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Introduction. The classical Lefschetz fixed point formula expresses, 
under suitable circumstances, the number of fixed points of a con­
tinuous map ƒ : X-+X in terms of the transformation induced by ƒ 
on the cohomology of X. If X is not just a topological space but has 
some further structure, and if this structure is preserved by ƒ, one 
would expect to be able to refine the Lefschetz formula and to say 
more about the nature of the fixed points. The purpose of this note 
is to present such a refinement (Theorem 1) when X is a compact 
differentiable manifold endowed with an elliptic differential operator 
(or more generally an elliptic complex). Taking essentially the classi­
cal operators of complex and Riemannian geometry we obtain a 
number of important special cases (Theorems 2,3) . The first of these 
was conjectured to us by Shimura and was proved by Eichler for 
dimension one. 

1. The main theorem. Let X be a smooth compact manifold and 
let E, F be smooth complex vector bundles over X. A differential 
operator from E to F means a linear map d: T(E)—:>T(F) on the spaces 
of smooth sections which is given in local coordinates by a matrix of 
partial differential operators with smooth coefficients. By an elliptic 
complex E on X we mean a sequence E0, JSi, • • • , En of smooth vector 
bundles over X and a sequence of differential operators di:T(Ei) 
->T(Ei+1) so tha t 

(i) di+idi = 0 for i = l, • • • , n — 1, and 
(ii) the sequence of symbols 

• • • —> tLitZ > &i+l,x —> • • • 

is exact for all xÇzX and all nonzero cotangent vectors § to X a t x. 
Here o\- denotes the symbol of diy and di as well as <rt- is formally put 
equal to zero for i<0 and i^n. 

In view of (i) the cohomology groups Hl{E) = Kernel di/Image d;_i, 
are well defined and it is a consequence of (ii) tha t Hl(E) is finite-
dimensional. Note that , if w = l, we are dealing with a single elliptic 
operator d0. H° is then the space of solutions of d0u = 0 and Hl can 

1 This work was supported in part by the National Science Foundation. 
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be shown to be isomorphic to the space of solutions of the adjoint 
equation d*v = 0. 

By an endomorphism T of an elliptic complex E we mean a se­
quence of linear maps 7V T(Ei)—>T(Ei) such that d*T» = Ti+\di. Such 
an endomorphism induces endomorphisms HlT of Hl(E) and we de­
fine the Lefschetz number of T by the formula 

n 

L{T) = J2 ( - 1 ) * Trace A T . 

For instance if T is the identity endomorphism I the Lefschetz num­
ber L{I) is just the Euler-characteristic x(£) =]C(""~l) i dim Hl{E), 
and in particular if n = 1, so that we are dealing with a single elliptic 
operator do, then L ( / ) = d i m Ker d0 —dim Coker do = index do. The 
problem of computing index do (and more generally x(-E)) has been 
solved in [ l ] . In this note we are concerned with endomorphisms 
which are, in a sense, a t the opposite extreme from the identity. 

Suppose then t h a t / : X-+X is a smooth map and that <£*•: ƒ*£*—»E* 
are smooth vector bundle homomorphisms. We define linear maps 
Tii Y(Ei)—^T(Ei) as the composition 

T(E<) C T(f*E<) * T(£,). 

If further diTi=Ti+idi then the P» define an endomorphism T of the 
elliptic complex E. An endomorphism of this type, associated to 
{ƒ» <t>t} we call a geometric endomorphism of E. 

Finally we define a fixed point P of a map ƒ : X—>X to be simple 
if det ( l —dfp)?£0, where dfp is the induced map on the tangent space 
to X a t P . This implies that P is an isolated fixed point. Hence if all 
fixed points of ƒ are simple it follows, since X is compact, that they are 
finite in number. Let us observe that </>* may be interpreted as a 
family of linear maps <t>i,p: E^,/(P)—>Et-,p, parameterized by P £ Z . 
Hence if P is a fixed point, ƒ(P) = P , then <j>itP is an endomorphism of 
the vector space Eitp and so Trace <j>itP is defined. 

THEOREM 1. Let E be an elliptic complex on X and let Tbea geometric 
endomorphism of E associated to (ƒ, <£») where f \ X-+X has only simple 
fixed points. Then the Lefschetz number L(T) is given by the formula 

L(T) = Z v(P) 
P 

where the summation is over the set of fixed points off and v(P) is given 
by 
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, m Z ( - l ) 1 ' Trace <j,itP 
p(F) — — ; j 

| det(l - dfp) | 
REMARKS. 

(1) Note tha t the formula for v(P) does not explicitly involve the 
differential operators d{. This is in marked contrast to the index 
formula [l , Theorem l ] . Of course the di are implicitly involved by 
the condition 7\-df- = Ti+idi. 

(2) If we take E to be the de Rham complex (exterior differential 
forms with the exterior derivative), and <£* to be the natural map on 
i-iorms induced by ƒ, we find 

det(l - dfp) 

| det(l - <*/P) I 

and we recover the original Lefschetz theorem, since L(T) is now the 
usual Lefschetz number of the map ƒ. 

(3) Note that in general v(P) is a complex number and not an 
integer. The classical Lefschetz formula, where v(P) = ± 1 , is highly 
special in this direction. Note on the other hand that the Lefschetz 
number L{T) is a linear combination of traces and so, if T is of finite 
order, L(T) will be an algebraic integer. In these cases Theorem 1 
leads to "integrality theorems" analogous to the integrality theorems 
obtainable from the index theorem. 

