
A PARTITION CALCULUS IN SET THEORY 

P. ERDÖS AND R. RADO 

1. Introduction. Dedekind's pigeon-hole principle, also known as 
the box argument or the chest of drawers argument (Schubfach-
prinzip) can be described, rather vaguely, as follows. If sufficiently 
many objects are distributed over not too many classes, then at least one 
class contains many of these objects. In 1930 F. P. Ramsey [12] dis­
covered a remarkable extension of this principle which, in its simplest 
form, can be stated as follows. Let S be the set of all positive integers 
and suppose that all unordered pairs of distinct elements of S are dis­
tributed over two classes. Then there exists an infinite subset A of S such 
that all pairs of elements of A belong to the same class. As is well known, 
Dedekind's principle is the central step in many investigations. Simi­
larly, Ramsey's theorem has proved itself a useful and versatile tool 
in mathematical arguments of most diverse character. The object 
of the present paper is to investigate a number of analogues and ex­
tensions of Ramsey's theorem. We shall replace the sets S and A by 
sets of a more general kind and the unordered pairs, as is the case al­
ready in the theorem proved by Ramsey, by systems of any fixed 
number r of elements of S. Instead of an unordered set S we consider 
an ordered set of a given order type, and we stipulate that the set A 
is to be of a prescribed order type. Instead of two classes we admit 
any finite or infinite number of classes. Further extension will be ex­
plained in §§2, 8 and 9. 

The investigation centres round what we call partition relations 
connecting given cardinal numbers or order types and in each given 
case the problem arises of deciding whether a particular partition 
relation is true or false. I t appears that a large number of seemingly 
unrelated arguments in set theory are, in fact, concerned with just 
such a problem. It might therefore be of interest to study such rela­
tions for their own sake and to build up a partition calculus which 
might serve as a new and unifying principle in set theory. 

In some cases we have been able to find best possible partition 
relations, in one sense or another. In other cases the methods avail­
able to the authors do not seem to lead anywhere near the ultimate 

Part of this paper was material from an address delivered by P. Erdös under the 
title Combinatorial problems in set theory before the New York meeting of the Society 
on October 24, 1953, by invitation of the Committee to Select Hour Speakers for 
Eastern Sectional Meetings; received by the editors May 17, 1955. 

427 



428 P. ERDÖS AND R. RADO [September 

t ruth. The actual description of results must be deferred until the 
notation and terminology have been given in detail. The most con­
crete results are perhaps those given in Theorems 25, 31, 39 and 43. 
Of the unsolved problems in this field we only mention the following 
question. 75 the relation X—>(coo2, o>o2)2 true or false? Here, X denotes 
the order type of the linear continuum. 

The classical, Cantorian, set theory will be employed throughout. 
In some arguments it will be advantageous to assume the continuum 
hypothesis 2**o=fc$i or to make some even more general assumption. 
In every such case these assumptions will be stated explicitly. 

The authors wish to thank the referee for many valuable sugges­
tions and for having pointed out some inaccuracies. 

2. Notation and definitions. Capital letters, except A, denote sets, 
small Greek letters, except possibly 7r, order types, briefly: types, 
and k, /, ra, n, /c, X, /x, v denote ordinal numbers {ordinals). The letters 
r, s denote non-negative integers, and a, b, d cardinal numbers 
(cardinals). No distinction will be made between finite ordinals and 
the corresponding finite cardinals. Union and intersection of A and 
B are A+B and AB respectively, and AC.B denotes inclusion, in 
the wide sense. For any A and B, A —B is the set of all xÇ^A such 
that xQB. No confusion will arise from our using 0 to denote both 
zero and the empty set. If p(x) is a proposition involving the general 
element x of a set A then {xlp(x)} is the set of all x^A such that 
p(x) is true. 

rj and X are the types, under order by magnitude, of the set of all 
rational and of all real numbers respectively. X will also be used freely 
as a variable ordinal in places where no confusion can arise. The rela­
tion ce^/5 means that every set, ordered according to /3, contains a 
subset of type a, and a^ /3 is the negation of a ^ /3 . To every type a 
there belongs the converse type a* obtained from a by replacing every 
order relation x<y by the corresponding relation x>y. We put 

[tn, n] — {vim ^ v < n\ for m S n. 

The symbol 

{#o, %i, • • • }< 

denotes the set { ^-0» X\y * ' * } and, at the same time, expresses the 
fact that xo <xi < • • • . Brackets { } are only used in order to define 
sets by means of a list of their elements. For typographical con­
venience we write 

H[xeA]f(x) 
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instead of ]C*e^ ƒ(*)> a n d w e proceed similarly in the case of products 
etc. or when the condition x^A is replaced by some other type of 
condition. 

The cardinal of S is | S | , and the cardinal of a is \a\. For every 
cardinal a, the symbol a+ denotes the next larger cardinal. If a = b+ 
for some b, then we put a~ — b, and if a is not of the form &+, i.e. if 
a is zero or a limit cardinal, then we put ar — a. Similarly, we put 
k~~ = l, if fe = / + l , and k~ — k, if k—0 or if k is a limit ordinal. If 5 
is ordered by means of the order relation x<y, then the type of 5 
is denoted by 5< and, if no confusion can arise, by 5. For any a>l 
we denote by a' the least cardinal | n | such that a can be represented 
in the form ]JT) [p <n]ay where av <a for all v<n. This cardinal a', the 
cofinality cardinal belonging to a, is closely related to the cofinality 
ordinal cf(/3) of an ordinal /5 introduced by Tarski [17], A regular 
cardinal is a cardinal a such that a' =a. The least ordinal of a given 
cardinal a is the initial ordinal belonging to a. Initial ordinals are 
the finite ordinals and the infinite ordinals o)v of cardinal i$v. We put 

[S]a= {XiXCS; \X\ = a}. 

In particular, [S]a = 0 if \s\ <a. The relation 

A = y£'[r<k]Av = Ao + 'A1 + ' • • • 

means, by definition, that A = X ^ ^ ] ^ " and, also, 

A»AV = 0 (M < ? < *). 

Fundamental throughout this paper is the partition relation 

a->(b,d)2 

introduced in [ó]. More generally, for any a, bv, k, r the relation 

(1) a -> (öo, èi, • • • )l 

is said to hold if, and only if, the following statement is true. The 
cardinals bv are defined for v<k. Whenever 

| S | « a; [S]'= E [v<k]K9f 

then there are BQS; v<k such that 

\B\=b,; [B]'CK,. 

