ITERATED PATH INTEGRALS AND GENERALIZED PATHS¹

BY KUO-TSAI CHEN

Communicated by Herbert Federer, June 15, 1967

Let \mathfrak{M} be a C^{∞} manifold with a countable basis. For convenience, it is assumed that \mathfrak{M} is Riemannian. Let \mathfrak{P} be the set of "reduced" piecewise C^1 paths having a common initial point p in \mathfrak{M} such that each $\alpha \in \mathfrak{P}$ is parameterized by arc length. By a reduced path $\alpha \colon [0, l] \to \mathfrak{M}$, we mean one such that there exists no $t \in (0, l)$ with $\alpha(t-s) = \alpha(t+s)$ for |s| sufficiently small.

Let Ω be the vector space (over the real number field R) of C^{∞} 1-forms on \mathfrak{M} . Elements of Ω will be denoted by w, w_1, w_2, \cdots . Let α^t be the restriction $\alpha \mid [0, t], 0 \le t \le l$. Let $\int_{\alpha} w_1$ be the usual integral, and define, for r > 1,

$$\int_{\alpha} w_1 \cdot \cdot \cdot w_r = \int_0^l \left(\int_{\alpha^t} w_1 \cdot \cdot \cdot w_{r-1} \right) w_r(\alpha(t), \dot{\alpha}(t)) dt.$$

Each iterated integral $\int w_1 \cdots w_r$ is thus a real valued function on \mathfrak{P} . The totality of iterated integrals together with the constant functions on \mathfrak{P} generates a subalgebra F of the R-algebra of real valued functions on \mathfrak{P} . The R-algebra F is of interest for two reasons: (a) Elements of F have geometrical significance of the manifold \mathfrak{M} . (b) It follows from results in [1] that F contains sufficiently many functions on \mathfrak{P} as to separate the points of \mathfrak{P} .

The purpose of this note is to give some indication of the structure of F. In particular, Theorem 2 implies that, if $\mathfrak{M}=R^n$, then F contains a dense subalgebra which is algebraically isomorphic with a polynomial algebra of, at most, countably many indeterminates.

We shall also introduce the notion of a generalized path in \mathfrak{M} which is obtained through a process of dualization in a manner somewhat more complicated than that of a 1-dimensional current. (See [4].) The multiplication of generalized paths is nonabelian.

A detailed account will be given in a forthcoming paper.

1. Given any compact subset K of \mathfrak{M} , define the seminorm $\| \ \|_{K}$ of Ω such that

 $^{^{\}rm 1}\,\rm Work$ partially supported by the National Science Foundation under Grant NSF-GP-5423.

$$||w||_K = \sup\{||w_q||: q \in K\}$$

where $||w_q||$ is the length of the cotangent vector w_q . Let $T^r(\Omega) = \Omega \otimes \cdots \otimes \Omega$ be the r-fold tensor product of Ω over R. If $u_r \in T^r(\Omega)$, define $||u_r||_K$ to be the infimum of all $\sum_i ||w_1^{(i)}||_K \cdots ||w_r^{(i)}||_K$ for all possible finite sums $u_r = \sum_i w_1^{(i)} \otimes \cdots \otimes w_r^{(i)}$. Any element u of the tensor algebra $T(\Omega) = \bigoplus_{r \geq 0} T^r(\Omega)$ is a finite sum $u = \sum u_r$, $u_r \in T^r(\Omega)$, where $T^0(\Omega) = R$. Given a sequence $M = (M_0, M_1, \cdots)$ of positive numbers, define

$$||u||_{M,K} = \sum M_r ||u_r||_K$$

where $||u_0||_{\mathcal{K}} = |u_0|$. Then $T(\Omega)$ becomes a locally convex R-algebra whose topology is generated by all seminorms $|| ||_{M,K}$.

Define, in the tensor algebra $T(\Omega)$, a bilinear multiplication o called the shuffle multiplication such that, for $r \ge 0$, $s \ge 0$,

$$(w_1 \otimes \cdots \otimes w_r) \circ (w_{r+1} \otimes \cdots \otimes w_{r+s}) = \sum w_{\sigma(1)} \otimes \cdots \otimes w_{\sigma(r+s)}$$

summing over those permutations σ of the set $\{1, \dots, r+s\}$ with $\sigma^{-1}(1) < \dots < \sigma^{-1}(r), \sigma^{-1}(r+1) < \dots < \sigma^{-1}(r+s)$. We shall assume that $w_1, \dots, w_r=1$ for r=0. Then, under the shuffle multiplication, $T(\Omega)$ becomes a unitary commutative R-algebra $Sh(\Omega)$. Since the shuffle multiplication is continuous, $Sh(\Omega)$ is a locally convex R-algebra.

2. Define a linear map $j: T(\Omega) \to F$ such that j1=1 and $j(w_1 \otimes \cdots \otimes w_r) = \int w_1 \cdots w_r$. Then j is surjective. Moreover, for any $u, v \in T(\Omega)$,

$$j(u \circ v) = j(u)j(v)$$

so that j is an epimorphism from the R-algebra $Sh(\Omega)$ onto the R-algebra F. (This observation is essentially due to Ree [6].)

