dimensions are not known. 

The isotropic discrepancy JN introduced in Definition 2.12 has received 
some attention recently. A global lower bound was established by W. M. 
Schmidt [284], namely 

JN > Ç,J\n2/(j+!) (3.20) 

for any N points in Is, where Cs is a positive constant only depending on s. 
This is a considerable improvement on a result of Zaremba [370]. The 
expected order of magnitude of JN for a sequence of points selected at 
random from Is is also known. For s = 2, Philipp [244] proved a law of the 
iterated logarithm for the isotropic discrepancy, and so, in particular, JN = 
0(JV~1/2(loglog N)l/2) almost surely. Stute [330] investigated the behavior 

18 For t « (f, ts)E R', we define {t} * ( { * , } , . . . , {ts}) € Is to be its fractional part. 



982 HARALD NIEDERREITER 

of JN for higher dimensions and obtained the following metric theorems. For 
s = 3, we have JN = 0(N~ 1/2(log iV)3/2) almost surely, and f or s > 4 we 
have 

JN=0(N-2/(j+ ,}(log N)2/(S+°) almost surely. 

These results indicate that the lower bound (3.20) is remarkably accurate. In 
fact, for s > 3 the exponent of N in (3.20) cannot be improved, and there is a 
very thin margin between the performance of sequences with minimal isotro­
pic discrepancy and that of random sequences. The information currently 
available does not allow us to decide whether (3.20) is also best possible for 
j = 2. There is also an open question concerning the law of the iterated 
logarithm for JN. Clearly, the lower bound (3.20) rules out such a law for 
s > 4, but it could conceivably hold for 5 = 3. 

At present, one knows of no feasible method of estimating the isotropic 
discrepancy of interesting sequences of points in Is, s > 2, in a direct manner. 
There is, however, a way of getting upper bounds for JN via the discrepancy 
DN. The best result in this direction is an inequality of Niederreiter and Wills 
[235] to the effect that 

JN < 45 D}/* (3.21) 

for any N points in Is. This improves earlier estimates in [111], [119], [206], 
[217]. An example of Zaremba [367] shows that the exponent \/s in (3.21) is 
best possible. On the basis of a theorem of Niederreiter [215], Zaremba [376] 
presents an algorithm for calculating JN in case 5 = 2. Computational 
experience with this algorithm is still lacking. 

If °5tb is the family of subsets of Is introduced in Definition 2.10, then the 
discrepancy DN(<d\ib) defined in accordance with Definition 2.5 can still be 
estimated in terms of DN. We recall that this type of discrepancy occurs in the 
error bound for quasi-Monte Carlo integration over a Jordan-measurable 
subset of Is (see Theorem 2.11). The following general result holds. 

3.10. THEOREM (NIEDERREITER AND WILLS [235]). Let b - b(e) be a 
nondecreasing function on the positive reals with b(e) > e for all e > 0 and 
lime_>o+£(€) = 0. Then for any N points in Is the discrepancies DN(ty(Lb) and 
DN satisfy 

DN{<$lb)<4b(2VSDy°). 
A somewhat better, but more complicated estimate, which holds also 

without the condition b(e) > c, is contained in the original paper. The first 
inequality of this type was shown in [220]. In the interesting case where 
b(e) = Ce for e > 0, with C > 0 being a constant, the inequality in [235] 
yields 

DN (%,) < (4CVJ + 2C + \)D}/5. 

For this special case, W. M. Schmidt [284] shows that a similar estimate holds 
with DN replaced by the "cube discrepancy", i.e., the discrepancy DN{%) 
with % being the family of closed cubes in V with sides parallel to the 
coordinate axes.19 

19 W. M. Schmidt also studied the discrepancy with respect to other families of special sets 
such as triangles, balls, spherical caps, etc. We refer to [283] for an account of this work. 
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For certain purposes it has become necessary to construct sequences of 
quasi-random points in the infinite-dimensional unit cube 7°°, the cartesian 
product of denumerably many copies of I. Sobol' [293] defined an infinite-
dimensional version of the Halton sequence, and the same author [301] 
introduced LPT-sequences in I°°. Both types of sequences are not only useful 
for numerical integration in I °° ([293], [301], [303, Chapter 7], [309, Chapter 
7], [313], [314]), but also for solving integral equations [313], simulating 
Markov chains ([312]-[314]), and for problems arising in particle physics 
[302]. 

4. Good lattice points. The method of low-discrepancy sequences suffers 
from a drawback that we have not yet brought into focus, but which is quite 
apparent upon inspection of the error bounds in §2. The point is that once the 
integrand is sufficiently regular, say of bounded variation in the sense of 
Hardy and Krause, then any additional regularity of the integrand is not 
reflected in the error estimate. This is in marked contrast to classical 
integration methods which, as a rule, become more efficient the more regular 
the integrand is. It should be mentioned, though, that the said deficiency is, in 
principle, also shared by the statistical Monte Carlo method. 

There is a special kind of quasi-Monte Carlo technique, the so-called 
method of good lattice points, in which the degree of regularity of the integrand 
is duly honored. But a price has to be paid for this luxury since this method 
only applies to integrands that are periodic of period 1 in each variable. If ƒ is 
such an integrand defined on R', then the approximation used in this method 
is of the form 

ƒ,ƒ(«* «± £/(£•). (4-1) 
where m > 2 is a fixed (large) integer and g E TI is a suitably chosen 
^-dimensional lattice point. Although the nodes (n/m)g in (4.1) need not 
belong to Is, the approximation (4.1) is really of the same type as those 
considered earlier since each node may be replaced by its fractional part 
{(n/m)g) E Is because of the periodicity property off 

At first glance, the restriction to periodic integrands seems to render the 
method unfit for most practical applications. However, there are ways of 
transforming a given integrand into a periodic one while preserving regularity 
properties and the value of the integral, though this has to be done at the 
expense of further calculations. A simple device20 is the replacement of a 
given function ƒ on Is by the function 

*(/„...,/,)-2-*2 ••• i; A«i + ( -0%..- .* + (-i)*0 
«1=0 e5«0 

for (/„ . . . , / , ) E Is. Then h is identical on opposite faces of Is and can 
therefore be extended to a periodic function on Rs of period 1 in each 
variable. Furthermore, we have 

20 This symmctrization process may be seen as an analogue of the antithetic variate technique 
in the statistical Monte Carlo method (cf. [28, Chapter 2, §2]). 
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More sophisticated methods depend on appropriate changes of variables 
([109], [169], [275]) or on adding an expression involving Bernoulli 
polynomials to the integrand ([167], [169], [369]). Surveys of these methods 
can be found in [369], [373]. 

The lattice point g e Z 5 should be chosen so as to yield a small error in 
(4.1). Let ƒ be a function on Rs which is periodic with period 1 in each 
variable and can be expanded into an absolutely convergent multiple Fourier 
series 

At) - 2 che2"*\ 
h 

where the sum is extended over all lattice points h E lî and h • t denotes the 
standard inner product in R5. If we write again e(t) = elmit for / G R and 
observe that c0 = ƒP /(t) dt9 then we get 

Now the inner sum is equal to 0 if h • g ^ 0 (mod m) and equal to m if 
h • g = 0 (mod m), and so 

i 2 X£ «)-ƒ/»*- 2 ch. (4.2) 
h-g=0 (mod m) 

Thus the integration error depends on the magnitude of certain Fourier 
coefficients. As in one-dimensional harmonic analysis, there is a principle in 
operation which says that the more regular ƒ is, the more quickly its Fourier 
coefficients ch will tend to 0 as h moves away from the origin. We measure the 
distance of h = (hx, . . . , A J e Z 5 from the origin by the expression 

s 

r(h) = II max(l, |^|). (4.3) 
j=\ 

In other words, r(h) is the absolute value of the product of the nonzero 
coordinates of h. 

4.1. DEFINITION. For real numbers k > 1 and C > 0, we say that ƒ e 
£*(C)if 

\ch\ < C r(h)~* for all h ^ 0, (4.4) 

and that ƒ E &k if ƒ e Ê*(C) for some C > 0, i.e., if (4.4) holds for some 
C > 0 . 

There is a sufficient condition for the validity of (4.4) that is easier to 
check. Let k > 1 be an integer and suppose all the partial derivatives 



QUASI-MONTE CARLO METHODS 985 

9*i+ •••+«ƒ 
8/y, . . . fog, withO < $ < £ - 1 for 1 < y < s 

exist and are of bounded variation on Is in the sense of Hardy and Krause; 
then ƒ G ëk(C) with a value of C which can be given explicitly (Zaremba 
[366]). Thus (4.4) may be thought of as a regularity condition on/. 

If ƒ G S*, then it is seen easily that its Fourier series is automatically 
absolutely convergent. By combining (4.2) and (4.4), we arrive at the fol­
lowing result which will be basic for the sequel. To facilitate the writing, we 
set 

P(*}(ftm)- 2 r(hyk. 
h*g=0(modm) 

4.2. THEOREM (KOROBOV [161], HLAWKA [113]). For every ƒ G Ê*(C), 
g G Z5, and integer m > 2, we have 

iité*)-!,™* < CP(k\g9 w). 

It is clear that in the sum P{k\g9 m) the main contribution comes from the 
lattice points h close to 0. We introduce a simplified, and finite, sum taking 
into account only such lattice points. We make use of the summation symbol 

2* (4-5) 
h (mod m) 

which designates (as in Lemma 3.9) a sum over all h = (hv . . . , hs) G 21 with 
- m/2 < hj < m/2 for 1 < j < s and h * 0. 

4.3. DEFINITION. For g e ï and an integer m > 2, we set 

h (mod m) 
h-g=0(modm) 

The sum P(k\g, m) can now be estimated in terms of R(g, m). In fact, by 
using the method in [174, pp. 156-157] one shows that for any k > 1, g G Zs, 
and integer m > 2 we have 

P(k\g, m)<(l+ 2f (*))*(«-* + R(g, «)*), (4.6) 

where Ç(k) = SJJLi»"* is the Riemann zeta-function. 
Because of Theorem 4.2 and the estimate (4.6), the usefulness of the present 

method depends on our ability to find lattice points g for which R (g, m) is 
small. The following new result, which was so far only known for primes m 
([113], [373]), guarantees the existence of such lattice points. 

4.4. THEOREM (NIEDERREITER [231]). For any integer m > 2 and every 
dimension s > 2, there exist lattice points g E Z 5 with coordinates relatively 
prime to m and 

R(g9 m) < m~ l(l + 2 log m)\ (4.7) 

A lattice point g G 71 satisfying (4.7) is called a good lattice point modulo m. 



986 HARALD NIEDERREITER 

Korobov [161], [163], [169] speaks of "optimal coefficients modulo m" when 
referring to the coordinates of good lattice points modulo m. By combining 
the above results, we obtain that for a good lattice point g modulo m the 
integration error in (4.1) is of the order of magnitude 0(m~*(l°g W)fo) f°r 

integrands ƒ E S*. Therefore, the error becomes smaller for larger k, i.e., for 
more regular integrands. Bahvalov [5] has shown that at least for primes m 
there exist lattice points g for which the exponent ks of log m can be replaced 
by k(s - 1), but it is also known (see Sarygin [276]) that the exponent cannot 
be reduced to anything less than s — 1. 

The expression defining R (g, m) does not lend itself to a convenient 
numerical treatment since it is a sum of many small numbers. A quantity that 
is much easier to calculate is the integer 

p(g, m) = min r(h) for gEZs,s >2, (4.8) 
h 

where h ranges over the same lattice points as in the summation for R (g, m), 
i.e., h = (hl9 ...,hs)EZ* with h i- 0, h- g = 0 (mod m), and - m / 2 < hj < 
m/2 for 1 < j < s. It is trivial that 

l /p(g,m)<tf(g,m). (4.9) 

On the other hand, R (g, m) may also be estimated from above in terms of 
P(g> m)- The following inequality improves upon earlier results of Hlawka 
[113] and Zaremba [373]. 

4.5. THEOREM (NIEDERREITER [229]). For any integer m > 2, any dimension 
s > 2, and any lattice point % EL If we have 

(log2)5-1p(g,/w) K&"0 \ J - l / 
where p = [log2m]. 

It is now clear that, as far as the quantity p(g, m) is concerned, the 
desirable lattice points are those for which p(g, m) is large. Such lattice points 
are also labeled "good lattice points modulo m". Thus, the characteristic 
property of a good lattice point g modulo m may be informally described by 
saying that all lattice points h ^ 0 solving the congruence h • g = 0 (mod m) 
should be rather far removed from the origin.21 By combining (4.7) and (4.9), 
we see that p(g, m) can be at least of the order of magnitude m/logf m. A 
direct approach, first used by Hlawka [116] for primes m, yields an even 
better result. 

4.6. THEOREM (ZAREMBA [375]). For every dimension s > 2 and every 
sufficiently large integer m there exists at least one lattice point g = 
(1, g2,. • •, &) ^ Zs such that 

p(g, m) > (s - 1)! m/ (2 log m)s~\ 

At least for primes m, this result can be made effective by using the method 

21 This could be thought of as a modulo m analogue of the notion of "badly approximate 
point" in simultaneous diophantine approximations (compare with §5). 
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in [229, §4]. On the other end of the scale, we have p(g, m) < m/2 for any 
g E Zs

9 s > 2, and any integer m > 2. For if g = (gl9..., gs) with gx 

relatively prime to m, then hgx + g2 = 0 (mod m) for some h E Z with 
— m/2 < h < m/2, and so p(g, m) < max(l, |A|) < m/2. Otherwise, there 
exists a proper divisor d of m with rfgi = 0 (mod m), and then p(g, m) < |</| 
< m/2. 

The quantity P(k\g9 m) occurring in the error bound in Theorem 4.2 can be 
estimated directly in terms of p(g, m). First of all, it is clear from the 
definitions that for s > 2 we always have 

P<*>(g, m) < /><% m)/p(g, m)*"2 for k > 2. (4.10) 

A detailed study of P(2)(g, m) leads then to the following inequality. 

4.7. THEOREM (ZAREMBA [373]). For every dimension s > 2, any integer 
m > 4 and any lattice point of the form g = (1, g 2 , . . . , gs) E 71 we have 

In the 2-dimensional case, the size of the constants appearing in the above 
estimate can be reduced substantially (cf. [377]). Together with (4.10), we find 
that for s > 2 the quantity P{k\%9 m) is of the order of magnitude 
O(p(g,m)^0ogmy-1). 

It must be pointed out that the existence theorems for good lattice points 
(Theorems 4.4 and 4.6) are by no means constructive, as they depend, 
respectively, on an averaging argument and a technique of eliminating "bad" 
lattice points. In general, the only way known so far of producing good lattice 
points is by an extensive search based on tabulations, preferably of the 
quantity p(g, m). This is a finite search problem since g only matters mod m, 
so that a priori there are ms candidates in dimension s. Usually one restricts 
the attention to lattice points of the form (1, g29..., gs)9 which further limits 
the number of possibilities. The task of finding good lattice points is com­
plicated by the fact that their coordinates depend strongly on the dimension. 
Thus, simplistic schemes such as taking a good lattice point (g{9... 9gs) 
modulo m and searching for an integer gJ+1 so as to get a good lattice point 
(g\> •••»&» &+i) modulo m in dimension s + 1 are, as a rule, doomed to 
failure (see however [378]). The reason is, of course, that the nature of the 
solutions h of a congruence h • g = 0 (mod m) changes if an additional 
coordinate is introduced. However, "going down" in the dimension is feasible 
to some extent because of the following principle. Let g(5) = (gl9..., gs) E 
Zs with s > 3 and consider the "truncated" point g^ = (gl9..., gt)9 where 
2 < t < s; then we have 

R (g('}, m) < R (g(s\ m) for any integer m > 2, (4.11) 

since with any lattice point h(/) * (hl9..., ht) E 71 contributing to the sum 
defining R(g'\ m) the lattice point h(j) * (hl9..., ht9 0 , . . . , 0) E Zs 



988 HARALD NIEDERREITER 

contributes to the sum defining R (g^, m) and r(h('}) = r(h(*}). For a similar 
reason we have 

p(g(0, m) > p(g(*\ m) for any integer m > 2. (4-12) 

If g(5) is now a good lattice point modulo m, say with p(g*5), m) large (or even 
as large as possible), then p(g(0, m) is large, which makes g(0 an acceptable 
lattice point-but there is, of course, no guarantee that g(/) will have retained 
the optimality property. 