For &<coo we also write (1) in the form 

a —» (&o, 6 i , • • • , &jb_i)r, 
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and if k is arbitrary, and &v = ô for all v<k, then we may write (1) in 
the form 

a -+ (b)l. 

We also introduce partition relations between types. By definition, 
the relation 

(2) a -> (ft, ft, • • • )I 

holds if, and only if, ft is defined for v<k and if, whenever a set S is 
ordered and 

S = a; [5]*-= E ["<*]*>! 
there are J3CS; v<k such that 

S = ft; [*]' C *,. 
If k <o)o, or if all ft are equal to each other, we use an alternative 
notation for (2) analogous to that relating to (1). The negation of (1), 
and similarly in the case of (2), is denoted by 

a •+» (Jo, ii, • • • )L 

We mention in passing that the gulf between (1) and (2) can be 
bridged by the introduction of more general partition relations re­
ferring to partial orders. These will, however, not be considered here. 

If a ^No then, clearly, a' is the least cardinal Nw such that 0^-»(dO«n. 
Also, Nm is regular if, and only if, Nm-*(Nm)in for all n<m. Finally, 
the relation a—>(&o~, &i~, • • • )l is equivalent to y^f\v<k]b„<a. 

We now introduce some abbreviations. Let S be ordered. Then, for 

xes, 
L(x) = {y: {y, *}< C S} ; R(x) = {y: {*, y)< C S). 

If, in addition, [S] r = J^[v<k]K„ then, for BQS; v<k} 

FV(B) = {AiAQB; [A]*CK,], 

[K,] « F,(S). 

In the special case r = 2, we put, for # £ 5 ; *><£, L„(#) = {y: {y, #}< 
£i£„} î Rv(x) — {y. {x, y }<£i£„} ; UV~LV+RV. Uv is independent of 
the order of S. If 0 ^ 4 C 5 , and if W(x) is any one of the functions 
L, R, L„ i£„, Z7y, then we put 

W(A) = u t * £<4]PF(*). 

Also, PF(0) = 5 . If n<coo, then we write W(#o, • • • , #n-i) instead of 
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W({x0f • • • , Xn-x}). I t will always be clear from the context to 
which ordered set S and to which partition of [S]r these functions 
refer. We shall occasionally make use of the notation and the calculus 
of partitions (distributions) summarized in [5, p. 419]. The meaning 
of canonical partition relations 

a —> *(p)r 

and that of polarized partition relations 

# 0 

,at~i, 

—> 

will be given in §§8 and 9 respectively. The relation ce—»(/?)£ will be 
denned in §4. 

3. Previous results. 

THEOREM 1. If k<o)0 then N0—>(No)* [12, Theorem A] . 

THEOREM 2. If k, n<co0j then, for sotnef=f(k, n, r) <&o, 

[12, Theorem B] . 

THEOREM 3. (i) If a ^ ^ o , then a—>(N0, a)2 , 
(ii) N c o ^ N x , Kco0)

2. 

(i) is proved in [2, 5.22]. This formula will be restated and proved 
as Theorem 44. 

(ii) is in [3, p. 366] and will follow from Theorem 36 (iv). 

THEOREM 4. (i) If a^No , then (aa)+->(a+)2
a. 

(ii) J / a ^ o , then aa-+*(3)2
a. 

(iii) If 2«*=Nn+1 , then Kn+2->(Nn+i, Kn+2)2. 

(i) is given in [3 ] and will be deduced as a corollary of Theorem 39. 
(ii) is in [3, p. 364], and (iii) is [3, Theorem I I ] and follows from 

Theorem 7(i).x 

THEOREM 5. If 4>^X; | $ | >No, then, for a<o)02; J8<Ü>O; 7<o>i, 
(i) 0-Kcoo, T ) 2 . 
(ii) 0->(a, p)\ 

1 The partition relations occurring in (i) and (ii) are to be interpreted in the ob­
vious way. Their formal definition is given in §4. 
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(i) is [5, Theorem 5 J, and (ii) is [5, Theorem 7]. Both results will 
follow from Theorem 31. 

THEOREM 6. rj—>(N0, y)2. 

This relation, a cross between (1) and (2), has, by definition, the 
following meaning. If S = rj; [S]2 = K0+Kit then there is AC.S such 
that either 

Ml =No; [A]*CKo 

or 

I = D ; [ i ] 2 C 4 

This result is [5, Theorem 4] . 

THEOREM 7. If a g ^ o , and if b is minimal such that ab>a, then 
(i) a+->(6, a+)2 

(ii) a&-i-K&+, a+)2. 

These results are contained in [6, p. 437]. (i) will follow from 
Theorem 34.2 

THEOREM 8. If 2^v=\Ay^.ifor all v, and if ais a regular limit number* 
then, for every b<a, a—»(&, a)2 . 

This result is [6, Lemma 3], and will follow from Theorem 34. 

THEOREM 9. If <£^X; |<£J = |X|, then X-t+(</>, 0)1. 

This result is due to Sierpinski who kindly communicated it to 
one of us. It will follow from Theorem 29. Our proof of Theorem 29 
uses some of Sierpinski's ideas. 

THEOREM 10. For any a, OH->(N0, NO)**0. 

This is in [5, p. 434]. The last result justifies our restriction to the 
case of finite "exponents" r. 

4. Simple properties of partition relations. 

THEOREM 11. The two relations 

(i) a -* (/So, ft, • • • )l (ii) a* ~> (0* ft, . • . ) \ 

are equivalent. 

2 By methods similar to those used in [17] one can show that (i) b^a' for all 
a > l , (ii) 6= a' for those a > l for which d<a implies 2d^a. 

3 It is not known if regular limit numbers >N0 exist or not. Cf. [13, p. 224]. 
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PROOF. Let (i) hold; 3<=a*; [S]*= 2 > <*]-£,. ThenJ?>=a. 
Hence, by hypothesis, there are AQS', v<k such that i4>=ft; 
[A]rQKv. Then Z<=j8*. This proves (ii), and the theorem follows 
by reasons of symmetry. 

THEOREM 12. Let a-» (ft, ft, • • • )£;aga ( 1 ) ; fcè£(1)i 

ft â j8i1} (* < £(1>), 

Then 

« -> (ft , ft , • • • )*CD. 