2. The holomorphic case. Using the d-complex on a complex mani­
fold and the Dolbeault isomorphism Theorem 1 leads easily to: 

THEOREM 2. Let X be a compact complex manifold, V a holomorphic 
vector bundle over X, ƒ : X—>X a holomorphic map with simple fixed 
points and <j>:f*V-+V a holomorphic vector bundle homomorphism. Let 
^(J, 0) denote the composite homomorphism 

Hl{X, V) - i+ H^XyfQ) —»• F*(X, V) 

where V is the sheaf of germs of holomorphic sections of V. Then 

£ ( - 1 ) ' Trace H*(J, *) = £ v(P) 
P 

where the summation is over the fixed points off, 

Trace <j>p 
v(P) 

de t c (1 - dfP) 
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and dfp denotes the C-endomorphism2 of the tangent space to X at P 
induced by f. 

Like the Riemann-Roch theorem, Theorem 2 makes sense and is 
also true in the case of abstract algebraic geometry. As a simple corol­
lary of Theorem 2 we have: 

COROLLARY 1. Any rational projective algebraic manifold has the 
fixed point property for holomorphic maps. 

3. The Riemannian case. Let X be a compact oriented Riemann 
manifold of dimension 21. Let Hl denote the space of (complex-
valued) harmonic /-forms. The usual dualizing operator *: Hl—*Hl 

has (*)2 = ( — 1)*. Hence a: = i*2* has a2 = l. Let Hl
+ and HL denote the 

+ 1, —1 eigenspaces of a. Now there is an elliptic operator (cf. [ l , 
(3.1) (ii) ]), canonically associated to the structure of X, whose index is 
dim Hl

+ — dim HL. If I is even this is the Hirzebruch index of X. 
More generally therefore if ƒ : X—>X is an oriented isometry we may 
define the Hirzebruch number 

r(j) = Trace ƒ + - Trace f I 

where ƒ + is the endomorphism of Hl
+ induced by ƒ and similarly for ƒ L. 

I t is a special Lefschetz number. Its interest lies in the fact that it 
depends only on the section of ƒ on the cohomology of X and so it is 
quite easily computed. Applying Theorem 1 to this special operator 
we obtain 

THEOREM 3. Let X be a compact oriented smooth manifold of dimen­
sion 21. Let ƒ : X-+X be an oriented isometry with isolated fixed points. 
For each fixed point P let r p = ©i;«i Tp,k be a decomposition of the 
oriented tangent space Tp into oriented 2-planes Tp,k invariant under 
dfp, and let dfp induce a rotation through an angle Op,k on TPtk. Then 
the Hirzebruch number r(f) is given by the formula 

r(f) = Z <P) 
P 

where 

* For a complex linear endomorphism we must distinguish carefully between detc 
and det.R the determinant of the underlying real transformation: they are related by 
detR = |detc | 2 . 
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If G is a compact Lie group acting differentiably on X then by 
averaging over G we can find a Riemannian metric invariant under 
G. Theorem 3 can then be used to obtain results concerning such 
group actions. For example Theorem 3 together with some delicate 
number theory (for which we are indebted to J. Milnor) gives: 

COROLLARY 2. Let G be a compact Lie group acting differentiably on 
a (homology) sphere. Assume that G has just two fixed points P , Q and 
that elsewhere the action is free. Then the representations of G on the tan­
gent spaces at P, Q are equivalent. 

This result is particularly interesting when G is a finite cyclic group 
since it implies tha t two lens spaces which are j^-cobordant are iso­
metric (cf. [3, §12]). 

4. Outline of proof. If T is a geometric endomorphism of an elliptic 
complex E the operators TV F(Ei)—>T(Ei) do not unfortunately have 
traces in any accepted functional analytic sense. If, however, T is 
defined by a map ƒ with only simple fixed points it turns out that one 
can define a trace for T\ which we call the flat trace and denote bv 
Traceb 7\-. I t is defined as a limit 

(1) Trace» 7\ = lim Trace(Z\ o In) 
n—*oo 

where In is a sequence of operators with smooth kernels which ap­
proximate the identity operator in a certain rather precise way (re­
ferred to as flat approximation). Note that the composition TiO In 

has smooth kernel and therefore has a trace in an accepted sense, 
namely as fk(x, x)dx, where k(x, y) is the kernel. 

From its definition as the limit of a sequence of integrals it is not 
difficult to evaluate Traceb 7\- explicitly, and we obtain 

™ „ v^ Trace <fo,P 

Trace» Tt = V 1 r 
P | det(l - # P ) | 

where the summation is over the fixed points of/. To prove Theorem 1 
therefore, we have to show tha t 

(2) J2 ( -1 )* Trace 2\ = £ ( -1)* Trace H*T. 

For this purpose consider the "Zeta-function" [4] 

fc(5)=Trace{(l+A)-or,} 



250 M. F. ATIYAH AND R. BOTT 

where A is the operator3 dd*+d*d relative to Riemannian structures 
on the Ei and X. For Re(s) large this trace exists in the Hilbert Space 
sense and there, by the Hodge theory: 

(3) £ ( - l ) ' f i ( j ) = E (-1)*' Trace H*T. 

Using more delicate properties of A, as given in [2], and more 
recently further refined by Hormander and Seeley, one then shows 
that Traceb {( l+A)-« o Ti} defined as in (1), furnishes an analytic 
continuation of f»•($) to the whole plane. The result then follows by 
putting 5 = 0. 
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