From the constructive point of view, the only case that has been dealt with 
in a satisfactory manner is s = 2. For s > 3 one has to take recourse to the 
currently available tables. The most useful table in the literature is the one of 
Maisonneuve [185] for dimensions 3 < s < 10 and with the order of magni­
tude of the moduli m being as large as 105. An earlier table of Saltykov [274] 
is reprinted in [169] and covers certain prime moduli for dimensions 3 < s < 
6 and moduli that are products of two distinct primes for dimensions 
3 < s < 10. A short table for some selected prime moduli and dimensions 
s = 3, 4, 5, 6, 8, and 10 was compiled by Haber [96]. Kedem and Zaremba 
[148] extended the calculation of Maisonneuve for s — 3. Further efforts are 
reported in [147]. Some of these tables are restricted to good lattice points of 
the form (1, g, g 2 , . . . , gs~l) which are easier to search for since there are 
initially only m candidates. The use of these special lattice points was 
suggested by Korobov [165], [166], [169]. They also play an important role in 
a different context to be expounded later (see §11). Integration errors in­
volved in the calculation of typical 4-dimensional integrals by the method of 
good lattice points were tabulated by Bruslinskaja [26] (see also [169, Chapter 
3]), and for 3- and 4-dimensional integrals by Maisonneuve [185]. 

As was already mentioned, an explicit construction of good lattice points is 
possible in the 2-dimensional case. It rests on observing and exploiting an 
intriguing relation with continued fractions. For an integer m > 2, we consi­
der a lattice point g = (1, g) with gcd(g, m) = 1. Let 

Q _ 1 

— = [<*0> <*\> <*2>---> a q \ = a0 + j 

be the expansion of the rational g/m into a finite simple continued fraction, 
where we assume aq = 1 for the sake of uniqueness. The integer a0 is just the 
integral part of g/m and is actually not relevant since we may as well 
suppose that 1 < g < m. The positive integers al9 a2,..., aq are the partial 
quotients of g/m. Let 

K(g/m) = max(al5 a2,..., aq) (4.13) 

be the largest partial quotient. Then Zaremba [365] has shown that 

^ 2 < p ( 8 ' m ) < f w i t h t f = t f ( | ) . (4.14) 

Consequently, we obtain good lattice points modulo m by choosing rationals 
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g/ m with small partial quotients. For somebody familiar with diophantine 
approximations, this should not come as a surprise since good lattice points 
were described earlier as analogues of "badly approximate" points, and this 
diophantine approximation property is governed by the size of partial 
quotients.22 

One would expect to get "best" lattice points by selecting rationals g/m 
with K(g/m) = 1. These rationals are produced via the sequence of 
Fibonacci numbers, defined by Fx = F2 = 1 and Fn = Fn_x + Fn_2 for n > 
3. We put then g = Fn_x and m = Fn9 where n > 3, and we have K(g/m) = 
1 as desired. This choice of parameters goes back to Bahvalov [5] and Hua 
and Wang [130]. For the lattice point g = (1, Fn_x) we have then p(g, Fn) = 
Fn„2 according to a result of Zaremba [365]. Therefore, 

p(g,Fn) = (Fn_2/Fn)Fn>ÎFn f o r * > 5 , (4.15) 

and in the same paper of Zaremba it is verified that for any fixed n > 5 the 
lattice point g yields the largest possible value of p(-, Fn). The upshot of this is 
that for infinitely many moduli m there are lattice points g such that p(g, m) is 
of the order of magnitude m. This is better than what is predicted by 
Theorem 4.6 for s = 2. It follows from (4.10) and Theorem 4.7 that for these 
lattice points g we get P(A:)(g, m) = 0(m~klog m) for k > 2, and so the lower 
bound of Sarygin for the integration error (which we have mentioned earlier) 
is attained for s = 2. More concretely, Zaremba [377] has shown for g = 
( l ^ ^ t h a t 

C c \k~2 log F 
| J — ^ forfc>2andfl > 5. 

A detailed study of these lattice points g was undertaken in [371]. Two-
dimensional lattice points arising from continued fraction expansions are also 
discussed in [98]. 

The question poses itself whether in the 2-dimensional case p(g, m) can 
reach the order of magnitude m for all moduli m and not just for the 
Fibonacci numbers. Because of (4.14) this is equivalent to the following 
problem about rational continued fractions. For m > 2 we set 

Km = min K(^) 
m g \mj 

gcd(g,w)«l 
and we ask whether Km is uniformly bounded. Zaremba [373, p. 76] has put 
forth a conjecture which amounts to suggesting that Km < 5 for all m > 2. 
This would mean that for every integer m > 2 there exists a reduced fraction 
g/m for which all partial quotients are bounded by 5. It would also imply 
that for every modulus m there is a lattice point g with p(g, m) > m/1. 
Borosh [23] calculated Km for 2 < m < 104 and verified Zaremba's conjec­
ture for this range. Actually, his data show that in this range we have Km = 5 
only for m = 54 and m = 150 and Km = 4 for 23 values of m, the largest one 
being m = 6234. More recent calculations of Borosh and Niederreiter [24] 

22 For instance, for irrational numbers it is known that the smaller the partial quotients, the 
"worse approximable" the number. 
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yield Km < 3 for m = 2", 1 < a < 35, with Km = 2 occurring frequently. 
There seems to be ample evidence to conjecture that Km < 3 for all 
sufficiently large m and that the set of m > 2 with Km = 2 has positive lower 
density. The best order of magnitude presently known is Km = 0(log mX 
which follows from Theorem 4.6 and (4.14). 

The information available for s = 2 suggests that in the general case there 
may exist good lattice points g modulo m (at least for an infinite class of 
moduli m) such that p(g, m) is of the order of magnitude m/(log nif~2. There 
is some empirical evidence supporting this conjecture, but nothing has been 
proved in this direction for s > 3. 

Attempts have been carried out, however, to explicitly construct lattice 
points g E Z5, s > 3, for which p(g, m) is at least of a tolerable size. Taking as 
their cue the analogy between good lattice points and badly approximable 
points (in the sense of simultaneous diophantine approximations), Hua and 
Wang [134] employ the following procedure. Let a = (a2,..., a,) E Rs~l 

have coordinates which are real algebraic numbers such that 1, a 2 , . . . , as are 
linearly independent over the rationals. For a fixed integer m > 2, let 
&> • • • > & b e integers such that we have the simultaneous diophantine 
approximation 

\(Xj-gj/m\ < dm"s/is-l) îor2< j<s, 

where d is a positive constant. Then it is shown that the lattice point g = (1, 
fo • • • > &) satisfies 

p(g, m) > c(a, e, d, s)ms^^l)^ (4.16) 

for every e > 0, where c(a, e, rf, s) is a positive constant depending on the 
indicated parameters. As to a convenient choice of a, the authors already 
proposed in [132], [133] to consider, for a prime 2s + 1, the numbers 

2ir(j - 1) 
OLJ = 2 cos 2 t for 2 < j < s, 

which together with 1 form a basis for the real cyclotomic field 
Q(2 cos 2TT/(2S + 1)) of degree s over Q. Calculations of Haber [96] used this 
particular point a and led to promising results. 

Another construction of Hua and Wang [134] is based on the properties of 
a special class of algebraic numbers. Let w be a PV number (for Pisot-
Vijayaraghavan number) of degree s > 2, i.e., w is a real algebraic integer of 
degree s such that <o > 1 and its remaining algebraic conjugates <o (2 ) , . . . , w(j) 

all lie in the open unit disk. We may order these conjugates so that 

|(o(2)| <|<o(3)| < • • • <|<o(*>| < 1. (4.17) 

Suppose the minimal polynomial of o) over Q is xs — as_xx
s~x — . . . — axx 

- a0 E Z[JC], and let b = (b^ bx>..., 6,_i) E ZJ be a lattice point =̂ 0. 
Define the linear recurring sequence Q0, g „ . . . of integers by Qt = 6, for 
0 < i < J — 1 and the recurrence relation 

Qn+s - ^ - l ô i + , - l + • • • + 0 l o * + l + <*oQn fOT« - 0, 1, . . . . 

Then for sufficiently large /* we have \Qn\ > 2 and the lattice point g = (1, 
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On-!>••• .&+,-!) satisfies 

P(& IÔ„l) > ' (« , M)|ôn | ( ,+ /? ) /2-e (418) 
for every e > 0, where c(o), b, e) is a positive constant depending on the 
indicated parameters and 

0 = -log|<o('>|/log<o. 

The stipulation (4.17) implies /? < \/{s - 1), and so the lower bound in 
(4.18) is not better than the one in (4.16). However, the present method has 
the advantage that it is more explicit than the previous one. It is suggested to 
take for <o the largest real root of the irreducible equation xs - x'~x 

- • • • - x - 1 = 0 and b = ( 0 , . . . , 0, 1). The resulting linear recurring 
sequence Q0, Ql9... may then be thought of as a generalized Fibonacci 
sequence. For s = 2 we obtain the example involving Fibonacci numbers. 

Good lattice points can be used to produce finite sequences with small 
discrepancy. Let g G TI be a lattice point and m > 2 a modulus. It follows 
then from Lemma 3.9 and the inequality 

r(h, m) > 2r(h) (4.19) 

for lattice points h = (A„ . . . , hs) ¥= 0 with - m/2 < hj < m/2 (1 < j < s) 
that the discrepancy Dm of the points {(l//w)g), {(2/m)g) , . . . , {(m/m)g) 
satisfies 

Dm< s/m + ±R(g,m). 

Thus, if g is chosen to be a good lattice point modulo m, we get a small 
discrepancy Dm. Theorem 4.4 implies the following result. 

4.8. THEOREM. For every dimension s > 2 and every integer m > 2, there 
exists a lattice point g 6 Z 5 with coordinates relatively prime to m such that the 
discrepancy Dm of the points {(l/m)g), { (2 /w)g) , . . . , {(m/m)g} satisfies 

One conjectures that for certain ^-dimensional lattice points one even has 
Dm

 = 0(m"l(log my~x\ which would be the same order of magnitude as 
that of the discrepancy of the Hammersley sequence (see §3). This conjecture 
has only been verified for s = 2, where, predictably, one takes a Fibonacci 
number m = Fn (n > 3) and the lattice point g = (1, F^^ and one obtains 
AH < (7/6)m - 1 log(15m) according to a result of Zaremba [365]. Sobol' 
[291], [294], [296] investigated the behavior of sequences arising from good 
lattice points with respect to his nonuniformities <pq and qp̂  (see also [303, 
Chapter 5]). It follows from (2.8) that the finite sequence of points in 
Theorem 4.8 satisfies ^^(m) = O (log*m), a result shown in [294] for primes 
m. Proinov [249] considers the L2 discrepancy of the points obtained from 
those in Theorem 4.8 after symmetrization with respect to all vertices of I\ 

A number of other questions about good lattice points have been studied in 
the literature. The effect of randomizing the lattice point g was considered by 
Bahvalov [8], [9] and Stojancev [324]. The device of shifting the nodes by a 
random vector is studied in [49]. Solodov [321] demonstrated the applicability 
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of the method of good lattice points for certain integration domains with 
smooth boundary. Further theoretical results and/or remarks about the 
subject can be found in [7], [11], [42], [97], [128], [162], [165], [229], [269], [319], 
[320], [322], [367], [374], [383]. For surveys of various aspects of the theory of 
good lattice points, see [10], [95], [131], [168], [169], [174, Chapter 2, §5], [303, 
Chapter 5], [356], [368], [373]. 

The method of good lattice points can be used in several areas of numerical 
analysis. A rather immediate application is to the approximate solution of 
integral equations. This was first considered by Korobov [164], with later 
efforts in this direction being contained in [114], [116], [124], [134], [166], [169, 
Chapter 4], [265]-[268], [275], [356], [381]. Interpolation techniques based on 
good lattice points were first studied by Rjaben'kiï [257] and Smoljak [287], 
and this was further pursued in [117], [166], [169, Chapter 4], [266], [270], 
[276], [288], [355]. An application of these interpolation formulas is made in 
[139]. Bahvalov [6] uses good lattice points in a Dirichlet problem; see also 
[326], [380], [382]. The papers [258] and [325] discuss similar applications to 
Cauchy problems. A relation between good lattice points and approximation 
theory occurs in [4]. Korobov [170] employs good lattice points to approxi­
mate the values of multiple sums with many terms. 

Prior to his investigation of good lattice points, Korobov [160] considered 
nodes of the form (n/m, n2/m,..., ns/m), n = 1, 2 , . . . , m, where m= p 
or/?2 with a prime/? > s (see also [78], [113], [116], [169, Chapter 2]). These do 
not perform as well as good lattice points since for an integrand ƒ E &k, 
k> 1, we only get an error bound of 0(m"1 /2). The discrepancy of this finite 
sequence was estimated by Hlawka [113], [116], with the result that Dm = 
0(m-^2logm). 

A set of nodes that is sometimes used in classical integration techniques 
consists of the points (n{/m, n2/m,..., ns/m), where m > 2 is an integer 
and the rij run independently through all integers from 0 to m - 1, so that 
there are altogether N = ms nodes. Korobov [162] notes that in a quasi-
Monte Carlo integration with these points and for an integrand ƒ E $k, 
k > 1, the integration error is 0(N~k/s). See also [113], [116], [129], [169, 
Chapter 1], [289], [383]. For other sets of nodes related to this one or to good 
lattice points, we refer to [13], [51], [74], [128], [271], [272]. 

5. Application of diophantine approximations. In the method of good lattice 
points we use as nodes the multiples of a "rational" point (l/m)g E Rs. A 
closely related method is obtained if one employs instead the multiples of an 
"irrational" point a E Rs, i.e., of a point a = (al9..., as) for which 1, 
a„ . . . ,as are linearly independent over the rationals. The periodicity condi­
tions on the integrand will be the same as in §4. Thus, the approximation 
formula can be written as 

f f(t)dt~± jtf(na). (5.1) 

In order to analyze the integration error, we assume again that ƒ belongs to 
the function class &k (C) for some k > 1 and C > 0 (see Definition 4.1). By 
expanding ƒ into its absolutely convergent multiple Fourier series, an argu-
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ment similar to the one in the preceding section leads to 

jf 2 f{na)-(f{t)A 
™ /i*i •'/' 

N 

| 2 « i 2 *2mMtta) 

h#0 n = l 

< ^ 2 '(h)" 
N 

^ ^2m'/ih*a 

/i = l 

The inner sum is a finite geometric series with h a £ Z because of the 
condition on o. A straightforward estimate yields then 

N 

S 
* = 1 

\ ^ p29ri/th*a 1 
2 | | h . a | | ' 

where 

|/|| = min \t — m| for/ E R 

designates the absolute distance from t to the nearest integer. Altogether we 
have 

i N 

««)-ƒ/(t) dt\ < 2iV 2 r(h) -* | |h-a| | - 1 (5.2) 

The convergence of this infinite series depends on how small | |h-a|| can 
become for lattice points h close to the origin. The study of this behavior 
belongs to the realm of simultaneous diophantine approximations. We use the 
following notion to classify irrational points with regard to their diophantine 
approximation character. 