-4w analogous result holds when the types ce, ft are replaced by cardinals. 

PROOF. It suffices to consider the case of types. Let 

s(1) = «(1); [s")'-u>< *"]*?• 
Then there is SCS (1 ) such that 3 = a. Then 

[Sy = £ |> < *]!?„ 

where Kv — K^ [S]r for *><&(1), and Kv = 0 otherwise. By hypothesis, 
there are A QS; v<k such that 

A = ft; U h C ^ v . 

If v^k(1\ then m = | f t | è^î 0 ^ [ ^ 4 ] r C ^ which is a contradiction. 
Hence ?<*<». There is A™CA such that J[M=$\ Then [4<i>]' 
C [^4] r C^C^ 1 } , and the assertion follows. 

THEOREM 13. If a—>(ft, ft, • • • )l then 

|« | - * ( | jSo| f I & I. " O * . 

PROOF. Let | s | =\a\ ; [S]r=Jj[v<k]Kv:_We order 5 so that 
S = a. Then there are AQS; v<k such that J = f t ; [^4] rC^. Then 
| -4 | = | ft |, and the theorem follows. 

THEOREM 14. If ft is an initial ordinal, for all v<k> then the two rela­
tions 

(3) 

(4) 

m — 

\m\-

are equivalent. 

PROOF. By Theorem 13, 

* (ft>, ft, 

>(|0o|, 

(3) im 

' lAl 

plies 

)i, 
1 » 

(4). 

•)I 

Now suppose that (4) 
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holds. Let S = m; [S] r= J^[v<k]Ky. Then l s | = | m | , a n d hence, by 
(4), there are ACS; v<k such that \A\ = jft| Î U] rOKr. Then, as 
ft is an initial ordinal, A èf t , and there is B QA such that B = ft. This 
proves (3). 

THEOREM 15. If l+a->(l+ft , , 1+ft, • • • )J+r, tóen 

« -> (ft, ft, • • • )*. 

Jw tóis propositionj 1+a and 1+ft may be replaced by a + l and ft+1 
respectively. Also, the types ay ft may be replaced by cardinals. 

PROOF. Let 5 = a . Let xo be an object which is not an element of 5, 
and put 5o = 5 + {x0}. The order of S is extended to an order of So 
by stipulating that x0GL(S). Then SQ = l+a. Now let [S]r 

= 2 > < * ] U : , . Then [So]1+r= & < * ] ^ o , , where #<>„= { {jo, • • • , 
yr}<:{yi, • • • , yr}eKw}. If l + a - ^ l + f t , 1+ft, • • • )£+r, then 
there are ^oCSoî v<k such that 4 0 = l+ f t ; [Ao\l+rC.Kov. Then 
A0={yo}+A;y0eL(A); 

2 = ft; [A]*CK9. 

This proves the first assertion. 
Next, if a+l-»(ft, + l, • • • )»+\ then, by Theorem 11 and the 

result just obtained, we conclude that 

* $ * 14-r 

1 + a - » ( l + f t , 1 + f t , •• •)* , 

a —* (ft, • • • )*; a—> (ft, • • • V 

Finally, let 1 +a—>(l +&0, 1 +fa, • • • )l+r. Let a and ft be the initial 
ordinals belonging to a and bv respectively. Then, by Theorems 14 
and 13, l+a->(l+ft>, • * • )l+r, 

«—> (ft, • • • ) * ; <*-» (*o, • • • ) * • 

THEOREM 16. If a-*(j80, ft, • • • )ï+4; ftr-KYo, Ti, • • • )ï, then 

«-» (TO, TI, • • • , ft, ft, • * • )*+*• 

In this proposition the types a, ft, yv may be replaced by cardinals. 

In formulating the last theorem we use an obvious extension of the 
symbol (2). 

PROOF. We consider the case of types. Let 5 = a, 

[S]r = Z f r < *]*ox + £ [ 0 < * < 1 + * ] * , . 

Put Ko = ]C [X </]JSTox. Then, by hypothesis, there are A CS\ P<1 +k 
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such that ~A=pv; [A]r(ZKv. If i>>0, then this is the desired conclusion. 
If p = 0, then Z=j3 0 ; U l ' C E M ' l ^ a n d s0» by hypothesis, there 
are BQA ; X<Z such that 3 — Tx; [B]rC.Ko\ which, again, is a conclu­
sion of the desired kind. This proves the theorem. 

I t is clear that , instead of replacing in the relation ce—» (ft, 
ft, • • • )ï+t a single type ft by a well-ordered system of types 
To, Ti, • • • , we could have replaced simultaneously every type ft by 
a system of types and in this way obtained a more general form of the 
transitive property of the partition relation than that given in Theo­
rem 16. 

THEOREM 17. If a—»(ft, ft, • • • )J; Tx-ftx (X<Z), where X-*px is a 
one-one mapping of [0, Z] into [0, k] such that ftèr for P £ [ 0 , &] 
— {px*X</}, then 

a—» (To, Tii • ' " )«• 

In particular, the condition on the mapping X-*px is satisfied 
whenever this mapping is on [0, k]. 

The types a, ft may be replaced by cardinals. 
PROOF. Let N— {p\:X<Z}, and let v—><rv be the mapping of N on 

[0, l] which is inverse to the given mapping X—»px. Now let S = a; 
[ S ] r = Z [ X < Z ] i £ x . Then 

[sy = i > G #]*.„ + I > e [o, *] - N]O. 

By hypothesis, there are A QS; v<k such that Z = f t and either 

(i) vGN; [A]'CK,9 

or 

(ii) P&N; [ i i ] ' - 0 . 

In case (ii), r j Z = f t which contradicts the hypothesis. Hence (i) 
holds, ï = T x î [ 4 ] r C ^ x , where X = crJ,<Z, and the result follows. 

We note that the hypothesis relating to ftg^r cannot be omitted, 
as is seen from the pair of the obviously correct relations 4—»(1, 3, 3)2; 
4-*+(3, 3)2. 

COROLLARY. If a-»(j3)i; \k\ = | / | , then a-»G3)J. 

This shows that, as far as k is concerned, the truth of the relation 
a—»(|S)ft depends only on | k\. We are therefore able to introduce the 
relation 

which, by definition, holds if, and only if, 
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«-»09)I 
for some, and hence for all, k such that \k\ = d. A similar remark 
applies to the relation 

THEOREM 18. Let k<œ0; a—>(ft, ft, • • • )&î 

5 = a; [s]' = Ko+ • • • +Kk-i. 