Given $\alpha \in \mathfrak{P}$, denote by $e_{\alpha} : F \rightarrow R$ the evaluation map at α . Then

$$e_{\alpha}j(w_1 \otimes \cdots \otimes w_r) = \int_{\alpha} w_1 \cdots w_r.$$

It can be shown that $e_{\alpha}j: \operatorname{Sh}(\Omega) \to R$ is continuous. Then $\ker e_{\alpha}j$ is a closed ideal of $\operatorname{Sh}(\Omega)$. Therefore $\ker j = \bigcap_{\alpha \in \mathfrak{P}} \ker e_{\alpha}j$ is a closed ideal of $\operatorname{Sh}(\Omega)$. We topologize the R-algebra F through the isomorphism $\operatorname{Sh}(\Omega)/\ker j \cong F$.

3. If f is a C^{∞} function on \mathfrak{M} and if $\alpha \in \mathfrak{P}$, then

$$\int_{\alpha} w_1 \cdot \cdot \cdot w_r(fw) w_{r+1} \cdot \cdot \cdot w_{r+s}$$

$$= \int_{\alpha} ((w_1 \cdot \cdot \cdot w_r) \circ df) w w_{r+1} \cdot \cdot \cdot w_{r+s}$$

$$+ f(p) \int_{\alpha} w_1 \cdot \cdot \cdot w_r w w_{r+1} \cdot \cdot \cdot w_{r+s}.$$

It follows that $\ker j$ contains I_p which is the closure of the subspace of $\operatorname{Sh}(\Omega)$ spanned by all elements of the type $u(fw)v-(u\circ df)wv+f(p)uwv$, where $u,v\in T(\Omega),\ w\in\Omega$, and f is a C^∞ function on \mathfrak{M} . It can be shown that I_p is an ideal of $\operatorname{Sh}(\Omega)$. Consequently j induces a continuous epimorphism $j_p\colon \operatorname{Sh}(\Omega)/I_p\to F$.

For any subspace Ω_0 of Ω , the inclusion $\Omega_0 \subset \Omega$ induces a continuous homomorphism $Sh(\Omega_0) \rightarrow Sh(\Omega)$. If dim $\Omega_0 = 1$, then $Sh(\Omega_0)$ is isomorphic with the polynomial algebra R(x); if $1 < \dim \Omega_0 < \infty$, it is known that $Sh(\Omega_0) \cong R(x_1, x_2, \cdots)$.

THEOREM 1. There exist C^{∞} functions h_1, \dots, h_m on M with $\frac{1}{2}(m-1) \leq \dim \mathfrak{M}$ such that, if Ω_0 is the subspace of Ω spanned by dh_1, \dots, dh_m , then $Sh(\Omega_0)$ has a dense image in $Sh(\Omega)/I_p$ under the composite homomorphism $Sh(\Omega_0) \rightarrow Sh(\Omega) \rightarrow Sh(\Omega)/I_p$.

COROLLARY. The algebra F has a dense subalgebra which is a homomorphic image of a polynomial algebra with, at most, countably many indeterminates.

In the case of $\mathfrak{M} = \mathbb{R}^n$, we have an additional result.

THEOREM 2. If Ω is the space of C^{∞} 1-forms on R^n and if Ω_0 is the subspace spanned by the 1-forms dx^1, \dots, dx^n , where x^1, \dots, x^n are the coordinates of R^n , then the composite homomorphism

Sh
$$(\Omega_0) \to \text{Sh } (\Omega) \to F$$

is injective.

4. DEFINITION. A continuous homomorphism α : Sh $(\Omega) \rightarrow R$ such that $\alpha 1 = 1$ and $\alpha(I_p) = 0$ is called a generalized path in \mathfrak{M} with the initial point p.

The generalized path ϵ such that $\epsilon(T^r(\Omega)) = 0$ for all $r \ge 1$ is called the constant generalized path. Every generalized path $\alpha \ne \epsilon$ has a unique initial point p and a unique terminal point q such that, for any C^{∞} function f on \mathfrak{M} , $\alpha(df) = f(q) - f(p)$.

If α and β are generalized paths in \mathfrak{M} , we define $\alpha\beta$: Sh $(\Omega) \rightarrow R$ such that

938 K. T. CHEN

$$\alpha\beta(w_1\otimes\cdots\otimes w_r)=\sum_{0\leq i\leq r}\alpha(w_1\otimes\cdots\otimes w_i)\beta(w_{i+1}\otimes\cdots\otimes w_r).$$

THEOREM 3. If α and β are generalized paths from p to q and from q to q' respectively, then $\alpha\beta$ is a generalized path from p to q'. Moreover, there exists a generalized path α^{-1} from q to p such that $\alpha^{-1}\alpha = \alpha\alpha^{-1} = \epsilon$.

Obviously $\alpha \epsilon = \epsilon \alpha = \alpha$.

BIBLIOGRAPHY

- 1. K. T. Chen, Integration of paths, a faithful representation of paths by noncommutative formal power series, Trans. Amer. Math. Soc. 89 (1958), 395-407.
 - 2. ——, Formal differential equations, Ann. of Math. 73 (1961), 110-133.
- 3. —, Algebraization of iterated integration along paths, Bull. Amer. Math. Soc. 73 (1967), 975-978.
- 4. H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520.
- 5. H. H. Johnson, A generalization of K. T. Chen's invariants for paths under transformation groups, Trans. Amer. Math. Soc. 105 (1962), 453-461.
- 6. R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. 68 (1958), 210-220.
 - 7. G. deRham, Variétés differentiables, Hermann, Paris, 1955.

STATE UNIVERSITY OF NEW YORK AT BUFFALO AND UNIVERSITY OF ILLINOIS