5.1. DEFINITION. For a real number TJ, an irrational point a E R5 is said to 
be of finite type TJ if TJ is the infimum of all numbers o for which there exists a 
positive constant c = c(a9 o) such that 

r(h)' | |h-a| | > c (5.3) 

holds for all lattice points h E Z ' with h ^ 0. If no such number o exists, then 
a is said to be of infinite type. 

It follows from the Minkowski linear forms theorem that we always have 
TJ > 1. Irrational points of the smallest possible type TJ = 1 may be called 
badly approximable points. Such points can be constructed explicitly. A 
fundamental theorem of W. M. Schmidt [281] shows that every algebraic 
irrational point23 is of finite type TJ = 1. A result of A. Baker [12] implies that 
a = (er\ . . . , er') with distinct nonzero rationals rl9..., rs is of finite type 
T J = 1 . 

We return now to the estimate (5.2). Using techniques from [216], one 
proves the convergence of the infinite series on the right-hand side under the 
assumption that k is larger than the type of a. Thus, we obtain the following 
error estimate. 

This is an irrational point with real algebraic numbers as coordinates. 
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5.2. THEOREM (HASELGROVE [109], NIEDERREITER [220]). Let a G R5, s > 1, 
be an irrational point of finite type i\. Then we have 

for every f G $k with k > TJ. 

For greater efficiency one will choose a point a of the smallest possible 
type t] = 1. The use of algebraic irrational points was proposed in [216] on 
the basis of the pertaining special case of Theorem 5.2. More specifically, one 
may, in case 2s + 3 is prime, take the point 

«-(2 -2^3'2 -2^3 2«*27T3) 
arising from a basis of a real cyclotomic field (see §4); for any s > 1 one may 
choose a * (|, £2, . . . , £*) with £ = /jVfc+i) and p prime, or 
a = Ç\Tp[,..., Y& ) with distinct primes p}9... ,ps. The first two possi­
bilities are to be preferred since the coordinates stem from an algebraic 
number field of degree s + 1 over Q (which is the smallest degree that can 
occur for an algebraic irrational point), whereas the coordinates of the third 
point generate an algebraic number field of degree 2s over Q. Zinterhof [384] 
works with the irrational points of A. Baker mentioned above. 

Historically, this method dates back to papers of Richtmyer [254] and Peck 
[240], the latter stating the result of Theorem 5.2 as a conjecture. Similar ideas 
were used later on in [5], [10], [14], [16], [18], [44], [45], [162], [169, Chapter 2], 
[197], [358].24 Computational work based on this method was carried out in 
[52] and [259], and for a slightly modified method in [93]. For an application 
of this method to interpolation problems, see [384]. 

If we have a very regular integrand, say ƒ G &k with k much larger than 
the type rj of a, then the method, as it stands, does not honor the high degree 
of regularity off. A way has been found to alleviate this deficiency, namely 
by abandoning the equal-weight formula (5.1) and working with weight 
distributions adapted to the specific regularity condition on/. This is the only 
instance in the theory of quasi-Monte Carlo integration where the use of 
nonequal weights leads to a demonstrable gain in accuracy. The idea of 
constructing special weight distributions to achieve better error bounds in 
results such as Theorem 5.2 occurs already in Bahvalov [5], Haselgrove [109], 
and Wang [356]. 

A general theorem along these lines is obtained as follows. For positive 
integers q and N, we define weights of the form a$N~~q with 0 < n < 
q{N - 1). The a]jJl are positive integers which are introduced most con­
veniently by means of a generating function. In detail, the a$n are determined 
from the polynomial identity 

( N-\ Y <t(N-» 
2 A - 2 aWnz\ 

y = 0 / /i-O 

24 There is also a result of Pjateckiï-Sapiro included in [77] and appearing as well in [169, 
Chapter 2]. 
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With these weights, the following result holds. 

5.3. THEOREM (NIEDERREITER [220]). Let q be a positive integer and a G R5, 
s > l9an irrational point of finite type TJ. Then we have 

for every f G &k with k > qr\. 

Thus, while carrying out only about q times as many function evaluations, 
the error bound becomes approximately the #th power of what we had earlier, 
at least for sufficiently regular integrands. If we take for a an algebraic 
irrational point, then the integration error is 0(N~q) for every ƒ G Sk with 
k > q. A related result was established by Hua and Wang [134]. 

It is an advantageous feature of this method that the point a is chosen 
independently of N. Thus, if the value of N is increased, the previously 
calculated function values can be used again. This is not the case in the 
method of good lattice points, since the property of being a good lattice point 
modulo m is obviously relative to the choice of m. Of course, both methods 
share the drawback that a nonperiodic integrand first has to be "periodized" 
by one of the procedures mentioned in §4 before the integration technique 
can be applied. It should also be mentioned that in an actual machine 
calculation based on the method in this section one will have to replace the 
irrational a by a rational approximation. This produces an additional inac­
curacy which may, however, be classified as a roundoff error. A further 
limitation of the method was discussed by Tsuda [339] who used numerical 
data to show that it does not work so well if the integrand has a very high and 
narrow peak. The intrinsic reason is that the constant involved in the error 
term becomes too large in this case. 

An analysis of the proofs of Theorems 5.2 and 5.3 reveals that the only 
noneffective constant is the one stemming from the diophantine inequality 
(5.3). In the multidimensional case, it is usually very difficult to get an 
effective value for c(a, a) as long as a is close to the type TJ of a. For 
algebraic irrational points a, there are ways of obtaining an effective constant 
c(a, a) by considering larger values of o (cf. [216]). A fuller discussion of the 
issue of effectiveness can be found in [220, §10]. 

The discrepancy of the sequence {a}, { 2 a } , . . . , {na},... of fractional 
parts can be estimated in terms of the type of a. If a G Rs is an irrational 
point of finite type % then we have 

DN = 0(Ar-i/(O?-D*+D+e) 

for every e > 0 (cf. [220, §6], [174, pp. 131-132]). This is known to be 
essentially best possible for s = 1 (cf. [174, p. 124]). If a G Rs is an algebraic 
irrational point, then the above estimate implies DN = 0(N~l+e) for every 
e > 0, a result conjectured and heuristically supported by Richtmyer [255] 
and first shown by Niederreiter [217]. Further remarks on this case can be 
found in [256]. For s = 1, we already mentioned in §3 that there are 
irrationals for which DN = 0(N~l log AT). In fact, most irrationals will 
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produce a discrepancy nearly as small as that, for if g is a positive 
nondecreasing function such that S^ igOt )" 1 converges, then DN = 
O (N " *(log N) g (log log N)) for almost all a E R in the sense of Lebesgue 
measure (cf. [219], [174, p. 128]). In the multidimensional case, W. M. 
Schmidt [280] proved a metric result to the effect that for every e > 0 we have 
DN = 0CW~1(logiVy+1+e) for almost all a G RS in the sense of s-dimen-
sional Lebesgue measure. No individual a E ff, J > 2, is known for which 
D iV=0(JV-1(logiVy+1). 

PART II. PSEUDO-RANDOM NUMBERS 

6. Random numbers vs. pseudo-random numbers. We have seen in §1 that 
the essential step in the statistical Monte Carlo method is the random 
sampling of points (or numbers) from a given set by independent trials. If we 
assume, for simplicity, that the set is the unit interval I = [0, 1], then an 
"unbiased" execution of this sampling procedure should produce a sequence 
of "random numbers" in I. However, as long as no concrete definitions of 
"unbiased" and no equal opportunity regulations for numbers are adopted, 
the above concept of a sequence of random numbers is fictional, or at best an 
idealization. We are faced here with an obvious contradiction in terms, 
namely to try to define or characterize a supposedly haphazard process by a 
fixed set of rules known in advance. This dilemma shifts the problem from 
the mathematical to the metaphysical level, without resolving it, of course (to 
the relief of every gambling casino in the world). The question has indeed 
attracted the attention of philosophers of science ([152], [194], [246, Chapter 
6]). Some authors25 have also perceived the challenge of getting a handle on 
the vexing idea of randomness as being basic for the foundations of probabil­
ity theory. 

Many attempts at "defining" a sequence of random numbers in I recognize 
the following principles: (i) the sequence should satisfy certain distribution 
properties; (ii) these distribution properties should be invariant under certain 
selection rules for subsequences. This viewpoint is due essentially to von 
Mises ([350], [351, §1]), although (i) was acknowledged much earlier (see, e.g., 
[344, pp. 64-67]). On this basis, Knuth [154, §3.5] discusses in detail a 
hierarchy of proposed definitions for a random number sequence (see also 
[198]). The minimum requirement is that of uniform distribution in L But 
even a very nicely distributed sequence can exhibit a distinctly nonrandom 
behavior, e.g., the van der Corput sequence (see §3) has the property that its 
terms alternately hit the intervals [0, | ) and [ | , 1). Therefore, the statistical 
independence of successive terms has to be taken into account, and this leads 
eventually to the requirement of complete uniform distribution.26 A sequence 
JC|, x2,... of elements of I is called completely uniformly distributed (abbre­
viated CUD) if for every integer s > 1 the sequence of points (xn> 

* „ + , , . . . , *„+,_!), n = 1, 2 , . . . , is uniformly distributed in ƒ*. Equiva-
lently, the sequence xl9 x2>... is CUD if for every s > \ and every s-dimen-
sional lattice point (hu . . . , hs) ^ 0 the sequence of fractional parts {hxxn + 

25 See [41], [43], [137], [158], [253], [348], [351] and the summaries in [192], [237, §1.5J. 
26 The term "oo-distribution" is used in [154]. See [174, p. 205] for literature on this subject. 
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*2*/i+i + ' * ' + Kxn+s-\}> w = 1, 2 , . . . , is uniformly distributed in I. 
CUD sequences have, in fact, been used as sources of random numbers for 
Monte Carlo-type calculations and simulations (see, e.g., [15], [34], [73], [309, 
Chapter 7]). Explicit constructions of CUD sequences have already been 
given in the older literature on the subject (cf. [247]), but these are too 
inconvenient for practical use. A CUD sequence consisting only of dyadic 
fractions was constructed by Knuth [153], and a principle of obtaining simple 
sequences that are in a sense approximately CUD was pointed out by Haber 
[94]. More recently, Rauzy [252] proved that if ƒ is an entire function that is 
not a polynomial, attains real values on the real axis, and satisfies 

log log M(f;r) 
lim SUp ; : < j , 

r-*ooF log log r 4 ' 
where M(ƒ; r) = supjz|<r|/(z)|, then the sequence of fractional parts {/(l)}, 
{ / (2 ) } , . . . , {ƒ («)} , . . . is CUD. M. B. Levin [180] showed how to 
construct, for every transcendental27 number 9 > 1, a number a such that the 
sequence of fractional parts {a0}9 {a02},..., {<xOn}9... is CUD. This is 
related to a metric result of Franklin [72] to the effect that {0}, 
{02},..., {0n}>... is CUD for almost all transcendental numbers 0 > 1 
(in the sense of Lebesgue measure). 

So far, we have ignored the invariance principle (ii) mentioned above. If 
one insists that the sequence and all of its subsequences should be CUD, one 
arrives at a void concept, since any CUD sequence has a subsequence of 
terms in [0, \ ], which is therefore not even uniformly distributed in I. Hence, 
some restriction has to be imposed on the admissible selection rules. If one 
allows only recursively enumerable selection rules, then the same argument as 
before leads to the interesting situation that every concretely given sequence 
fails this test for randomness. Further possibilities for selection rules are 
discussed in [154, §3.5], and one also finds there A. Wald's construction of a 
sequence enjoying remarkable invariance properties. A systematic study of 
the relationship between complete uniform distribution (or "normality", the 
analogous concept for sequences of digits) and selection rules is carried out in 
[145], [146]. 

For finite sequences of digits, an information-theoretic approach to a 
definition of randomness based on preparatory work of Kolmogorov [159] 
has been chosen by Chaitin [35] and Martin-Löf [191]. The idea here is to 
designate those sequences as random which, among all sequences of fixed 
length, maximize the shortest length of the program required to generate the 
sequence on a Turing machine.28 A pleasant introduction to this concept is 
presented in [36], where one also finds an elaboration on the paradoxical 
statement that randomness in this sense cannot be verified for a specified 
sequence of digits. A detailed survey of this and other approaches to 
randomness is given in [285]. See also the recent papers [178], [179]. 

27 It is easily seen that a sequence of the form {otO}, {a02},..., {a0n}9... cannot be CUD 
for algebraic 0. 

28 As Knuth [154, p. 149] points out, this is of course the worst concept from the viewpoint of 
practical random-number generation. 
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There is a way of generating "random numbers" (in the intuitive sense) that 
is very much in the spirit of the statistical Monte Carlo method, namely by 
using physical devices. Among the possibilities that have been considered are 
white noise produced by electronic circuits ([28, Chapter 6], [90]), counts of 
the emission of radiated particles ([28, Chapter 6], [138], [203], [349]), flipping 
coins [354], mechanical gadgets operating on the principle of the roulette 
wheel ([104], [142]), and automated versions of the latter ([149], [251]). 
Extensive tables recording these experiments or reproducing random numbers 
obtained from other data have been published ([144], [149], [251], [335]). See 
[334] for the early history of these tables. 

The use of physical or tabulated random numbers is problematic because 
of the difficulties of storage, the necessity of frequent testing for randomness, 
and the fact that they are not generated in the computer, but by an external 
source. We have also seen that those concepts of randomness that sound 
convincing from an axiomatic standpoint suffer from the practical deficiency 
that no concrete sequence actually used in a calculation can verifiably satisfy 
the definition. Therefore, one has taken recourse to sequences that make no 
pretense of being "random" in any meaningful sense of the term, but which 
can be readily generated in the computer by simple arithmetic algorithms, 
while still passing an assortment of statistical tests for randomness. The terms 
of such sequences are collectively (and loosely) called pseudo-random numbers 
(abbreviated PRN). It should be emphasized right away that no such 
sequence can perform well under all imaginable tests for randomness. Rather, 
the user of PRN has to be aware of the specific statistical properties that are 
desirable in his Monte Carlo calculation and choose PRN that are known to 
pass these tests. This "relativity principle" will become amply clear given the 
results of §11. On the whole, PRN have a record of meeting any reasonably 
limited set of statistical requirements if adequately chosen for the particular 
purpose. 

We will only discuss PRN simulating the uniform distribution on /. A 
variety of methods has been devised for transforming such PRN into others 
obeying a nonuniform distribution law, e.g., a normal distribution. We refer 
to [2], [28, Chapter 7], [66, Chapter 2], [80], [142], [154, §3.4], [193, Chapter 3], 
[213]. The bibliographies on pseudo-random number generation mentioned in 
§1 also cover these techniques. 

As we pointed out, it should be a cardinal virtue of a sequence of PRN that 
it gets a stamp of approval from a collection of statistical tests for random­
ness. We review now some of the tests that have been considered frequently 
in the literature.29 We assume throughout that x0, xl9... is a (finite or 
infinite) sequence of numbers in ƒ to be tested for "randomness". 

A. Equidistribution test. Here we check the evenness of distribution in I of 
an initial segment x0, JC„ . . . , xN_x of the sequence. This is done by calcu­
lating (or estimating) the discrepancy DN (see §2) of these numbers. The test 
is passed if DN is small. In an alternative method, sometimes called the 
frequency test, one partitions I into subintervals, counts the number of terms 
falling into the various subintervals, and performs a chi-square test on these 
data. 