Then there are sets M, NC [0, k] such that \ M\ +1 N\ >k} 

ft G [K,] for»eM;ve N. 

In the special case k = 2 we have either 

(i) jSo€[ t fo][*i ] öf (ii) ftG M ^ i ] 

«ii) ft, ft G [tfo] öf (iv) ft, ft G [JTi]. 

PROOF. Let 
P, = { M : M < £ ; f t G [*, ]} , 

O, = [0, É] - P, (v< k). 

We have to find a set 7VC [0, *] such that | J I I ^ ^ ] ^ ! >k-\N\ 
or, what is equivalent, | X)[^GiV]Çv| < | N\. If no such N exists, i.e. 
if I Hlv£.N}Qv\ ^\N\ for all NC [0, * ] , then, by a theorem of 
P. Hall [8], it is possible to choose numbers pvCQv such that p^pv 

(ji<v<k). Then ft„$ [i£„] (y <k). On the other hand, by Theorem 17 
and the hypothesis, a—»(ft0, ftx, •••)&• This is the required contra­
diction. 

THEOREM 19. Let a-~>(ft y)2, and suppose that m is the initial ordinal 
belonging to \a\. Then at least one of the following four statements 
holds.4 

(i) P < coo (ii) y < o)o (iii) ft y ^ a, m (iv) ft y g a, w*. 

PROOF. Let 5 be a set ordered by means of the relation x<y and 
also by means of the relation x<£y, and let the corresponding order 
types of S be 5 = a; 5 « = m. Then [ S ^ i ^ + ' - K i where X 0 = { {*, 
y } < " { * » y } « C S } . Then, by Theorem 18, we have at least one of the 
following four cases. 
__Case_ 1. /3G[i£o]<Jifi]<. Then there are sets A, BCS such that 
A< = A<<=(3; 2?< = I ? » = f t and hence j3 = J « g 5 « = w. Then /3 is 

4 (iii) means that /3^a; /3^w; T ^ « ; T ^ W . 
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an ordinal. If jS^coo, then the contradiction coo*^j8* = 5 « ^ 5 ' « = m 
follows. Hence jS<wo. 

Case 2. 7 G [i?o]<[ifi]<. Then, by symmetry, 7<co0. 
Case 3. ft 7 £ [ i f o ] o Then, for some sets A, BQS, Z< = Z « = / 3 ; 

2?< = i ? « = 7 , and ft 7^0: , m. 
Case 4. ft 7G[iTi]<. Then, similarly, Z< = Z » = f t J3<==5>>=7; 

ft 7^<x, m*. This proves the theorem. 

COROLLARY. For every a, 

(5) (r - 2) + a -*+ (co„, (f - 2) + coo*)" (r à 2). 

For none of the relations (i)-(iv) of Theorem 19 holds if j8=coo; 
7=co0*. Hence CM->(CO0, CO0*)2, and Theorem 15 yields (5). 

The method employed in the proof of Theorem 19, i.e. the defini­
tion of a partition of [S]2 from two given orders of 5, seems to have 
been first used by Sierpinski [lS]. In that note Sierpinski proves 
KIH+(KI , Ni)2. Cf. Theorem 30. 

THEOREM 20. (i) If ft^a; | f t | <r, then a—>(ft, ft, • • • )l holds f or 
any k, ft, ft, • • • . 

(ii) If ft =r for v<k, then the two relations 

(6) a -> (/So, ft, • • • , 7o, 7i, * • * )*+i, 

(7) a - > (70, Tit ' ' • )i 

are equivalent. 

PROOF OF (i). WS = a; [S] r = J^[v<k]KVl then there is ^ C S s u c h 
that 3" = ft. Then [i4]' = OCKo. 

PROOF OF (ii). By Theorem 12, (6) implies (7). Now suppose that 
(7) holds. Let S=a; [S]r= ^[v<k+l\K9. If there is v<k such that 
Kv9*0, then we can choose AÇzKv, and we shall have AQS; A=^v; 
[A]rCKv. If, on the other hand, K, = 0 for all v<k, then [S]r 

= ^>2[\<l]Kk+\j and there exist, by (7), BQS; \<l such that 
B=yx; [BYCKt+x. This proves (6). 

THEOREM 21. Let 

(8) <*->(ft,ft, • • .)!. 

r/zew eitóer (i) tóere is *>o<£ such that ft0^a; |ft0 | < r , or (ii) ft g ce 
for all v<k. 

REMARK. If (i) holds then (8) is true trivially. For, let S = a; 
[S]r= ^,[p<k]Kv. Then we can choose BC.Ssuch that J5=ft0. Then 
[ 5 ] r = 0 C ^ 0 . We see, therefore, that the relation (8) need only be 
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studied in the case in which j3v £a for all v <k. In particular, if a is an 
an ordinal, then we may assume, if we wish, that every j6„ is an 
ordinal. 

PROOF. Suppose that (ii) is false. Then there is vi<k such that 
{Sn%a. Let S = a , and put [ S ] r = Z ) ' [*><&]i£,,_where K,X=*[S]T. 
Then, by (8), Üiere are BQS; v0<k ouch that J3=j3„0; [B]rCK9Q. 
ThenpyQ = BSS = a]P07*Pi; [ # ] r = 0; |/3„0| =\B\ <r. Hence (i) holds. 

THEOREM 22. The following two tables give information about a num­
ber of cases in which the truth or otherwise of any of the relations 

(9) a -* (ft,, ft, • • • )l, 

(10) a->(*o, ii, • • • )* 

can be decided trivially. 

k = 0: 

rg\a\ 

r é a 

r > \ a\ 

r > a 

+ 

— 

k>0: 

r=0 

0O< |a | 
\0<r<a 

\r=\a\>0 

r>l«l 
r>a 

by^a 

+ 

+ 

bv^a\ bo>a 

-

bv>a 

-

-

+ 

± 

+ 

-

bo<r 

+ 
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The proofs may be omitted. When a row or column is headed by 
two lines of conditions the first line refers to (9) and the second line 
to (10). Every condition involving the suffix v is meant to hold for 
every v<k. An entry + means that both, (9) and (10) are true, and 
an entry — means that both, (9) and (10) are false. The one entry ± 
marks the only case worth studying, i.e. the case in which (9) or (10) 
can be either true or false, and this for nontrivial reasons. In each 
row the entries are chosen in such a way that all possibilities are 
covered. In the column headings we may, of course, replace j30 and 
bo by pvo and bPo respectively, for any choice of Po<k. The case k = 0 
has, obviously, only curiosity value but is included for the sake of 
completeness. 

