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In this announcement we will indicate how Mackey's definition [7] 
of induced representations of locally compact groups can be generalized 
to the setting of C*-algebras, and how the imprimitivity theorem [8] 
can be formulated in this setting. Proofs, as well as discussion of other 
theorems in the theory of induced representations, will appear elsewhere. 

Let G be a locally compact group, and let if be a closed subgroup of 
G. Let CC(G) and CC(H) denote the algebras (under convolution) of con­
tinuous complex-valued functions of compact support on G and H 
respectively, viewed as dense involutory subalgebras of the group C*-
algebras [5] of G and H. Then elements of CC{G) can be convolved on the 
right by elements of CC(H), and under this action CC(H) acts as an algebra 
of right centralizers [6] on CC(G). 

Let A and Ô denote the modular functions of G and H respectively, 
and let y be the function on H defined by 

y(s) = (m/m)112 

for s e H. Let P denote the linear map from CC(G) onto CC(H) defined by 

P(f)(s) = y(s}f(s) 

for ƒ e CC(G) and seH. Then P commutes with the involutions. Further­
more, a reformulation of a theorem of Blattner [4] says that P is a positive 
map, in the sense that P( ƒ * * ƒ ) is a positive element of the pre-C*-algebra 
CC(H) for all feCc(G). Now let the right action of CC{H) on CC{G) be re­
defined by ƒ • </> = ƒ * (y(j>) for f e CC(G) and (j> e CC(H\ where ycj> denotes 
the pointwise product of y and <t>. Under this new action CC(H) still acts as 
an algebra of right centralizers on CC{G\ but now P satisfies the conditional 
expectation property 

/>(ƒ•<£) = />(ƒ)*</> 

for ƒ e CC(G) and </> e CC(H). In general P is not norm-continuous. However, 
P is relatively bounded, in the sense that for any g e CC(G) the map 
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ƒ •-• P(g* * ƒ * g) is norm-continuous. Finally, products of elements of 
CC(G) are dense in CC(G) with respect to the norm ƒ ^ (\\P(f * * /)||C*(H))1/2-
These considerations lead us to make: 

DEFINITION 1. Let A and B be pre-C*-algebras, with B acting as right 
centralizers on A. By a generalized conditional expectation from A to B 
we mean a linear map, P, from A to £ satisfying 

(1) P(a*) = P(a)*foraeA 
(2) P(öt*a)^0foraeA 
(3) P(aè) = P(a)b foraeA and i e ö . 
(4) For all c e A the map a H-» P(c*ac) from ,4 to £ is continuous. 
(5) For every a e A and s > 0 there is a c e A2 such that 

|jP((a - c)*(a - c))||B < e. 
(6) The range of P generates B. 
If P is a generalized conditional expectation from A to J8, and if V is a 

Hermitian B-module (that is, the Hubert space of a continuous non-
degenerate *-representation of B\ then on the algebraic tensor product 
A ®B V a pre-inner-product can be defined whose value on elementary 
tensors is given by 

<0i ® vu a ® v} = <P(a*a!)i;, vty. 

Furthermore, the obvious left action of A on A <g)B V gives a continuous 
•-representation of A by operators which are bounded with respect to 
this pre-inner-product, and this representation is nondegenerate on the 
corresponding Hilbert space. 

DEFINITION 2. The Hermitian A-module obtained from the action of 
A on the space A (g)B V equipped with the pre-inner-product indicated 
above is called the Hermitian A-module obtained by inducing V from B to 
A via P. 

It is not difficult to show that the induced modules constructed as above 
via the generalized conditional expectation associated earlier to a locally 
compact group and a closed subgroup coincide with Mackey's induced 
representations as generalized to the possibly nonseparable case by 
Blattner [2]. 

The imprimitivity theorem describes which Hermitian A-modules are 
obtained by inducing Hermitian B-modules up to A via P. To formulate 
the theorem we first define a pre-C*-algebra of operators on A. For sim­
plicity we assume that P is faithful (as it is in the group case), that is, that 
if P(a*a) = 0 then a = 0. Define a B-valued inner-product on A by 

<a» O>B = P(a*at) 

for a, axeA. Then the appropriate definition of the algebra, L(A\ of 



608 M. A. RIEFFEL [July 

"bounded" operators on A for this B-valued inner-product is the set of 
operators, T, from A into itself satisfying 

(1) There is a constant, k, such that 

<Ja,Td>B S k2(a,a}B 

as positive elements of the pre-C*-algebra B, for all as A. 
(2) There is an operator, T*, from A into itself which satisfies condition 

(1) above, and for which 
(T^a^B = <A, T*axyB 

for all a, ax e A. 
The norm of T is defined to be the least constant k for which condition 

(1) holds. Then L(A) is a pre-C*-algebra. Furthermore, with the obvious 
action of L(A) on A ®B V, every Hermitian A-module induced from B is 
seen to be in fact a Hermitian L(4)-module, thus giving a necessary con­
dition for a module to be induced. 

To obtain a condition which is also sufficient, we define the analogue 
for L(A) of the two-sided ideal of compact, or rather finite rank, operators 
on a Hubert space. This will be just the linear span, £, of the "rank one" 
operators Ticd) for c,deA, where 

T(c,d)a = c(a9d}B 

for all a e A. 

THE IMPRIMITIVITY THEOREM. A Hermitian A-module W is induced from 
some Hermitian B-module via P if and only if W can be made into a Hermitian 
E-module in such a way that a(ew) = (ae)w for all as A, e e E and weW 
(where ae denotes the product in L{A\ which will again be an element ofE). 

The imprimitivity theorem of Mackey [8], as generalized to the possibly 
nonseparable case by Blattner [4], can be derived from the above theorem. 

Actually, A as an £-B-bimodule is an analogue of the "invertible 
bimodules" which occur in the Morita theorems [9] (see [1, p. 60]), and 
we have 

THEOREM. The category of Hermitian E-modules is equivalent to the 
category of Hermitian B-modules. 

This generalizes Theorem 6.4 of [8] as generalized to the possibly 
nonseparable case in [3]. Such analogues of "invertible bimodules" over 
pre-C*-algebras can be described abstractly. 
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