This list is by no means exhaustive. See [154, §3.3] for more information. 
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B. Gap test. Let / be a fixed proper subinterval of I. If for some n > 0 we 
have xn+j & J for 0 < j < k - 1, but xn+k G / , we speak of a gap of length 
k. We choose a positive integer h and count the number of gaps of lengths 0, 
1 , . . . , h - 1 and > h until a large total number of gaps is reached. Then we 
apply a chi-square test using the probabilities pi = p{\ — /?)' f°r 0 < / < 
A - 1 and/?A = (1 — />)* for these respective categories, where/? is the length 
of/. 

C. Run test. A segment of the sequence satisfying xn < xn+l < • • • < 
*„+*_!, but xn_x > xn and *„+*_! > *„+*, is called a "run up" of length k. 
We count the number of "runs up" of lengths 1, 2 , . . . , h and > h + 1 in a 
given initial segment of the sequence. Since adjacent runs are not indepen­
dent, we cannot use a straightforward chi-square test for these data. A more 
complicated statistic has to be computed (see [154, pp. 60-63]). A similar test 
can be performed for "runs down". 

D. Permutation test. We choose an integer s > 2 and consider the s-tuples 
(xn, JC„+I, . . . , xn+s_Y)9 0 < n < N. There are si possible relative orderings 
among the entries of such an ^-tuple. We count the number of times each 
ordering appears and perform a chi-square test, using the probability \/s\ for 
each ordering, or determine the maximal deviation from the expected 
number. 

E. Serial correlation. This is a rather weak test for the interdependence 
between xn and xH+x. We calculate the serial correlation coefficient 

N 2 „ „ o XnXn+\ "" (^„-o*/!) 
ox — . 

N 2„,o XH ~" (2„«0 Xn) 
If xn and xn+Y are almost independent, then (aj is very small. It is a 
deficiency of this test that the converse does not necessarily hold. One may, 
more generally, consider the serial correlation coefficient oh reflecting the 
interdependence between xn and xn+h. 

F. Spectral test. This test was introduced in [48] (see also [47]) and depends 
on a Fourier transform technique. We assume that all PRN in the given 
sequence are rationals with common denominator m, as will be the case for 
the important method to be introduced in §7. For any ^-dimensional lattice 
point (hl9..., hs) we define the limit 

1 * - 1 

L(hu ..., hs) = Jim — 2 *(M„ + V«+i + • ' • + Kxn+s-\)> 

which will exist, for instance, in the special case mentioned above. In an ideal 
case of randomness we should have L(hl9..., hs) * 1 if hx s • • • = hs = 0 
(mod m) and L(hx,..., hs) = 0 otherwise. The deviation from this behavior 
is a measure for the nonrandomness of the given sequence of PRN. The 
difficulty here is to find a realistic way of putting this idea into a quantitative 
form. In [48] an intuitive analogy with the theory of harmonic oscillation was 
used (see also [154, §3.3.4]), although there is no mathematical basis for this 
procedure. 

G. Serial test. This is the most reliable test for statistical independence of 
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successive terms. For a fixed dimension s > 2, we consider the points30 

xn = (xn, xrt+1, . . . ,*„+,_!) , w = 0, 1, ...,N-1, in 75. For a truly 
random sequence these points will, in the long run, be very evenly distributed 
over Is. Therefore, the quality of the PRN can be measured by the dis­
crepancy DN (see §2) of the points Xo, . . . , x ^ . j . This test has an added 
significance since information about DN yields effective error bounds for 
quasi-Monte Carlo integrations using the nodes Xo, . . . , x^ . , (compare with 
§2). An older and less powerful version of this test operates like the frequency 
test mentioned under A, by starting from a partition of Is into subintervals 
and proceeding as in A. 

For the special class of PRN that will be introduced in the next section, 
there is also the possibility of studying the structure of the lattice generated 
by the points occurring in test G (see § 10 for details). 

7. Linear congruential pseudo-random numbers. There is conceivably an 
overwhelming multitude of techniques for generating PRN, some discovered 
and many still dormant, but a simple algorithm proposed by Lehmer [176] 
has easily become the most popular one and is now a traditional tool of the 
numerical analyst. This method can be described as follows. Let m > 2 and r 
be integers, let y0 be an integer in the least residue system modulo m, i.e., 
0 < y0 < m, and let A be a positive integer relatively prime to m which may 
as well be taken from the least residue system modulo m. Then a sequence 
y0,yi,... of integers in the least residue system modulo m is generated by 
the recursion 

yn+l = \yn + r (mod m) for n = 0, 1, (7.1) 

From this sequence we derive a sequence x0, x„ . . . of numbers in I by 
setting xn = yn/m for n = 0, 1 , . . . , and this is already the desired sequence 
of so-called linear congruential PRN (abbreviated LCPRN). In this context, m 
is referred to as the modulus, \ as the multiplier, and r as the increment. In 
practice, m is taken to be a large prime or a large power of 2, the latter choice 
being particularly suitable for a binary computer. To rule out trivial cases, we 
suppose that À ^ 1 (mod m) and (À — l)y0 + r ^ 0 (mod m)?1 An explicit 
formula for xn can easily be established by induction, namely 

Xn = {X"Xo+T^i'm} to™-0'1'-"- (7-2) 
It is customary to distinguish the homogeneous case r = 0 (mod m) (also 
called the multiplicative congruential method) and the inhomogeneous case 
r ^ 0 (modm) (also called the mixed congruential method). In the homo­
geneous case we can assume w.l.o.g. that y0 is relatively prime to m, for 
otherwise the same sequence of LCPRN could be produced with a smaller 
modulus. 

The parameters m, X, r9 and yQ have to be chosen in such a way that the 
resulting PRN will pass appropriate statistical tests for randomness. The 

30 In [154, pp. 55-56] only nonoverlapping -̂tuples are considered, but this restriction is not 
necessary. 

31 If (X - l)^o + r = 0 (m0(1 m)> then^ = ^o (m o d m)> *&& the sequences^y l 9 . . . and X& 
x „ . . . are constant 
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modulus m is selected in accordance with machine capabilities, typical 
choices being m = 232 or m = 235. The initial value y0 has practically no, and 
the increment r only little influence on the behavior of the PRN, so that the 
properties of the sequence are mainly governed by the choice of the multiplier 
A. In the Hght of the simplicity of the generation method, it is always a 
surprise to find out how remarkably well these LCPRN perform under rather 
stringent tests once a multiplier has been selected intelligently. 

We review now briefly the elementary properties of LCPRN. See [135], 
[142], [154, §3.2] for a more detailed analysis. Most importantly, the sequence 
x0, * i , . . . is always purely periodic. We shall use r to denote its least period. 
In the homogeneous case, it is easily seen that T is equal to the least positive 
integer n for which Xn = 1 (mod m), i.e., r is the exponent to which A belongs 
modulo m. In the inhomogeneous case and for a prime or prime power 
modulus, T can be determined quickly on the basis of (7.2). We first introduce 
some notation that will also be convenient later on. For m = pa

9 p prime, 
a > 1, let K be the largest integer such that/?" divides A — 1 and let <o be the 
largest integer such that/?10 divides (A — l)y0 + r. Then the following result is 
contained in [226, Lemma 8] if we note that under our conditions we always 
have o) < a. 

7.1. LEMMA. Let m = /?a, /? prime, a > 1. Then the period r ofa sequence of 
LCPRN with modulus m and multiplier X is equal to the exponent to which X 
belongs modulo/?a~<0+\ 

If m has at least two distinct prime factors, the period can still be obtained 
from this result because of [154, p. 16, Lemma Q]. For the homogeneous case 
and m = pa, with/? = 2, a < 2, orp an odd prime, the largest possible period 
is T = pa~l(p — 1), and it is attained precisely for multipliers X that are 
primitive roots modulo w, whereas for m = 2a, a > 3, the largest possible 
period is T = 2a~2, attained precisely for X = ±3 (mod 8) if a > 4 and 
X = 3, 5, 7 (mod 8) for a = 3. For general m, the maximum period is 
obtained from the quoted result in [154]. In the inhomogeneous case, we can 
actually have T = m, i.e., all fractions in [0, 1) with denominator m are 
generated, and this happens precisely if the following requirements are met: 
(i) r is relatively prime to m; (ii) X = 1 (mod/?) for every prime/? dividing m; 
(iii) X = 1 (mod 4) if 4 divides m. This criterion can be deduced from Lemma 
7.1, but it follows also from other elementary considerations (cf. [135], [154, p. 
15]). 

We have dwelt on the question of the period since a good sequence of 
LCPRN should at least have a long period. One reason is, of course, that 
periodicity is not a typical feature of a truly random sequence. Therefore, a 
sequence with a short period can hardly pretend to be pseudo-random. 
Moreover, in an actual quasi-Monte Carlo calculation based on LCPRN we 
want to use a large number N of terms, but we must have N < T SO that the 
grossly nonrandom periodicity property does not come into play; hence T 
should be large. Further indications why a large value of T is preferable will 
be given later on (see, e.g., §9). 

In interesting cases we may describe all fractions that are generated by the 
method. This is, of course, trivial whenever the period is m. If A is a primitive 
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root modulo m and we are in the homogeneous case, then we produce exactly 
all reduced fractions in [0, 1) with denominator m. Again in the homogeneous 
case and for m = 2a with a > 3 and À = 5 (mod 8), we obtain exactly all 
fractions in [0, 1) of the form a/m with a = y0 (mod 4); if À = 3 (mod 8), we 
generate exactly all fractions in [0, 1) of the form a/m with a = y0 or 3y0 

(mod 8). A thorough study is carried out in [188], where it is observed, for 
instance, that a sequence of LCPRN is always made up of a block of less 
than m terms, followed by translates of that block. The frequent phenomenon 
of one sequence of LCPRN being a cyclic permutation of another is investi­
gated in [31]. 

Historically, Lehmer's method was not the first proposal for pseudo­
random number generation. A few years earlier, J. von Neumann already 
used his "middle-square method" to produce pseudo-random numbers for 
Monte Carlo calculations (cf. [154, §3.1], [352]). However, this technique has 
proved unsatisfactory since it tends to lead to short cycles and the expected 
distribution is nonuniform (cf. [336]). In more promising schemes that may be 
called hybrid methods, one starts from a sequence of LCPRN and adds a new 
twist or combines it with other sequences of PRN. An intriguing idea is the 
"shuffling" scheme of MacLaren and Marsaglia [184] (see also [189]). Here 
one takes a sequence of LCPRN and shuffles it in a way which is directed by 
a different sequence of PRN. Thus we get a sequence of PRN with a 
"pseudo-random shuffle" thrown in for good measure. Theoretical evidence 
that shuffling may improve the performance of LCPRN is presented in [260]. 
Other hybrid methods can be found, for instance, in [32], [82], [88], [202], 
[273], [290], [297], [359]. 

Another idea that has been brought up in the literature is to replace (7.1) 
by a higher-order recurrence relation. Here it is convenient to use a prime 
number p as a modulus. Then a congruence such as (7.1) can be viewed as a 
recurrence relation in the finite field Fp = Z/pZ. Let fc be a positive integer 
which will serve as the order of the new recurrence relation. We note that the 
finite field Fpk of pk elements is an extension of Fp and that its multiplicative 
group F*k is cyclic. A polynomial ƒ (x) = xk - ak_xx

k~x — • • • — a0G Z[x] 
is called a primitive polynomial modulo p if the polynomial f(x) E Fp[x] 
canonically associated with ƒ (JC) is the minimal polynomial over Fp of a 
generator of i£*. With such a primitive polynomial modulo p, we set up the 
kth order homogeneous linear recurrence 

yn+k = ak^lyn+k_l + • " • + %y« (mod/?) for n = 0,1, (7.3) 

Any sequence y0, yl9... of integers in the least residue system modulo p 
satisfying (7.3) with (y0,... ,yk-i) ¥= ( 0 , . . . , 0) is called a maximal period 
sequence modulo p. The reason for this terminology hes in the fact that the 
length of the period of a maximal period sequence modulo p is equal to 
pk — 1, the largest possible period of any kth order homogeneous linear 
recurring sequence in Fp. A maximal period sequence modulo/; is easily seen 
to be purely periodic (see [379] for these facts about linear recurring sequen­
ces). 

From a maximal period sequence y0, yl9... modulo p we derive a 
sequence x0, xl9 . . . of PRN in ƒ by setting xn = yjp for n = 0, 1 , . . . . In 
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practice, the prime/? will be chosen very large, but/? = 2 is sometimes used to 
produce a pseudo-random sequence of binary digits. The advantages offered 
by such sequences of PRN can be seen as follows. Consider the fc-tuples (yn9 

yn+\> • • • >.V/t+*-i)> fl = 0, 1, . . . , / > * - 2. They are all distinct (for otherwise 
the period of y09 yX9 . . . would be less than pk - 1) and ( 0 , . . . , 0) cannot 
occur among them, hence they run exactly through all fc-tuples ^ ( 0 , . . . , 0) 
of elements in the least residue system modulo p. Therefore, the points (xn9 

xn+l9...,*„+*_,), n = 0, 1,.. ,,pk — 2, show an excellent distribution in 
(p~lZ/Z)k. Also, in a full period ofy0,yl9... each nonzero residue modulo 
p occurs exactlypk~x times and 0 occurs exactly/?*""1 — 1 times; each pair 
^ (0, 0) of residues modulo p occurs exactly/?*""2 times among (yn9 yn+}), 
n = 0, 1 , . . . 9p

k — 2, whereas (0, 0) occurs exactly pk~2 — 1 times; and so 
on for ^-tuples with s < k. Altogether, we can say that the sequence X& 
xl9... of PRN leads to practically perfect distribution properties in 
(p'lZ/Zy for all dimensions 1 < s < k. Of course, we have to pay a price 
for this benefit, in the sense that the generation method (7.3) is more 
complicated than (7.1). We will report on further results about these genera­
tors in §§9, 10. 

The idea of using higher-order recurrences for pseudo-random number 
generation can be traced back to [62], [81], [343], The method (7.3) was 
proposed by Tausworthe [333] and endorsed by Knuth [154, §3.2.2]. We shall 
refer to the associated sequences of PRN as Tausworthe generators.32 So-
called "additive generators", for which the coefficients in the recurrence are 
either 0 or 1, emerged already in the early times of pseudo-random number 
generation. A standard example is the Fibonacci generator yn+2 = yn+\ + .V* 
(mod m) (cf. [332]), which was, however, soon discarded because it displays a 
notoriously bad behavior. The recursion yn+k =yH+k„% + yn (modm) is a 
decent generator for k « 16 according to [85]. 

After Tausworthe's paper, higher-order generators received more attention. 
Apart from the investigations on Tausworthe generators to be mentioned 
later, there are studies of higher-order recurrences modulo powers of 2 (cf. 
[245]) and of certain second-order recurrences modulo primes (cf. [58]). A 
special method of generating sequences of n-bit strings of binary digits by a 
second-order recurrence involving bit-by-bit addition modulo 2 and cyclic 
shifts was proposed in [250], and algebraic results about the periods of these 
sequences were shown in [277]. 