5. Denumerable order types. 

THEOREM 23. If n<a>o; a<co02, then 

(11) mn—> (n, a)2, 

(12) won -+* (n + 1, wo + l)2. 

PROOF. We may assume n>0. 
(a) In order to prove (12), consider the set 5={(*>, X):v<n; 

X<coo}, ordered alphabetically: (v, X)<(^i, Xi) if either (i) v<v\ or 
(ii) v=vi; X<Xi. Then [S]2 — Ko+'Ki, where Ki is the set of all sets 
{(*>, X), (*>, Xi)}<C5. Then, clearly, S=a)0n; n + l&[K0]\ co0 + l 
^ [ j f i ] , and (12) follows. 

(b) We now prove (11). Let the set A = ^2,[v<n\Av be ordered, 
3"„=a>o for v<ny and AvQ.L{Av+i) for p + Kn. Suppose that [A]2 

— KQ-\-KI; nQ. [Ko]; ce(£ [Ki], We want to deduce a contradiction. 
By Theorem 1, there is, for every v <n, a set BVÇ. [Av^ such that 

[Bv]
2(ZKPv, for some p„<2. Since w $ [ Z o ] , we have p, = l. Let 

\<fx<n. We define an operator p^ as follows. There is at least one 
set BCBx+B» such that | 5 B X | =N 0 ; [B]2CKU For instance, Bx is 
such a set B. Since a $ [ l i ] , we have, for every such B} o)o^B<a 
<co02. Hence we can choose B such that "E is maximal. We fix such 
a B by any suitable convention and put 

P\p(Boy Bi, • • • , £n-l) = (Co, Ci, • • • , Cn-l), 

where CX = JBJ3X; CM = JBM — B, and C = J3„ for V9^\ ju- Then C„=coo; 
| C\Li(x)\ <Ko for v<n\ x£CM . We now apply, in turn, all 

0 
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operators £\M, corresponding to all 'choices of X, /x, to the system 
(B0l • • • , #n-i) , applying each one of the operators, from the second 
onwards, to the system obtained by the preceding operator, and 
obtain, as end product, the system (D0y • • • , jDn_i). Then DVC.AV; 
Dv = o)o (p<n); \DvLi(x)\ <N 0for K w ; x G D , + i + • • • +Z)w_i. Hence 
it is possible to choose, in this order, elements xn-i, xn-2, • • • , Xo such 
that 

x, £ A£o(*Vfi, «i4-2i • • • , #n-i) (y < n). 

Then, putting D= {xv\v<n}, we have D = n; [ D ] 2 C ^ o a n d therefore 
w£[i£o] which is the required contradiction. 

THEOREM 24. If <*<co04, then 

(13) a n * (3, co02)2, 

(14) <oo4->(3, o>02)2. 

This theorem is a special case of the following theorem. 

THEOREM 25. Let 2 g w , n<a)o, and denote by k = lo(m, n) the least 
finite number I possessing the following property? 

Property PTOn. Whenever p(X, ix) <2for {X, M } ^ C [0, / ] , then there is 
either {X0, • • • , Xw_i}^C [0, /] such that 

p(Xa, \p) = 0 

or there is {X0, • • • , Xn_i}^C[0, /] such that 

p(Aa, \p) = 1 

77zew 

(15) coo/o —* (w, wo^)2, 

(16) 7 -+-» (w, a>ow)2 

Moreover, if k—>(m, m, n)2, /Âew Z0 ^ / i . 

f or a < P < w, 

for {a,p)*C [0, nj . 

/or 7 < coo/o. 

Deduction of Theorem 2k from Theorem 25. We have to prove that 
/o(3, 2) = 4 . (i) By considering the function p denned by 

p(0, 1) = p(l, 2) = p(2, 0) = 0; p(2, 1) = p(l, 0) = p(0, 2) = 1, 

we deduce that 3 does not possess the property P32. (ii) Let us assume 
that 4 does not possess P32. Then there is p(X, ju) such that the condi­
tion stipulated for P32 does not hold, with / = 4. If 

5 The existence of such a number I follows from Theorem 2. It will follow from 
Theorem 39 that we may take / = (l+32w+n-5)/2. 
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{a, ft Y } * C [0, 4] ; p(a, fi) = p(a, y) - 0, 

then the assumption p(/3, 7) = 0 would lead to 

p(a, fi) = p(fi, 7) = p(a, 7) = 0, 

i.e. to a contradiction. Hence p(/3, 7) = 1 and, by symmetry, p(7, fi) 
= 1. This, again, is a contradiction. This argument proves that 

(17) if {a, fi, 7 } * C [0, 4] ; p(«, « = 0, then p(«, 7) = 1. 

Since a t least one of the numbers p(0, 1), p(l , 0) is zero, there is a 
permutation a, fi, 7, ô of 0, 1, 2, 3 such that p(a, fi) =0 . Then repeated 
application of (17) yields p(a, 7) =p(ce, S) = 1; p(7, a) = 0; p(7, S) = 1 ; 
p(ô, a)=p(ô, 7 ) = 0 , which contradicts (17). This proves /o(3, 2 ) ^ 4 
and, in conjunction with (i), Zo(3, 2) = 4 . 

PROOF OF THEOREM 25. 1. We begin by proving the last clause. Let 

(18) h-+(tn,tn,n)\ 

Suppose that p(X, /JL) <2 for {\, ju}^C [0, h]. Then 

[S]2 = Ko + Kx + K* 

where 5 = [0, h], and Kv is the set of all {X, M } < C [0, k] such that 

P(X, /*) = 0 (* = 0), 

p(X, M) > P(M, X) (y = 1), 

p(X, ju) = pO*, X) = 1 (*> = 2). 

By (18), there is Si = {X0, • • • ,Xfc_i}<C-S such that one of the follow­
ing three statements holds. 

(19) k = m; [Sx]2 C #o, 

(20) k = m; [Si]2 C * i , 

(21) * = »; [ S i ] 2 C # 2 . 

(19) implies that p(X«, \p) = 0 for a < fi < m\ 
(20) implies that p(Xm_i_a, Xw_i_|3) == 0 for a < fi < m\ 
(21) implies thatp(X«, \p) = 1 for {a, fi}* C [0, »] . 

This shows that U{m, n) £k. 
2. We now prove (15). Let Z = Z0(w, n); A = [0, <a0l]; N= [0, co0]; 

[A]* = Ko + 'Kx (partition A). 

We use the notation of the partition calculus given in detail in 
[4, p. 419] which can be summarized as follows. If A is an equivalence 
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relation on a set M or a partition of M into disjoint classes then | A| 
denotes the cardinal of the set of nonempty classes, and the relation 

expresses the fact that x and y belong to M and lie in the same class 
of A. If, for pÇzR, Ap is a partition of M, and if t—>fp(t) is a mapping 
of a set T into M, then the formula 

A ' « =II[p€*]Ap(/,(fl) (ter) 

defines that partition A' of T for which 

*«*( -A ' ) 

if, and only if, 

/ P W ^ ƒ,(')(• A) f o r p G * . 

We continue the proof of (15) by putting 

* ' ( { * , T l ) = 1 1 ^ M < /]A({cooX + er, woju + T } ) (or < r < CÖO). 

By Theorem 1 there is N ' G [#]"« such that |A' | = 1 in [iV']2. Then, 
by definition of A', there is p(X, /x) < 2 such that 

P(X,M) for X, M < ^ {<7> r } < C ^V'. 

By definition of / this implies that there is a set {X0, • • • , X*~i}* 
C [0, l] such that either 

(22) k = m; p(X«, \fi) = O f or a < 0 < m 

or 

(23) k = n; p(X«, X,) = 1 for {a, # } * C [O, n]. 

If (22) holds, then we put 

A' = {cOoXa + (Ta-OC < m) , 

where cra is chosen such that {<r0, <Ti, • • • , crm-i}<C-W. Then 
[i4']2C-Ko, so that the desired conclusion w £ [ Z o ] is reached. 

If we now assume that m^[Ko]9 then p(X, X) = l for X<Z, and, 
furthermore, (23) holds. Then we put iV'={c7o, cri, • • • }<; J " 
= {co0X«+<ra+tn:a<n; /<co0}. We find that [A"]*<Ki; œ0n=A" 
G [Ki]. This proves (IS). 

3. Finally, let 7<co0/o. Then there is Kk such that W 
ê 7 < W o ( / + l ) . Then, by definition of l0, there is p(X, M ) < 2 for 
{X, M } ^ C [ 0 , /] such that , whenever {X0, • • • , Xm~i}^C[0, / ] , then 

(24) p(X«, \d * 0 
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for some {a, /3}<C[0, m], and, whenever {Xo, • • • , An-i}*C[0, / ] , 
then 

(25) p(X«. \fi) * 1 

for some {a, 0 }*C [0,n]. Then, if A = [0 ,7] , we have [A ]* = K*+'KU 

where if0 is the set of all {co0X + <r, COO/JL+T] such that {X,/x}^C [0 , / ] ; 
cr<r<co0;p(X, M ) = 0 . If, now, A'£[A]m; [A']*CK*> then 

A' = {woXa + ö"a:a < m] ; <r<> < • • • < o*m-i < a>oî 

{Xo, • • - ,Xw- . i}*C [0, / ] ; 

p(A«, X/j) = 0 for a < p < mf 

which contradicts (24). If, on the other hand, 

A"CA; A" = o w [A"\*CKi, 

then there is {Xo, • • • , Xn-i}<C[0, l] such that Sa=coo for a<n, 
where 3a=^4"[a>0X«, co0(Xa + l ) ] (a<n). Then p(X«, X )̂ = l for 
{«, /3}^C[0, n], which contradicts (25). Hence neither A' nor A" 
exist, with the properties stated, so that (16) follows. This completes 
the proof of Theorems 24 and 25. 

6. The linear continuum. Our object is to investigate relations of 
the form 

X —» (a0, au * ' • )* 

and their negatives. It turns out6 that every positive relation we were 
able to prove holds not only for the particular type X of the set of all 
real numbers but for every type # such that 

(26) | * | > K o ; « i , « i * S * . 

This fact seems to suggest that, given any type 4> satisfying (26), 
there always exists Xi such that 

Xi â X, 0; I Ai| > N o , 

i.e., tha t every nondenumerable type which does not "contain" o>\ or 
coi* contains a nondenumerable type which is embeddable in the real 
continuum. This conjecture has, as far as the authors are aware, 
neither been proved nor disproved.7 

Throughout this section 5 denotes the set of all real numbers x 
such that 0 < # < 1 , ordered by magnitude. The letters x, y, z denote 
elements of 5, and X = S. 

6 Cf. Theorems 31, 32. 
7 Since this paper was submitted E. Specker has disproved this conjecture. 
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THEOREM 26. 

(i) XH-»(«I)Ü forr^0;k>0. 

(ii) X - » ( r + l ) L 0 for r^ 2. 

PROOF, (i) is trivial, in view of coi^X. In order to prove (ii) it 
suffices, by Theorem 15, to consider the case r = 2. Let {xv:v<coo} be 
the set of all rational numbers in 5, and denote, for n<œ0l by Kn the 
set of all {x, y)< such that the least v satisfying x<xv<y is p = n. 
Then [S] 2= ^2[P<ooo]Kv. Also, if [{x, y, z)<\2C.Kny then the con­
tradiction x<xn<y<xn<z follows. Hence 3(£ [Kn], and Theorem 26 
is proved. 

THEOREM 27. X-+>(co0, coo + 2)r for r^3. 

PROOF. By Theorem 15, we need only consider the case r = 3. We 
have [S]3=Ko+'Kit where K0= { {x, y, z}<:y — x<z—y}. 

ASSUMPTION 1. Let [{x0, xi, • • • }<]ZC.K0. Then lim xv = u as 
v—* oo, and we have, for 0 < m <co0, 

If m—»oo, then the contradiction u—xo^-u—u follows. 
ASSUMPTION 2. Let - 4 C S ; 2 = c o 0 + 2 ; [4] 3Ci£i . Then 4̂ 

= £+{ ;y , JS}<; Z?={x0, Xi, • • • }<C.L(y); lim xv = u as v—>oo, and 
we have, for ra<co0, {xm, xm+i, 2} Gi£i; ^ + i - ^ ^ 2 - x w + i . If ra—» 00, 
then the contradiction u — u^z — u follows. This proves Theorem 27. 