8. Exponential sums. The main tool in our treatment of the equidistribution 
test and serial test for LCPRN will be certain exponential sums33 that are 
intimately connected with these numbers. That such sums should play a rôle 
is quite clear in the light of Lemmas 3.3 and 3.9. We consider the general case 
of a ktfa order linear recurring sequence Z& zl9... of integers satisfying the 
recurrence relation 

zn+k = ak-\Zn+k-i + • • • + <v„ + r for n = 0 , 1 , . . . , (8.1) 

32 For a convenient computer implementation of these generators, see [238]. 
33 In different contexts, special cases appeared in [171], [172], [204], [205], [328]. See [228] for 

an application to coding theory. 
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where ak„l9..., a09 r are fixed integers. If such a sequence is viewed modulo 
an integer m > 2, it looks like a sequence y^ yl9. •. used in the generation 
of PRN (see §7). In this case, we will assume, for simplicity, that a0 and m are 
relatively prime.34 This guarantees that z^ zl9... is purely periodic modulo 
m. Let T = r(m) be the length of its least period modulo m, and let ft = /i(m) 
be the length of the least period modulo m of the sequence % vl9... of 
integers satisfying 

vn+k = ak^lvn+k_l + • • • + a0vn for n « 0 , 1 , . . . , 

with the initial values t?0 = • • • = vk^2
 = 0» tfc-i = 1 (t̂ 0 = 1 if A: = 1). The 

following is a special case of a more general result. As before, we write 
e(t) « e2"" for f E R. 

8.1, THEOREM (NIEDERREITER [224], [225]). Let m > 2 and b be relatively 
prime integers, let z0, zl9... fe the kth order linear recurring sequence of 
integers satisfying (8.1) with gcd(a09 m) = 1, and let T and /A be defined as 
above. Then9 

IV / * \\ ^( mkr-r2\ 
(8-2) 

and 

for\< N < T. (8.3) 

The upper bounds in (8.2) and (8.3) represent slight improvements on the 
original inequalities, which are achieved by subtracting the contribution from 
the zero vector in [224, Equation (16)] (compare with the proof of Theorem 
8.2). These improvements are of interest when T is large. 

If a sequence of LCPRN is generated by the multiplicative congruential 
method, we are led to consider the recurrence relation zn+l = Xzn9 n = 0, 
1 , . . . , which produces powers of À, up to a constant factor. We present a 
proof for this case to indicate the ideas involved. Note that under the 
conditions of the subsequent result we have T = /i. 

8.2. THEOREM (KOROBOV [172], NIEDERREITER [226]). Let m > 2, b9 X9 and c 
be integers with gcd(b9 m) = gcd(\9 m) = 1 and X belonging to the exponent r 
modulo m. Then, 

;?/(̂ "Hf) ( m - T ) 1 / 2 ifc = 0 (mod T), 

ifc & O(modr), m 
1/2 

(8.4) 

and 

!^")|<-,/2(f'<**+!)+7<'»-*>,/! 

1 for 1 < N < T. (8.5) 
34 This is always satisfied in the applications to PRN. 
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PROOF. For an integer a, write 

.«,c)-;i>(£x"M?). 

1005 

»=0 

The general term of this sum, considered as a function of n9 is periodic with 
period T. Therefore, for any integer,/ > 0 we have 

.(-)-;t>(^-H±^)' 
and so we obtain the transformation formula 

| T - 1 

K * c)\ = 2 o e(&L X")e( f ) - |a(a\> c)|. (8.6) 

Since the integers b9b\...9 b\r~x are pairwise incongruent modulo m and 
not divisible by w, (8.6) implies that 

r - l 
T|<7(6,C)|2=2 K ^ , C ) | 2 < 2 k(a,c)|2 

y - 0 fl»l 

m - 1 
2 Ka,c)|2-|0(O,c)p 

û = 0 

-'iU^)ï'^<x*-v))-i.w* 
= mr - |a(0, c)\2. 

The inequalities in (8.4) are immediate consequences. To prove (8.5), we use 
the identity 

„fo \/w / „fo \m ) y % T c f j V T / 

for 1 < N < T, 

which follows from the fact that the sum over y is equal to 1 for 0 < « < N — 
1 and equal to 0 for N < n < T - 1. We rewrite this identity in the form 

Then by (8.4), 

\"t' *(Av)|<I i \'±lJSLJ\^Ji^.)JZ 
|„-0 V»1 l\ T c - l |^ -o V T y | „ f o VW / \ T 

< - /n'/22 
* e-l v=0 V T ' T 

and (8.5) is obtained by a straightforward estimation of the remaining sum 
(compare with [226, Lemma 2]). 
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The sums in (8.4) contain Gaussian sums to a prime modulus or to an odd 
prime power modulus as special cases. The second part of (8.4) reduces then 
to a familiar inequality for Gaussian sums, and for certain values of c we will 
even have equality (cf. [225, p. 60]). On the other hand, Gaussian sums can be 
used to prove Theorem 8.2, but yield nothing for the inhomogeneous case or 
for higher-order recurrences. As an illustration, we prove the following result 
on the basis of ideas in [224]. We use <j> to denote Euler's totient function. 

8.3.THEOREM. Let m, b, and \ be as in Theorem 8.2. Then, 

s1 A - *n) <v™ - ih 0^ " 0 (8J) 
<j>(m) 

and 
\N-\ 

forKN < T. (8.8) 

PROOF. We observe that e(bh/m), considered as a function on the integers 
h with gcd(A, m) = 1, can be expanded into a finite Fourier series with 
respect to the Dirichlet characters \p modulo m. Thus, 

« ( ^ ) - 2 ' ( W ( A ) forgcd(/*,/n) = l (8.9) 

with Fourier coefficients 

(«-ïÉ5 !;•(=)** 
where the prime signalizes that we only consider those j coprime to m. We 
note that 

CW = Hm) £ e l m )* <*> ^ r ' (8-10) 

<^-jS'«(£)*(/> 
is a Gaussian sum. From (8.9) we obtain 

2 e ( ^ x - ) - 2 ^ ) 2 W ) 

* 2 c(*)+ 2 c(») * l ' . (8.11) 

*(A)*1 *(*)*1 

Setting JV - T in (8.11), we get 
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/t-0 v m ' ) 
^(A)*l 

and then (8.10) implies 

. . . i » i **éö ? | c (* 

1007 

(8.12) 

• (A)-1 

The Jast sum contains <f>(m)/T terms, and since |(7(*//)| < 1 f or ^ trivial and 
| G (i//)| < Vm for i// nontrivial, we obtain 

2* el ± \") 

¥jn) 4>(m) ( ^ - ) Vm = Vm -
«Km) 

(Vm~ ~ 1), 

and (8.7) is shown. For 1 < N < T, we use (8.7), (8.10), (8.11), and (8.12) to 
get 

n-o Vm / T I f o Vm / * | 1 -
<#)l 

* 
* ( * ) * ! 

*<*)! 

N( Vjn_ _ Vtn^A] 
V T *("») / 

V™"- 1 \ 2 

Now \G(i{/)\ < Vm and each rth root of unity e(J/r) occurs exactly <Km)/T 
times as a value of ip(X), so that 

«to Vm 7 

< #1 Vm Vm -/m - 1 \ 2Vjjj_ . *0*0 T ^ 
<£(m) 1 IHf 

XT( Vm Vm-l\ t Vm V o = NI + 2* c s c *7 

and (8.8) follows from the argument in [226, p. 574]. 
In important special cases, the exponential sums in question can actually 

vanish. A general result in this direction is the following. 

8.4. THEOREM (NIEDERREITER [226]). Let m = p a , p prime y a > 1, let 
gcd(b, m) = gcd(\, m) = 1, and let z0, zl9... be a sequence of integers with 
zn+l = Xzn + r (n = 0, 1 , . . . ) such that the period r = T(m) modulo m 
satisfies r = pr(pa~l). Then 
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*2 4 — zn)4 — ) = 0 for all integers c == 0 (modp). 

Using this fact, one can then establish the following improvement on (8.3) 
and (8.5) in the case under consideration. 

8.5. THEOREM (NIEDERREITER [226]). Suppose the conditions of Theorem 8.4 
are satisfied, and let X belong to the exponent /i modulo m. Then, 

|IKM<(^W'-+!)'-<»<*• 
The estimates in this section are best possible, apart from the logarithmic 

factors that occur in those cases where a sum over a part of the period is 
considered. This applies even to the most general estimate (8.3), since it is 
shown in [224] that there are instances in which this particular sum is at least 
of the order of magnitude m*/2, while r = /A. 

9. Equidistribution test To check the performance of a sequence of 
LCPRN, we subject it first to test A from §6, the equidistribution test. We 
will also investigate the behavior of PRN generated by higher-order recur­
rences with respect to this test. We recall that this test amounts to calculating 
(or estimating) the discrepancy DN of an initial segment X& xl9.. •, xN_{ of 
the given sequence of PRN. 

If XQ, JC}, • • • » JCT_! is the full period of a sequence of LCPRN, then the 
discrepancy DT (or /)*) can actually be evaluated in the most interesting 
cases. For instance, if we have T = w, as happens for m = 2", a > 2, X = 1 
(mod 4), and r odd (see §7), it is clear that Dr = D* = 1/m. For the 
homogeneous case with m = pa,p an odd prime, a > 1, X a primitive root 
modulo w, we get Z>* = 1/m (cf. [196]) and Dr = 2/m. Again in the 
homogeneous case and for m = 2a, a > 3, we have D* = 3/m and DT = 
4/w if X = 5 (mod 8) and D* = 5/m and DT = 6/m if X = 3 (mod 8). The 
first results of this type (cf. [140]) were very weak, with an order of magnitude 
for DT even worse than w"1 / 2 . The fact that the correct order of magnitude is 
m~l was pointed out in [218]. See also [57], [58] for special cases. 

As was already mentioned in §7, in an actual calculation based on LCPRN 
we will only use an initial segment of the period since any influence of the 
periodicity property could prove ruinous. Therefore, the meaningful part of 
the equidistribution test is the estimation of DN for N < T. This was first 
achieved by Niederreiter [221]. Subsequent improvements, simplifications, 
and generalizations are contained in [226]. All the theorems in this section 
stem from these two papers. We occasionally incorporate some small 
improvements. 

In the case of a prime modulus, we can use Lemma 3.3 and the estimates in 
§8 directly, and we note that T = /i in the inhomogeneous case because of 
Lemma 7.1. 

9.1. THEOREM. For a sequence of LCPRN with a prime modulus m we have 
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Z>„<^(flogT + f)(flog,» + §) 

+ (V^__L_)(llogm+2) + ± 

for 1 < N < T in the homogeneous case and 

Vm DN< £(1 *,•§)(! „ - f ) 

/or 1 < TV < T i/i f/*e inhomogeneous case. 

An estimate based on Corollary 3.2 can also be established. The resulting 
bounds (cf. [226, Theorems 1 and 4]) are more complicated, but often 
somewhat better than those in Theorem 9.1, although the order of magnitude 
remains the same. 

For a prime power m, say m = pa with p prime and a > 2, there is a 
difficulty with applying Lemma 3.3 since there will now appear exponential 
sums for which, in the notation of §8, we have gcd(è, m) > 1. In this case, it 
is advantageous to use Corollary 3.2 which allows us to "cut out" many of 
these bothersome sums. We again need the numbers K and co introduced prior 
to Lemma 7.1, as well as one more parameter. With ii(q) denoting the 
exponent to which the multiplier A belongs modulo q> we define a positive 
integer fi as follows: if p is odd, let /? be the largest integer such that p& 
divides XM(/,) — 1; if p = 2, let /? be the largest integer such that 2^ divides 
\M(4) _ 1 j | j e number /? is small for the common choices of multipliers. Up 
is odd and À is a primitive root modulo m, then ft attains its minimal value 
/? = 1. If p = 2, then ft attains its minimal value /? = 2 for X = 5 (mod 8), 
whereas /? = 3 for À = 3 (mod 8). We set y = /? + co - K and note that we 
always have y > 0. We write /i for /jt(m). 

9.2. THEOREM. For a sequence of LCPRN with modulus m = pa, p prime, 
a > 2, which satisfies y < a and 

,'<«-)(-f(^.o8T+!). (>„ 
we have 

DN< 
pV2_pX/l 

pV2 _ j 

/or 1 < N < T, wfere 

Xlog 1 + 
4(/>3/2-l) ] 

(p3/2_pl/2)x ( 

„3/2 

3* + — V 
pV2-\ P J 

In practical cases, m and T are large, so that the condition (9.1) can be 
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satisfied by choosing the parameters in such a way that y < a/2. For the 
homogeneous case, the above result simplifies somewhat since r = JU, and 
co = K. Consequently, we have then y = /?, and as the above information 
about j8 shows, the condition (9.1) is easily satisfied in all reasonable 
circumstances. In the inhomogeneous case, the common choice m = 2a, 
a > 3, A = 5 (mod 8), and r odd leads to y = 0, and (9.1) holds trivially. 

An inspection of the bounds in Theorems 9.1 and 9.2 shows that in terms 
of orders of magnitude we have NDN * 0(ml/2 lo£m). Since NDN < N is 
trivial, the estimates are only of interest for N appreciably larger than 
ml/2lojfm, say N œ m1/2+e with e > 0. But r > N, and so T should be at 
least of this order of magnitude. If this is so, then the PRN have a small 
discrepancy and thus pass the equidistribution test.35 The larger we can 
choose N (i.e., the larger r), the better the distribution behavior will be. This 
provides again support for the familiar rule of thumb that large periods are 
preferable. 

The equidistribution test is not very selective since the results only depend 
on the values of y, r, and /A. Thus, the test does not allow a distinction 
between the various primitive roots À we might want to use for an odd prime 
or prime power modulus in the homogeneous case, or between the various 
multipliers À = 5 (mod 8) in the case where m is a power of 2 and r is odd. It 
is guaranteed, however, that with such choices of parameters the test will be 
passed with flying colors. We note also that the initial value y0 and the 
increment r only play an indirect role, insofar as they influence the values of 
y and T. 

The above results can be extended to arbitrary moduli (see [221, §5]). 
Furthermore, these discrepancy estimates yield effective error bounds for 
quasi-Monte Carlo integrations based on the nodes x0, JC„ . . . , xN__x because 
of the inequalities in §2. The estimate NDN = 0(m1/2log2m) established 
above is nearly best possible, as the following lower bounds indicate. We may 
state these results from [226, §5] in terms of D% since [226, Lemma 11] holds 
with DN replaced by D%. Because of D% < DN, we automatically get lower 
bounds for DN as well. 

9.3. THEOREM. For any prime modulus m > 3, any multiplier X which is a 
primitive root modulo m, and any increment r, there exists an initial value y0 

with (X - l)y0 + r & 0 (mod m) such that the derived sequence of LCPRN 
satisfies ND% > | ml/2for some N with 1 < N < T. 

The additional condition (X — 1)y0 + r ^ 0 (modm), which does not 
appear in this form in the original result, can be obtained by excluding from 
the sum S in [226, p. 593] the unique residue b with (X - \)b + r = 0 
(mod m) rather than the residue b * 0. A similar modification of [226, 
Theorem 10] yields the following result. 

35 Some qualitative evidence for the good performance of LCPRN under the equidistribution 
test was already presented by Franklin [71] who set up a continuous model and showed that for 
any integer \ > 1 and any real 0 the sequence defined by jcrt+1 » {Xxn + 0}, n — 0, 1 , . . . , is 
uniformly distributed in / for almost all initial values x0 G / (in the sense of Lebesgue measure). 
See also [248, Chapter 3] for a detailed discussion of the case 9 » 0. 
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9.4. THEOREM. Let m = p*,p prime, a > 2, be a modulus, let the multiplier \ 
belong to the largest possible exponent modulo m, and let r be an increment. Ifp 
is odd, there exists an initial value y0 with (\ - \)y0 + r ^ 0 (mod/?) such that 
the derived sequence of LCPRN satisfies 

(P2 - 1 ) , / 2 

ND* > KP
 %p

} m1'2 

for some N with I < N < r. If p = 2 and r = 0, there exists an odd initial 
value y0 such that the derived sequence of LCPRN satisfies 

ND* > ( l /8V2)m 1 / 2 

for some N with 1 < N < T. Ifp = 2 and r odd, there exists an initial value y 0 

such that the derived sequence of LCPRN satisfies ND% > \ m1/2 for some N 
with 1 < N < T. 