THEOREM 28. Xn->(r + 1, co0 + 2)r/<?r r ^ 4 . 

PROOF. I t suffices to consider the case r = 4. We have [S]4 

= i£ 0+' i£i , where i£o = { {x0, xi, x2, x3}<:x2 — x i<x 3 — x2, xi--Xo}. 
ASSUMPTION 1. Let [{x0, xi? x2, x3, x4}<]4C^o. Then {x0, xu x2, x3} 

Gi^o, and hence x2 — Xi<x3 — x2. Also, { Xi , X2 , X3 , X4 } Gi£o, and hence 
x3 — x 2<x 2 — Xi. This is a contradiction. 

ASSUMPTION 2. Let i 4 C S ; 2 = c o 0 + 2 ; [A^QKi. We define 5 , y, 
2, x„, ^ as in the proof of Theorem 27. Then there is mo <co0 such that, 
f o r m o l m <co0, w — x m <x m —Xo. Then, for mo^ra<coo, {xo, xm, xm+i, 2;} 
Gi£i; xm+i—xm<w—xm<xm—Xo; x m + i ~ x m ^ 2 ~ x m + i , and if m—><», 
then the contradiction u—u^z — u follows. This proves Theorem 28. 

The next two theorems are extensions of results due to Sierpinski. 

THEOREM 29. If 2^\k\ ^ | x | ; \av\ è | x | (v<k), then 
1 

X -+•» (a.o, « 1 , • • • )k. 

Sierpinski proved that X-+>(a, a)1 if a ^ X ; | a | = |X| (Theorem 9). 
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PROOF. 

Case 1. There is p,<k such that aM^X. We consider the partition 
5 = 2 ' [ ^ < ^ J ^ , where K^~S. We have aM^X = Z:

M and, for VT^IX, 
a „ ^ 0 = ]?,,. Hence a v ^ Z v (v<k). 

Case 2. a„^X (*><&). We choose a fixed set AoCZS such that 
^4o=«o. Generally, the letter A denotes sets such that AQS; A =ao. 
Corresponding to every A, there is a real function ƒA (x), denned and 
strictly increasing for xG^4o, such that x—>/A(X) is a mapping of Ao 
on ^4. We extend the definition of f A by putting fA (x) = 0 for xÇzL(Ao) 
and 

/A(*0 = sup [y ^ x;y E A0]fA(y) for » ££ L(40). 

Then /A (x) is nondecreasing in S. The set 4̂ is uniquely determined 
by the function f A and the set Ao. Let D(A) be the set of those x0 for 
which f A (x) is discontinuous at x~Xo. Then |Z>(^4)| ^ ^ 0 . The func­
tion f A is uniquely determined by (i) the set D(A) and (ii) the values 
of /A(X) for xÇzD(A) and (iii) the values of JA(X) for all rational x. 
Therefore 

I EMI I- I E M I * |x|*.- | x | â | EU} l, 
and | ] C M } | = l ^ l —^ni say. Now we can write ^2{A} = {Aop: 
p<œn}. By symmetry, we have, for every v<k, a set {^4„p:p<o;n} 
whose elements are all subsets of S of type av. 

The set N={(v, p):v<k; p_<œn} satisfies | N\ = \k\ttn=\An. We 
order N in such a way that N=oon. Then we can find, inductively, 
xvp such that, for (v> p)Ç:N, 

Xvp G -4„p ~ {aw'O*» cr) < (*>, p)}. 

For, | {(M, cr):()u, cr)<(p, p)}\ <\N\ ^\Avp\. We have x^x^ for 
(^»P)TZ£(M> o"). Now, 5 = ]Cfr"<&]i£v, wherei£„ = 5 — {^p :p<w r i}. For, 
if x G 5 , then, since &^2, there is ?><& such that x^Kv. If, now, 
ctvSKy for some J><&, then there is p such that xvpG-4vPC-^v, which is 
the required contradiction. This proves Theorem 29. 

THEOREM 30. |\|-++(Ni, Ni) r /ör r ^ 2 . 

PROOF. The substance of this theorem is due to Sierpinski [15]. By 
Theorem 15 we need only consider the case r — 2. Let %<y be, as 
throughout this section, the order of S by magnitude, and let x<&y 
be an order of S such that iS«=con , where | \ | =NW. Then [S]2 

^Ko + 'Ku where K0~ {{xf yj^.x^y). Now let AQS; [A]*ÇK,. 
If ^==0, then A<^S<=\; A< = A<<^S<<=coni and hence A<<o)i\ 

\A\ < « L If y = l, then J>^5>=X*; Z> = J « ^ 5 « = c o » ; 2><coi; 
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This proves Theorem 30. We note that this theorem is, in fact, an 
easy corollary of [5, Example 4A]. 

7. The general case. We shall consider relations involving certain 
types of cardinal &i as well as relations between types of any cardi­
nal. We begin by proving a lemma. We establish this lemma in a 
form which is more general than will later be required, but in this 
form it seems to possess some interest of its own. We recall that a' 
denotes the cofinality cardinal belonging to a which was defined in §2. 

LEMMA 1. Let S be an ordered set, and \ S\ ' = Nn ; con, c*>* J S. Then, 
corresponding to every rational number t, there is StCZS such that 
\St\ =\S\;StCL(Su)fort<u. 

Sierpinski, in a letter to one of us, had already noted the weaker 
result that, if | S | =Ni ; coi, cof^S, then rj^S. 

PROOF. Case 1. There is A QS such that 

\AL(x)\ < \A\ - | S | (xEA). 

Then we define xv for v<con inductively as follows. Let vo<o)n\ 
xpÇzA(v<Po). Then, by definition of n, 

\T,["<"*](AL{*>) + M)\ <\A\> 

and hence there is xVoGA — ̂ 2[v<vo](L(xo)+{xp\). Then #M<X 
(jitO<cow) and so congS, which is false. 

Case 2. There is A QS such that 

\AR(x)\ < \A\ = | S | (xGA). 

Then, by symmetry, the contradiction con*^S follows. 
Case 3. There is A QS such that 

min ( | AL(x) |, | AR(x) |) < | A | » | S\ (xEA). 