It is remarkable how close the discrepancy for parts of the period of a 
sequence of LCPRN is to that of a randomly chosen sequence (compare with 
§3). 

The techniques employed in this section can also be applied to sequences 
of PRN generated by higher-order recurrences. Using the notation and the 
result of Theorem 8.1 as well as Lemma 3.3, we obtain the following 
information concerning the equidistribution test. 

9.5. THEOREM. For any prime p and any sequence of PRN derived from a kth 
order linear recurrence relation (8.1) with a0 z£ 0 (mod/?), we have 

forKN < T. (9.2) 

9.6. COROLLARY. For any kth order Tausworthe generator modulo the prime p 
we have 

i . pk/2 

>*<7 + 

forKN < r=pk - 1. (9.3) 

The bound (9.2) is only meaningful if AT, and so the period r, is 
considerably larger than/>*/2. Thus, as in the first-order case, recurrences 
producing long periods are preferable. If N > ^(*/2)+i+«f e > 0, then the 
main term in (9.3) is \/p. This term is needed since all PRN are rationals 
with denominator/?, so that we must have DN > I/p. On the other hand, the 
upper bound (9.3) differs then by very little from this trivial lower bound 
implied by the discreteness of the sequence, which confirms the notion that 
Tausworthe generators, say of order k > 3, lead to an extremely even 
distribution. For small values of k the second term on the right-hand side of 
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(9.3) is required, at least up to the logarithmic factors, because of the 
following result: for every primitive polynomial modulo p of degree k there 
exists a corresponding Tausworthe generator such that ND% >\ pk^2 for 
some N with 1 < N < r (see [226, p. 596]). 

10. Interdependence of successive terms. The results of the preceding section 
have shown that a sequence of LCPRN will pass the equidistribution test as 
soon as its period is large. To achieve a finer distinction between the various 
multipliers, more powerful tests have to be applied. In particular, one has to 
take a closer look at order properties and relations between successive terms 
in the sequence. 

Although numerical data about the performance of various LCPRN under 
stringent tests had already been collected earlier (cf. [143], [332], and the 
survey article [135]), the first effective theoretical results were only obtained 
in the 1960s when the problem of calculating serial correlation coefficients 
(see §6, test E) was solved satisfactorily. Coveyou [46] considered the question 
in the context of a continuous model, whereas Greenberger [86] provided a 
good estimate for serial correlation coefficients. To minimize the resulting 
expressions, the choice X « m1/2 suggested itself, leading to proposals such as 
m = 235, X = 218 + 3. A few years later, Jansson [141] gave exact formulas for 
serial correlation coefficients. All these results refer to the full period and to 
cases in which either all residues or a known set of residues modulo m are 
generated. See also [1], [56], [60], [142, Chapter 6], [154, §3.3.3], [327]. The 
values of serial correlation coefficients can be conveniently expressed in terms 
of generalized Dedekind sums. An allusion to these sums occurs already in 
[86]. Algorithms for the calculation of serial correlation coefficients based on 
the reciprocity law for generalized Dedekind sums are presented in [56], [60], 
[154, §3.3.3]. On the basis of such calculations and an analogy with diophan-
tine approximations, it is suggested in [1] that for the homogeneous case and 
m a power of 2, one should select a multiplier X with X = 5 (mod 8) and 
X « m£/4, where £ = (V5 - l)/2 is the golden section number, in order to 
get small serial correlation. 

Numerical data on the run test (see §6, test C) for commonly used 
generators were already collected in the 1950s (cf. [332]). This test has also 
been applied to a special class of LCPRN obtained by taking the Mersenne 
prime m = 231 — 1 as the modulus in the multiplicative congruential method, 
with the multiplier X being a primitive root modulo m. This proposal is due to 
D. H. Lehmer and has the merit of allowing a quite convenient computer 
implementation (cf. [91], [183]). Particularly good results were achieved with 
X = 75 (cf. [181]), but there can be problems with multipliers that are too 
small (cf. [67]). For further work on these generators, see [60], [61], [136], 
[239], [286]. 

A feasible implementation of the spectral test (see §6, test F) offers some 
challenges, so that numerical data were only recently compiled in a sys­
tematic form (for some sample calculations, see [154, §3.3.4]). We refer to [55] 
for dimensions 2 < s < 4 and [107] for dimensions 2 < s < 5. 

Because of the simple nature of the recursion (7.1), it is clear that sequences 
of LCPRN will be endowed with some intrinsic structure. This was made 
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explicit by the results of Marsaglia [186], [187] on the lattice (or "crystalline") 
structure induced by ^-tuples of successive LCPRN. For notational reasons, it 
is more convenient here to work with the sequence of integers y0, yx,... 
generated by (7.1). We choose a dimension s > 2 and consider the lattice 
points y„ = (yn9yn+i,... ,yn+s-i)> « = 0, 1 , . . . , T - 1, where T is, as usual, 
the period of the sequence. Then we subtract from each of those points the 
vector c = (c0, cï9..., c,_,) whose coordinates result from (7.1) by starting 
with c0 = 0. In this way we obtain r lattice points yó, y j , . . . , y'T-\- We now 
inspect the crystalline structure of these points; it may happen, for instance, 
that they all lie on a rather "coarse" lattice.36 A measure for the "coarseness" 
of a lattice is its unit-cell volume, obtained by calculating the absolute value 
of a determinant whose row vectors form a basis for the lattice. Marsaglia 
[187] shows that for any choice of parameters in (7.1) the points yo, 
yi> • • • 9 YT-I aU üe o n a lattice with unit-cell volume ms~l, which he finds 
unacceptably large. However, the result is stated this way for greater effect. 
We must not forget that the PRN themselves are produced by dividing each 
yn by m. Taking into account the resulting scaling factor m~s, the actual 
unit-cell volume becomes m~l, which is about 2~35 for the standard genera­
tors and thus quite reasonable. 

Marsaglia [188, p. 270] promises methods for perturbing congruential 
generators which would prevent the above points from lying on lattices with 
unit-cell volume greater than 1. This can of course be achieved in a trivial 
manner. For instance, in the homogeneous case we take the sequence yQ, 
>>!,... with initial value y0 = 1 and throw in the numbers y^s+x = y~s+2 
s . . . s s ^ _ | 5 s 0 , ignoring the recursion for these indices. Then the vectors 
y_.,+i, y_5+2> • • • 9 Yo s P a n a parallelepiped of volume 1 and the desired 
property holds. But such juggling acts are evidently not worth the effort since 
it is hard to see why the new sequence should be closer to randomness than 
the original one. 

This raises some fundamental doubts about whether the "lattice test" (to 
use Marsaglia's term) has the proper credentials of a meaningful statistical 
test. As the above example indicates, it does not satisfy a mandatory 
requirement on such tests, namely that of stability. A small perturbation of 
the data (such as changing some terms slightly or adding a small number of 
new values) should not affect the outcome in any significant way, and this is 
clearly the case in all the tests mentioned in §6A-G. The "lattice test", on the 
other hand, reflects purely arithmetic coincidences that can be changed on a 
whim. 

Beyer [19] stressed the fact that the configuration of points y(„ 
y ' i , . . . , y£_i, when extended with period m in each coordinate to all of Rs

9 

need not form a lattice by itself. This will be true, however, if T = m, which 
happens in the inhomogeneous case for a suitable choice of parameters (see 
§7). In the homogeneous case with a multiplier belonging to the largest 
possible exponent modulo m, the periodically extended configuration can be 
viewed as the union of a limited number of translated versions of a fixed 

36 A lattice in R* is a set of lattice points obtained by forming all integral linear combinations 
of s linearly independent lattice points. 
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lattice. This has led to attempts at analyzing this lattice with the aim of 
finding criteria for "optimal" generators. The viewpoint commonly espoused 
in this connection is that a generator is the better the closer its associated 
lattice is to a "cubic" lattice (cf. [20], [188]). This rather ill-advised notion is 
based on simplistic myths about the cubic lattice. In the realm of facts, the 
cubic lattice is of dubious merit. Consider the N = ms points 
(nx/m9..., njm), with the rij running independently through the integers 0, 
1 , . . . , m — 1. They form a pleasing arrangement on a cubic grid. However, 
since no point falls into the interval (0, 1/m) X Is ~l of volume m"1, the 
discrepancy DN of these points satisfies DN > m~l » N~x/\ a pitiable 
performance. Even more striking evidence for the fallacy of the "cubic-lattice 
criterion" will be presented in §11, where we will prove on the basis of 
effective theoretical results that a multiplier which Marsaglia [188, p. 275] 
calls "a candidate for the best of all multipliers" because of the closeness of 
its 2-dimensional lattice to a cubic lattice actually shows a miserable behavior 
under the 2-dimensional serial test. 

There is a way in which the lattice structure can be profitably studied to 
gain insight into the behavior of LCPRN. It is based on the observation of 
Marsaglia [186] that the points y0, yl9..., yT_! all he on a limited number of 
parallel hyperplanes. If this number is too small, then there are large portions 
of the unit cube Is devoid of such points, and thus the generator is unac­
ceptable. Equivalently, one may measure the distances between neighboring 
hyperplanes containing these points, and if the distances are too large, the 
generator should be disqualified. In the latter form, this test is very strongly 
linked with the spectral test (cf. [154, p. 100]). In fact, the "hyperplane test" 
may be viewed as a geometric version of the spectral test. 

Relations between successive terms have also been investigated in the case 
of Tausworthe generators (see §7). Results about the serial correlation can 
already be found in the early papers on these generators ([333], [362]). The 
run test was applied in [337] and the weaker version of the serial test (see §6, 
test G, second part) in [68], [333]. In [338] excellent multidimensional 
uniformity properties are reported for a 3-term recurrence of order 607 
modulo 2. But, as pointed out in [363], Tausworthe generators also have to be 
used with care and the desired degree of statistical independence should be 
ascertained before adopting them. The lattice structure of Tausworthe 
generators was studied in [89]. 

11. Serial test. The discussion in §10 has not included the strongest test for 
the statistical independence of successive terms, which will now be analyzed 
in detail. To set up the serial test (see §6, test G) for a sequence x0, xl9... of 
LCPRN, we choose a dimension s > 2 and consider the points xn = (xH9 

xH+i> • • • 9 */I+J-I)>
 n — 0, 1 , . . . , in ƒ* and their distribution behavior, 

measured quantitatively by the discrepancy DN. In the easier case of the 
multiplicative congruential method, the points x„ may be represented expli­
citly by the compact formula 

x,, = {X%A} for n = 0 , 1 , . . . , 

where À denotes the lattice point (1, A, À 2 , . . . , Xs'1) e Zs. It is therefore 
not surprising that this lattice point should play a special rôle in our 



QUASI-MONTE CARLO METHODS 1015 

investigation, and it will also transpire that the very same lattice point is of 
equal importance in the mixed congruential method. 

The first attempt at getting a grip on the multidimensional distribution 
properties of LCPRN was undertaken in a paper of Franklin [72]. Here a 
continuous model was developed by accepting as an initial value any number 
x0 in the unit interval I and generating a sequence X& x„ . . . by the 
recursion xn+l = {AJC,, + 0}, n = 0, 1 , . . . , where the integer X > 1 and the 
real number 0 are fixed. For a given dimension s > 2, we associate with this 
sequence the points Xo, xl9... in Is in the same way as above. It is easily 
seen that the sequence XQ, xl9... can never be uniformly distributed in Is. 
However, the sequence is, in a certain sense, almost always "asymptotically" 
uniformly distributed. To make this explicit, we have to adopt a more careful 
notation. We fix 0 and emphasize the dependence on X by writing xn(X) 
instead of xn. Since the initial value JC0 is independent of A, we may retain the 
simpler symbol for it. Franklin shows now that for almost all JC0 E ƒ (in the 
sense of Lebesgue measure) we have 

for all subintervals J of Is, where Cj is the characteristic function and \J\ the 
Lebesgue measure of J. Furthermore, if ƒ is a continuous function on Is, then 
for almost all JC0 e I the relation 

lim Urn 1 N±lf(xM = [m* 

is satisfied (see also [304] for related results). The regularity condition on ƒ 
may be relaxed. For the case 0 = 0 corresponding to the multiplicative 
congruential method, Ermakov [65] established a quantitative refinement in 
the form of an "asymptotic" central limit theorem. Let ƒ again be a 
continuous f unction on Is and denote by 

X* a *b. *) - i "t* /(*»(*)) - ƒ /(*) dt 
iV «-o Ji' 

the integration error. Then we have 

lim lim | f ^ 0 e / : i ï A r ( / , ^ ( ) , \ ) < - ^ r ] | = —Lr- f e~^2 dt, 

(11.1) 

where the constant a designates a certain standard deviation depending on/. 
The condition on ƒ may be relaxed in the same way as in Franklin's theorem. 
These results suggest that, at least on probabilistic grounds, things should 
work out all right for a sequence of LCPRN with large modulus and large 
multiplier, but they do not provide any information about individual 
sequences of LCPRN. We note that the shuffling scheme of MacLaren and 
Marsaglia [184] was analyzed by Rosenblatt [260] for dimensions s = 2 and 3 
in terms of an analogous probabilistic model. 
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It is, of course, considerably more difficult to get effective results about 
specific sequences of LCPRN. Recent research of the author has produced a 
satisfactory theory for any dimension s > 2. We let x0, xi9... be an 
arbitrary sequence of LCPRN and define the points XQ, x l 5 . . . in Is as 
before. To recognize clearly the dependence on the dimension, we denote by 
D$ the discrepancy of the points XQ, X„ . . . 9 X N „ X in Is. It will be 
convenient to use an expression that is closely related to the one introduced 
in Definition 4.3. 

11.1. DEFINITION. For a modulus m, a multiplier X, a dimension s > 2, and 
a positive integer d we set 

RM(\,m,d)= 2* r(hy\ 
h (mod m) 

h-A=0(modrf) 

where À = (1, X, X 2 , . . . , X5"1) E Z5, the summation symbol is the same as in 
(4.5), and r(h) is defined by (4.3). 

If d = m, then R (5)(X, m, m) is the same as R (À, m) from Definition 4.3. 
The subsequent estimates for D$> will be in terms of R (5)(X, m, d), where d 
depends in a known way on the parameters determining the specific 
sequence. The case N = r, i.e., when we consider the full period, is somewhat 
easier and will be treated first. The method rests on Lemma 3.9 and the 
estimates in §8. We simplify the upper bounds by using the inequality (4.19). 
For a prime modulus m we obtain the following. 

11.2. THEOREM (NIEDERREITER [227], [229]). For a sequence of LCPRN with 
prime modulus m we have 

DP < — + -{m - r ) 1 / 2 ( - log m + JV + \ *<*>(X, m, m). 
m T \7T J J 1 

The second term in this upper bound is nonincreasing as a function of r 
and so becomes minimal for the maximal value of r, namely T = m — 1. 
Therefore, if we choose X to be a primitive root modulo m, then we obtain 

D"ll< m + ^ T ( f logm + D ' + i R<°\\, m, m). (11.2) 

To get LCPRN for which s successive terms have a low degree of statistical 
dependence, we now select a primitive root X modulo m yielding a small value 
of R{s\X9m9m). Since R{s\X,m,m) — R(\9m), this is equivalent to the 
desideratum that À be a good lattice point modulo m (compare with §4). We 
have thus established an intriguing connection between pseudo-random 
number generation and the theory of good lattice points. As it stands, this 
theory does not indicate how small we can make R (5)(X, w, m) since the 
requirement that X be a primitive root modulo m is of no consequence there. 
It is therefore necessary to prove an existence theorem going beyond those in 
§4 (cf. [229]). In combination with (11.2), one obtains then the following 
result. 

11.3. THEOREM (NIEDERREITER [229]). For any prime modulus m and any 
dimension s > 2, there exists a primitive root X modulo m such that 
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^<Mi*lJ^^ï',o8m+^ (IU) 
where <f> is Euler's totient function. 

Since it is well known that $(b)~l = 0{b~x log log b) with an effective 
implied constant, we conclude that for a prime modulus m the parameters in 
(7.1) can be chosen in such a way that D^lx = 0(m~xQog mf\og\ogm) 
with a constant only depending on s. This should be compared with the result 
from §3 according to which the best distribution of m — 1 points in Is 

currently known involves a discrepancy of the order of magnitude 
m~l(logmY~l. Therefore, sequences of appropriately selected LCPRN 
perform remarkably well under the serial test. Actually, the bound in (11.3) 
represents the expected magnitude of D^LX for a random primitive root 
modulo m. This conforms with an experience encountered by people working 
with empirical data, namely that a blindly chosen multiplier will tend to lead 
to good statistical properties. 

In the case of a prime power modulus, the bounds for D^s) become even 
simpler, although we have to employ now the general expression introduced 
in Definition 11.1. We also need the number y defined prior to Theorem 9.2. 

11.4. THEOREM (NIEDERREITER [230], [233]). For a sequence of LCPRN with 
modulus m = pa,p prime, a > 2, and satisfying y < a we have 

D^ < s/m + ±R(S)(K m,pa-*). (11.4) 

For the homogeneous case this was already shown in [227], [229]; then we 
have of course y = fi (see §9). It is perhaps worthwhile to list the values of y 
for m = 2a, a > 3, and the most common choices of the multiplier X and the 
increment r. In the homogeneous case, X = 5 (mod 8) leads to y = 2 and 
X = 3 (mod 8) has y = 3. In the inhomogeneous case with r odd, X = 5 
(mod 8) yields y = 0, whereas X = 3 (mod 8) leads to y = 2. Since small 
values of y are preferable, this provides another reason why X = 5 (mod 8) 
and r odd seems to be a good choice. On the whole, however, the controversy 
about whether the multiplicative or the mixed congruential method is 
superior is rather academic since the difference between the two cases is 
negligible if Theorem 11.4 is taken as indicative. There is other evidence for 
the essential equivalence of the two methods, and it can be safely said that a 
consensus has been reached on this issue (compare with [57, p. 857], [154, p. 
20], [188, p. 251]). 

Because of the connection with good lattice points, and also for aesthetic 
reasons, a "symmetric" expression of the form i?(5)(X, m\ m') is more 
agreeable than the one appearing in (11.4). Fortunately enough, the latter 
expression is related in a fairly simple manner to one of the symmetric type. 
In fact, for 0 < y < a we have 

R(s\\ m,p«-y) < (1 + 2y logp)s R(s\\9p
a^\pa-y) 

+ (1 + (2ypyiogp)/mY - 1 (11.5) 

forp odd, according to [229, Equation (5.12)], and an almost identical result 
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holds for p = 2 (cf. [229, Equation (5.20)]). In the cases of interest, y is very 
small, and then R^\\9m9p

a~y) is of the same order of magnitude as 
R{sXX,pa~y,pa~y). This amounts to saying that the arithmetic properties of X 
are not so much relevant modulo m = pa but modulopa~y. 

We turn now to estimates for the discrepancy Z>$} referring to parts of the 
period. The following result can be shown for a prime modulus. 

11.5. THEOREM (NIEDERREITER [230], [233]). For a sequence ofLCPRN with 
prime modulus m we have 

i * < î + ^ ( ï k * ' + ï X ï k « - + î ) ' + î * " < » ' "••"•> 
forKN < T. (11.6) 

If one chooses a primitive root X modulo m according to Theorem 11.3, 
then the third term on the right-hand side of (11.6) is 0(m~\logmY 
log log m), and so NDJ$} = 0(m 1/2(log my+l). We observe that in general 
we should not expect a smaller exponent of m for large N because of 
Ermakov's central limit theorem in (11.1). If N is comparable with m in size, 
then the order of magnitude of ND^S) resembles that of a "random" sequence 
of points in Is (see §3). 

For the statement of the estimate in the case of a prime power modulus we 
use the same notation as in Theorem 9.2. 

11.6. THEOREM (NIEDERREITER [230], [233]). For a sequence ofLCPRN with 
modulus m = pa,p prime, a > 2, and satisfying y < a we have 

+ i R(s\X, m,p«-y) forKN < r. (11.7) 

In the homogeneous case, (11.7) can be simplified somewhat on the basis of 
the identity T = ft. For the mixed congruential method with m = 2a, a > 3, 
and r odd, we have r/p = 4 for X = 5 (mod 8) and T//I = 2 for X = 3 
(mod 8). By using (11.5), we may, up to a constant, replace the last term in 
(11.7) by Ris\\,pa-y,p«-y) in the cases of interest. 

As we already observed in the discussion of the theory of good lattice 
points, a quantity such as R (J)(X, m, m) is awkward to deal with numerically. 
Consequently, we adopt the same remedy as there and introduce an integer 
p(s)(X, m) by setting 

p<*>(À,m) = p(À,m), (11.8) 

where A = (1, X, X 2 , . . . , Xs'1) E Z5 and p(A, m) is defined by (4.8). We can 
then rephrase Theorem 4.5 as follows. 

11.7. LEMMA. For any dimension s > 2 and any integers m > 2 and X we 
have 

*<*>(X, m, m) < Cs(log m)7p(^(X, m) 
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with a constant Cs only depending on s. 

It follows from the above considerations that a sequence of LCPRN passes 
the ̂ -dimensional serial test if, in the case of a prime modulus m, we choose a 
multiplier X which is a primitive root modulo m and yields a large value of 
p(5)(X, m), and in the case of a prime power modulus m = pa we select the 
parameters in such a way that both the period and p(j)(X,/?a~Y) are large. 
That the size of the number from (11.8) is really the correct indicator for the 
performance of a sequence of LCPRN under the ^-dimensional serial test is 
shown by the following result. 

11.8. THEOREM (NIEDERREITER [230], [233]). For any sequence of LCPRN 
with modulus m and multiplier X, we have 

Dtf> C;/p(5)(X, m) fori < N < r, 

where C's is a positive constant only depending on the dimension s. 

We may take C/ = s~s for 2 < s < 3 and C's = (IT/2)(TT + \ y for s > 4. 
The lower bound may be improved in some important special cases. For 
instance, if we consider the multiplicative congruential method with m » 2a, 
a > 3, and X = 5 (mod 8), then 

Dtf> C;/p('>(X, 2a~2) for 1 < N < r. 

For the most popular generators and the serial test for the full period, we can 
summarize au this information in a more succinct form by employing 
Vinogradov's notation «: to assimilate constants only depending on s. If we 
use a prime modulus m and a primitive root X modulo m in either a 
multiplicative or a mixed congruential method, or if we use a mixed 
congruential method with m = 2", a > 3, X = 5 (mod 8), and r odd, then we 
obtain37 

i , , (log m)s 

1 « />(.)< \ & > . (11.9) 
p('>(X,m) pis\\m) V ' 

If we use a multiplicative congruential method with m = 2a, a > 3, and 
X = 5 (mod 8), then we have 

1 , , (log m)s 

- «z>T
(j)< ,; , . (li.io) 

p(j)(X,2a-2) T p(5)(X,2«-2) V ' 
Thus the order of magnitude of DT

(j) is, up to logarithmic factors, completely 
determined by the order of magnitude of p(5)(X, m) in (11.9) resp. p('}(X, 2a~2) 
in (11.10). We take this as the justification for referring, in general, to the 
integer p(j)(X, m) defined by (11.8) as the (^-dimensional) figure of merit of the 
multiplier X (with respect to m). 

We have with deliberate care emphasized in the notation that the figure of 
merit p(j)(X, m) depends strongly on the dimension s. It is implicit in this fact 
that a multiplier which is excellent for a certain dimension may be unaccept-

37 Wc apply the inequality p(,)(X, m) < m/2 shown immediately after Theorem 4.6 in order to 
incorporate secondary terms into the main term. 
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able for another dimension. The reason behind this phenomenon has been 
discussed in §4, and we shall present concrete examples later on. There is thus 
a relativity principle in operation, according to which the choice of an 
excellent (or even optimal) multiplier has to be made relative to the dimen­
sionality of, or the desired number of statistically independent successors in, 
the Monte Carlo problem at hand. There is no such thing as a universally 
optimal multiplier. Every individual pseudo-random number generator 
becomes unsuitable for sufficiently high dimensions, even though it may 
perform well for small dimensions. This can actually be put in a concrete 
form. For suppose we generate a sequence of LCPRN with modulus m and 
multipUer A and apply the ^-dimensional serial test with s > log2(m + 1). 
Consider all lattice points h = (A„ . . . , hs) with the hj taking independently 
the values 0 and 1. There are 2s such lattice points, and since 2s > m + 1, 
there exist two distinct lattice points h(1), h(2) among these such that h(1) • À = 
h(2> • A (mod m). Then (h<*> - h(2)) • A = 0 (mod m) and r(hP> - h(2)) - 1, and 
so p(5)(A, m) = 1 for any multiplier A, which is unacceptable. For instance, the 
modulus m = 235 certainly has to be ruled out for dimensions s > 36. In 
practice, the threshold is of course considerably lower, and this particular 
modulus is probably dubious for s > 10. However, this should not be 
construed as a suggestion that Lehmer's method breaks down for moderately 
high dimensions. On the contrary, results such as Theorem 11.3 guarantee 
that if we are willing to use a sufficiently large modulus, then there is always 
a sequence of LCPRN which performs well under the ^-dimensional serial 
test for an arbitrarily given dimension s. Deficiencies that may occur are 
therefore not the fault of the generator, but of the limited computer capacity. 
These limits are of course constantly pushed upwards. 

As to the variability of excellent multipliers with changing dimension, 
something of a positive nature can be said. It is based on the inequality (4.12) 
which we can rewrite as 

pC/)(A, m) > p(s\\% m) for dimensions 2 < / < s. (11.11) 

We infer from (11.11) that if a multiplier A is favorable for the dimension s, 
i.e., if it leads to a large value of p(5)(A, m), then we can expect this multipUer 
to show an acceptable (though not necessarily optimal) behavior for aU lower 
dimensions. Thus, if a generator is to be used for several purposes, it suffices 
to choose it in such a way that it satisfies the most stringent statistical 
independence condition desired in these applications. Viewed from a different 
angle, the inequality (11.11) tells us that if a sequence of LCPRN fails the 
serial test for a certain dimension, it wiU fail the test for aU higher dimensions, 
which is intuitively quite obvious. 

We observed in §4 that for the case s = 2 more information is available in 
the theory of good lattice points because of intimate connections with the 
continued fraction algorithm. The same holds for the 2-dimensional serial 
test, i.e., for the distribution of pairs of successive LCPRN. In the first place, 
the 2-dimensional figure of merit p(2)(A, m) is related in a very simple manner 
with a number arising from the continued fraction expansion of the rational 
\/m. This is obtained from (4.14) which can be rewritten in the form 
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m/ (K + 2)< p(2)(A, m) < m/K, (11.12) 

where K = K(X/m) is defined by (4.13) and represents the maximal partial 
quotient in the continued fraction expansion of X/m. Therefore, the figure of 
merit p(2)(À, m) can only be large if X/m yields small partial quotients. This 
raises the question of how small we can make K(X/m) given the modulus m. 
The number Km from §4 pertains to this question, but it is not necessarily 
appropriate here since we also have to take into account the fact that X 
should produce a sequence of LCPRN with large period. For instance, in the 
case of a prime modulus m we actually have to consider 

Pm = min m \ *(£)• 
where \ runs through all primitive roots modulo m. A theoretical estimate for 
Pm is available since it was shown in [229, §4] that for any prime m there 
exists a primitive root X modulo m with 

log <}>(m - 1) 

which together with (11.12) implies that 

m log <t>(m — 1) 
Pm < —é(m - 1)— < ( l0g m ) l 0 g l 0 g m' 

This bound is certainly not best possible. 
The 2-dimensional case also permits us to establish finer estimates for the 

discrepancy Z>T
(2) of the full period, at least for the generators of practical 

interest. This is achieved by a direct approach and was first carried out by 
Dieter [57], [58]. The method of Dieter is based on an explicit representation 
of the local deviations A (J; r) — r\J\ for subintervals J of I2 in terms of 
generalized Dedekind sums. These sums can then be calculated by means of a 
reciprocity law and other arithmetic properties, and the resulting algorithm 
resembles the continued fraction algorithm (or, equivalently, the Euclidean 
algorithm). In this way, one obtains exact formulas for the various local 
deviations. We get information about DT

(2) by establishing a global bound on 
the local deviations. This can be done using either standard continued 
fractions (cf. [155]) or continued fractions to nearest integers, the alternative 
chosen by Dieter. Generalized Dedekind sums can also be applied to get a 
handle on the permutation test (see §6, test D) for triples ([58], [59]). 

Apart from the fact that it only works for the full period, there is a further 
restriction on the above technique insofar as we have to know exactly which 
residues modulo m are generated by the recursion (7.1). This explains the 
additional conditions in the subsequent result. The bound for DT

(2) will be in 
terms of partial quotients arising from a continued fraction algorithm to 
nearest integers.38 The new feature here is that these partial quotients may 
also be negative. 

11.9. THEOREM (DIETER [57], [58]). For a sequence of LCPRN with modulus 

See [241, Chapter 5] for the theory of such continued fraction algorithms. 
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m, multiplier X, and either (i) T — m; or (ii) m = 2a, a > 3, X = 5 (mod 8), 
r » 0, we Aace 

TDV<\ f | * , | +* + 4Z , (11.13) 

wAere 60, 6„ . . •, bk are the partial quotients in the continued fraction 
expansion to nearest integers of X/m in case (i) and ofX/2a~2 in case (ii). 

A slightly simpler bound is obtained if the discrepancy is only extended 
over dyadic squares contained in I2 rather than over all subintervals of 12 (cf. 
[57, Theorem 5.1]). This latter bound has been tabulated in [55], whereas 
values of local deviations relative to dyadic squares can be found in [57], [58]. 
The estimate (11.13) shows again that small partial quotients are the trade­
mark of favorable multipliers. Case (ii) above is also in perfect harmony with 
(11.10), with both results stressing that in this case the arithmetic properties of 
X are more relevant modulo 2a~2 than modulo 2". 

We shall demonstrate now that a result of the same type as Theorem 11.9 
can be established without the technical apparatus of generalized Dedekind 
sums. Our estimate is in terms of standard continued fractions and its proof 
uses only elementary facts about continued fractions. The following auxiliary 
result is basic. 

11.10. LEMMA. Let m > 2 and X be integers with gcd(X9 m)—\ and let 0 be 
a real number. Then the discrepancy DN of the finite sequence of fractional parts 
{(Xn/m) + 0}, n « 0, 1 , . . . , N - 1, satisfies 

<? 

NDN < 2 *i forl< N <m (11.14) 
#*i 

and mDm = 1, where al9... ,aq are the partial quotients in the continued 
fraction expansion of\/m. We also have 

NDN < C(K) \og(N + 1 ) forl< N < m, (11.15) 

where K - K(\/m) = max^, ...,aq)and C{K) - 2/log 2 for 1 < K < 3, 
C(K) = (K+ l)/log(tf + 1) for K>4. 

PROOF. If N = m, then the numbers {(Xn/m) + 0}, 0 < » < m — 1, form 
a sequence of m equidistant points with distance 1/m, and therefore we get 
Dm « 1/m. In the general case, we adapt a method from [220]. Let 1 = r0 < 
r\ < ri < • • • < /^ m m be the denominators of the convergents to X/m. 
Then an integer N with 1 < N < m can be represented in the form N — 
2*-<KW w i t h 0 < h < q, ch > 1, and 0 < c, < ai+l for 0 < i < h. We 
decompose the given sequence {(Xn/m) + 0), n = 0, 1 , . . . , N - 1, into 
blocks, namely ch blocks of length rh, cA_, blocks of length rA_„ and so on. 
Consider such a block of length r„ 0 < i < h; it consists of elements of the 
form {(Xn/m) + 0}, n = n0 + 1 , . . . , n0 + rt. Let/?,//-, = [a0; al9..., at] be 
the ith convergent to X/m. Then from the theory of continued fractions (cf. 
[241, p. 37]) we know that 
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A . El + _A_ with 10 | < 1. 
M l V W V I I I m r, /*,/• r i + i 

Writing n = n0+j with 1 < y < r„ we get 

l m J { m r, #•/-,+, J 

where M = (Xn0/m) + 0. Since gcd(#, rg) = 1, the numbers (jPi/ri) + w> 
1 < 7 < rç> considered modulo l, form a sequence of r, equidistant points 
with distance 1//-,., which therefore has discrepancy \/rt. Because of 
1/8//^+J < l / r / + 1 for 1 < j < r„ the finite sequence {(Xn/m) + 0}, /i = 
w0 + 1 , . . . , n0 + ri9 is obtained by cyclically shifting modulo 1 the elements 
{(JPi/ri) + «}, 1 < y < ri9 either all to the right or all to the left by at most a 
distance l/ri+l, where the direction of the shift depends only on the sign of 
Sg. It is then easily seen that the discrepancy Dr of the finite sequence 
{(Xn/m) + 0}, n = n0 + 1 , . . . , n0 + rf, satisfies 

D, < l/n + l/r ,+ I. 

From the triangle inequality for discrepancies (cf. [174, p. 115]) and the way 
in which we decomposed the original sequence, it follows that the discrepancy 
DN of the sequence {(Xn/m) + 0}, n = 0, 1 , . . . , N — 1, satisfies 

NDN<% J l + - M 

< 2 U + ̂ ) < î (c, + l)> (1116) 
i_o V r«+i / i - o 

where we used c, < Ö I+1 and ^+1r# < rl+1 (cf. [241, p. 24]). The coefficients ct 

obtained from the algorithm in [220, p. 148] have the properties39 that c0 < ax 

and that c, = al+1 implies ci^l = 0, and so the estimate (11.14) follows. 
To obtain (11.15), it suffices to combine (11.16) with the inequality 

h 

o ( # ) = 2 (^ + 1) < C(K)log(N + 1) f o r l < # < m , (11.17) 
i-0 

where o(N) is well defined if we use the coefficients c, produced by the 
algorithm mentioned above. We establish (11.17) by induction on h. If 
r0 < ru then the smallest possible h is h = 0, and a corresponding N satisfies 
1 < N < rx < K. If r0 = rx = 1, then the smallest possible A is h = 1 and a 
corresponding AT satisfies l < J V < r 2 — l < i £ Since o(N) = JV + 1 for 
these JV, it suffices to show for the first step in the induction that 

# + 1 < C(K)log(N + 1) f o r l < # < * . (11.18) 

39 The first property follows from rx - alt and for the second property we note that if 
r,< N< r l+„ then N - qrt - N - ûl+1r, < ',+i - fl^r, - #•,_,. 
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But this follows from the fact that 
x + 1 

C{K) = max 
<X<K log(x + 1) 

Now take an arbitrary N with 1 < rh < N < rh+x and write N = chrh + 
Nh_x with 0 < Nh_x < rh. Then o(N) = ch + 1 + o(Nh_x)9 and the 
induction hypothesis yields o(N) < ch + 1 + C(K)log(Nh_x + 1), which 
holds also for Nh_x = 0. Now N + 1 > cA(A^_! + 1) + JV^ + 1 = 
(cA + \){Nh_x -«- 1), and so 

o{N) < ch + 1 + C(tf)log ^±_L . 

Since 1 < ch < aA+1 < f̂, we can complete the argument by applying (11.18) 
with ch in place of N. 

11.11. THEOREM. For a sequence of LCPRN with modulus m9 multiplier A, 
and either (i) r = m; or (ii) m = 2a

9 a > 3, X = 5 (mod 8), r = 0, we foüe 

rZ><2)< 1 + 2 * , (11-19) 
i - i 

TZ>T
(2)< 1 + C(/Qlogr, (11.20) 

where a„ . . . , aq are the partial quotients in the continued fraction expansion of 
\/m in case (i) and ofX/2a~2 in case (ii), K = max(a1? . . . , aq)9 and C(K) is 
as in Lemma 11.10. 

PROOF. In case (i), all residues modulo m are generated by (7.1). Therefore 
the points Xo, xX9..., xm_x are a permutation of the points 

{n/m9 {(Xn + r)/m})9 n = 0, 1 , . . . , m - 1. 

For a subinterval J = [ul9 u2) X [vl9 v2) of 72, the number A(J) of these 
points falling into J is equal to the number of integers n with mux < n < mu2 

and {(Xn + r)//w} E [vX9 v2). If the first condition is not satisfied by any 
integer n9 then 

\A(J)-m\J\\ = m\J\< 1. (11.21) 

Otherwise, the first condition is satisfied by the integers n = NX9 Nx + 1, 
. . . 9N2 — 1, say, where 0 < Nx < N2 < m. Thus ^4(/) is equal to the number 

of integers./, 0 < j < N2 - Nl9 with 

where 0 = (AÂ  + r)/m. Hence we have A(J) = A([vl9 v2); N2 — Nx)9 with 
the second counting function referring to the sequence {(Xj/m) + 0}9j = 0, 
1 , . . . , N2 — Nx — 1. If D„2_Ni is the discrepancy of this sequence, then 
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\A(J) - m\J\ | = \A([vl9 v2); N2 - Nx) - m(u2 - ux)(v2 - Ü^I 

< \A([vv v2); N2-Nx)~ (N2 - Nx)(v2 - vx)\ 

< (N2 - N{ )DN2_Ni + |tf2 - Nx - m(u2 - ux)\. 

Now Nt = mti, + 9i9 0 < 0, < 1, for / = 1,2, and so 

\A(J) - m|/| ( < (N2 - Nx)DN^Ni + l < i ^ + l 

by (11.14). Because of (11.21), this inequality holds for any / , so that we 
obtain (11.19) for the case (i). The inequality (11.20) for the same case is 
shown by applying (11.15) instead of (11.14). 

In case (ii), the recursion (7.1) generates all residues modulo m that are = g 
(mod 4), where g is the least residue of y0 modulo 4. Therefore the points XQ, 
x l 5 . . . , xT_ ! are a permutation of the points 

({An + g)/m9 {X(4n + g)/m}\ n = 0, 1 , . . . , r - 1, 

with r « m/4. By using the same method as above, we obtain the desired 
results for case (ii). 

The method in the proof of Theorem 11.11 can clearly be applied whenever 
the set of residues modulo m generated by (7.1) is known explicitly and 
consists of an arithmetic progression or possibly a union of arithmetic 
progressions. To provide one more example, consider the homogeneous case 
with a prime modulus m and a multiplier A which is a primitive root modulo 
m. Then T = m — 1, and we get 

( m - l ) Z > £ ! i < 2 + 2 <% 
i - i 

and 

(m - l)D<?!i < 2 + C(K) log m 

with the notation from case (i) in Theorem 11.11. 
At first glance, the bound in (11.13) appears to be better than those in 

Theorem 11.11 by a factor } . This superficial comparison ignores the fact 
that the 1̂ 1 are usually larger than the at. If we use, for instance, m = 232, 
X = 1812433253, and r odd, then K = K(K/m) = 2, so that the bound in 
(11.20) becomes 65, whereas the bound in (11.19) is 50 and the bound in 
(11.13) is 49^. 

Borosh and Niederreiter [24] have carried out a systematic search for those 
multipliers X yielding a small value of K = K(X/m) with respect to moduli m 
used in practice. The results show, for instance, that for each m = 2a, 
6 < a < 35, there exists a multiplier X with K(X/m) < 3, and even one for 
which X = 5 (mod 8). In many cases we can actually obtain K(X/m) = 2. An 
example with m = 232 was already given above, and another interesting 
example is m = 230, X = 657759677. Such multipliers yield, of course, a huge 
figure of merit p(2)(X, m) and an absolutely fantastic distribution of pairs. 
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Further results for the case s = 2 can be found in [229]. For instance, for 
every modulus m = 2a with a > 31 there exists a X = 5 (mod 8) with 
p(2)(A, m) > m/log m, where m = 2m/5. The calculations mentioned above 
suggest that one may, in fact, achieve a lower bound of the order of 
magnitude m. A similar existence theorem holds for odd prime power moduli 
m and multipliers X that are primitive roots modulo m. For a positive divisor 
d of an arbitrary modulus /w, the expression R (2)(À, m, d) introduced in 
Definition 11.1 can be estimated in terms of K(X/d). 

With all this information for s = 2, it can be said that the distribution of 
pairs of successive LCPRN is now clearly understood. For the moduli of 
practical interest, the discrepancy over the full period XQ, XJ, . . . , xT_x is 
0(r~l log T) with suitable multipliers that can be determined effectively (cf. 
[24]). In the light of (3.11), this order of magnitude is the lowest possible for 
any r points in I2, so that well-chosen LCPRN lead to a nearly optimal 
distribution of pairs. In order to pass the 2-dimensional serial test, the 
decisive factor in the proper selection of a multiplier is the continued fraction 
expansion of X/m (or of a closely related rational) which should only involve 
small partial quotients. 

Proposals for the choice of multipliers have been based on weaker criteria, 
notably those of small serial correlation. The estimate of Greenberger [86] for 
the serial correlation suggested to take X « m1/2, but this yields p(2)(X, m) = 
0{mx/1) and thus a distribution of pairs of modest quality. The same 
objection can be raised against any multiplier that is too small in comparison 
with the modulus. Even a generator such as m = 235, X = I24 + 5, r = 1, for 
which Jansson [141] reported excellent serial correlation properties, is not 
very impressive in terms of its distribution of pairs since we have p(2)(A, m) < 
X « /w2/3. It must also be pointed out that multipliers which are too close to a 
fairly large power of 2 may permit a fast generation procedure, but perform 
very poorly under the 3-dimensional serial test. For instance, Jansson's 
generator satisfies X2 - 10X + 25 = 0 (mod m), and so p(3)(X, m) < 250, 
which is much too small.40 Another generator of this type that has been used 
in some computer installations is m = 235, X = 218 + 3, r = 0. Here we have 
y = 3 and A2 - 6X + 9 = 0 (mod 2a~y% so that p(3)(A, 2a~Y) < 54, which is 
totally unacceptable. The fact that such multipliers yield a bad distribution of 
triples was already noted earlier on the basis of numerical evidence (cf. [48], 
[87], [184], [342], [345]). The proposal of Ahrens, Dieter, and Grube [1] 
mentioned in §10 is thoroughly reasonable, although it was based on the 
weaker argument of small serial correlation and does not necessarily yield 
optimal multipliers with respect to the distribution of pairs. 

Specific multipliers have also been proposed on the basis of the "cubic-
lattice criterion" (see §10). Marsaglia [188, p. 275] comes out strongly in favor 
of m = 232, X = 69069, which yields an almost cubic 2-dimensional lattice in 
the sense that it has a unit cell for which the longer side is about 1.06 times 
the shorter side. However, this does not imply a good distribution of pairs. 
Concretely, we have 69069 • 1 — 1 • À = 0 (mod m), and so p(2)(X, m) < 

40 This is an illustration of the fact that "going up" in the dimension may change the 
performance of a multiplier completely. 
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69069. Thus, if we use this multiplier in the mixed congruential method with r 
odd, it follows from Theorem 11.8 with C2 = 1/4 that rnDj® > 15545. On the 
other hand, m « 232, X = 1589013525, and r odd yields mD™ < 48 by 
(11.13).41 These data demonstrate more eloquently than anything else the 
inutility of the "cubic-lattice criterion". In fact, one would be better off 
choosing multipliers blindly rather than using this criterion, for Yao and 
Knuth [364] proved that the expected value of the bound in (11.19) is 
(ó/fl^log2 m plus lower-order terms, which still leads to a satisfactory value 
for/)*). 

We recapitulate that the performance of a sequence of LCPRN under the 
^-dimensional serial test is governed by a certain ̂ -dimensional figure of merit 
which must be large for a good generator. We should observe the relativity 
principle and the general rule that a multiplier not be related to the modulus 
in too simple a manner. A saving of time in the generation procedure may be 
punished by a serious distortion in the numerical work for which the LCPRN 
are used. If the parameters are chosen according to the criteria spelled out in 
this section, then the ^-tuples of successive LCPRN show an excellent 
distribution behavior in Is, and so we have statistical almost-independence 
among s successive terms. In view of the simplicity of the recursion (7.1), it is 
quite astonishing how close the distribution of ^-tuples can be to an optimal 
one. Marsaglia's devastating verdict that "congruential random number 
generators are not suitable for precision Monte Carlo use" [188, p. 250] can 
be overruled on the basis of new evidence. 

Even among supporters of Lehmer's method one may occasionally sense a 
lingering suspicion about statistical independence properties (cf. [154, p. 56]). 
The standard argument leading to such misgivings has it that (7.1) establishes 
such an intimate link between successive terms that it is futile to hope for 
independence among these terms. In order to understand why LCPRN 
nevertheless perform so well, the following analogy may be helpful. In 
parentheses, we provide the translation from the model to LCPRN. Consider 
a square pool table and a billiard ball moving on it with enormously high 
speed (= the multiplier X is very large). The tangent of the angle between a 
boundary of the table and the initial direction of the motion is supposed to be 
an irrational number (= for a good generator, the fraction X/m has 
approximately the arithmetic properties of an irrational number). In one time 
unit, the billiard ball undergoes several thousand reflections at the boundaries 
(= yn+x is obtained from Xyn + r by subtracting a multiple of m that is 
usually very large). The path of the billiard ball is locally a straight line and 
thus predictable, but the position at time n + 1 is practically independent of 
that at time n. The high velocity and the many reflections "smear out" any 
correlation that might exist locally (= y„+x is almost independent of yn). It is 
a known fact (cf. [174, p. 87, Exercise 9.29]) that under the given conditions 
the billiard ball visits, in the long run, every rectangular region and, more 
generally, every Jordan-measurable region on the table for an amount of time 
proportional to the area of that region (= a sequence of LCPRN with large 

41 The simpler bound (11.19) shows mD™ < 51, whereas (11.20) leads to mDJp < 65 since we 
have K - K(K/m) - 2. 
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period and a properly chosen multiplier has an excellent distribution 
behavior). Thus, the pseudo-randomness properties of a good sequence of 
LCPRN are comparable to those implied by the determinate, but nevertheless 
wildly erratic and for all practical purposes "pseudo-Brownian" motion of a 
"supersonic" billiard ball. 
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