Then we put 

Ao = {xlxGA; \AL(x)\ < \A\}> 

Ax = {xlxGA; \AR(x)\ < \A\\. 

Then A =Ao+Ai. 
Case 3.1. | ^ 0 | = | 5 | . Then \A0L(x)\ è\AL(x)\ <\S\ =\A0\ 

(x(EAo)y and hence, by Case 1, we find a contradiction. 
Case 3.2. |^40 | 9e | S\. Then \Ai\ = | S| and, by symmetry, a con­

tradiction follows. 
We have so far proved that , if A CS; \A\ = | S\, there is zÇ_A such 

that \AL{z)\ = \AR{z)\ = | S | . Then A ~A'+A", where A' = AL(z); 
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\A'\ -\A"\ = I S\;A'CL(A"). By applying this result to A' we find 
a partition A=A(0)+A(l)+A(2) such that 

\A(P)\-\S\{P<3); i W C W + D) ( " < 2 ) . 

Repeated application leads to sets 

A(\o, Xi, • • • , X*_i) (£ < co0; X„ < 3) 

such that 

U(Xo, • • -.Afc-i)! = | 5 | ; 

4(Xo, • • • , X/b_i) = ]E[" < 3]i4(Xo, • • • , Xfc_i, y); 

il(Xo, • • • , X*_i, v) C £(4(Xo, • • • , X*-i, v + 1)) (* <2). 

Let iV be the set of all systems (Xo, • • • , X*) such that &<coo; 
X„£{0, 2}(y<k);\k=sl9 ordered alphabetically. More accurately, if 
p = (Xo, • • • , X*) and q = (MO, • • • , M*) are elements of N, then we put 
p<q if S t < * ] ^ 3 - " < Z ) t < / K 3 - r . Then we have il(X0, • • • , X*) 
CLC<4(MO, • • • , Mi)), if (Xo, • • * )< (MO, • • • ). It now suffices to show 
that N is dense in itself. In fact, if {(Xo, • • • ,Xfc),(/xo, • • • ,Mi)}<C-W» 
then 

(Xo, • • • , X*) < (MO, • • • , Mi-i» 0, 2, 2, • • • , 2, 1) < (MO, • • • , MI)I 

provided only that the inner bracket contains a sufficiently large 
number of two's. Lemma 1 is proved. 

THEOREM 31. Suppose that </> is a type such that 

\4>\ > No; coi, w i $ <t>. 

Let a<co02; j8<o%; y <coi. Then 

(27) «~>(<*, a, <*)2, 

(28) * - + ( « , 0 ) 2 , 
(29) 0 _ > ( W o > 7 ) . f 

(30) 0 - * ( 4 , a ) 3 . 

THEOREM 32. Le/ <f>, a, y be as in Theorem 31. LeJ 5 be an ordered 
set, 3 = 0 , and [S]2 = i£o+i£i. 77w» 

(a) Jftere is VQS such that either 

(i) V = a; [F]2 C JTo, 

or 

(ii) F - y; [V]> C * i , 
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or 

(iii) 7 = Wo7*; [v]*CKh 

and 
(b) there is WC.S such that either 

(i) W = coo + coo; [wYCKo, 

or 

(Ü) w = 7; [W]* C Kh 

or 

(iii) W = 7*; [ T ^ ] 2 C ^ i . 

In proving Theorems 31 and 32 we may assume that | # | =Ni. There 
is m such that 

4 ^ m < c o o ; a^coo + w; 0 :g coow. 

Let S=<t>. The letters ^4, B, P , Ç denote subsets of 5, and we shall 
always suppose, in the proofs of the last two theorems, that 

\A 1 = \B\ = «1; ? = e = coo. 
PROOF OF THEOREM 31, (29). Let [S}2 = K0+KU and 

(31) coo € [iCo]. 

We want to deduce that 

(32) 7 G [£1]. 

There is B such that 

(33) I BRo(x) I ^ tfo(* G 5) . 

For otherwise there would be elements xv such that 

xo G S; I JRO(#O) I = Mi, 

#i G -Ro(ffo) ; I -R0O&0, *i) I = Ni, 

generally, x„G^o(#o, • • • , *»-i), 

I i?o(#o, • • • , xv) I = tfi (v < coo). 

Then [{ }<]2C.Ko, and hence cooG [Xo] which contradicts 
(31). 

By hypothesis, coi, coi* J # . Hence, by Lemma 1, 
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]£[ / rational ]B(t) C B 

for some sets B(t) such that B{t)QL{B{u)) (t<u). 
There is a set T of rational numbers which, if ordered by magnitude, 

is of type 7. Let T= {t^ixKy} where /M<£„ for ix<v<y. We define 
inductively elements xv(v<y) as follows. Let J>O<7, and suppose that 
XVÇZB(V<VQ). Then, by (33), 

I Y,["<vo]BRo(x,)\ g « o < \B(Q\, 

and therefore we can choose xVQÇ.B(tVo) — ^>2[v<i>o]Ro(xv). Put 
X = { x , : ^ < 7 J . Then X=y; [X]2CKL Hence (32) holds, and (29) 
follows. 

PROOF OF THEOREM 32 (a). Let the hypotheses be satisfied but 
suppose that (a) is false, i.e. that 

(34) a e [Ko]; y <£ [*i]; wy* 6 [*i]. 

ASSUMPTION. If A C.S, then there is xoG-4 such that 

| AL0(xo) | > Ko. 

Then there are xp, Av{v^m) such that 

#o G Ao = S; A0Lo(xo) = Ai; xx G -4iî AiLofa) = ^2 

and so on, up to 

Am — Am-iLo(xm-i) — AOLQ(XO, xh • • • , xm-.i). 

Then, by (29), Zm->(«0 , 7)2 ; 7 $ f t ( i J , and hence ca0EF0(Am). 
There is PCAm such that [P]2Ci£o. Then [P+{x0, • • • , xm_i}]2 

Ci^o which contradicts (34). Hence our assumption is false, and there 
is A such that 

(35) I ALo(x) I g Ko (* G il). 

By Lemma 1, there is B(t) C.A, for rational t, such that J3(2) C.L(B(u)) 
(t<fx). There are rational numbers/ , (v<y) such that t^U (\x<v<y). 
We define sets Pv (v<y) as follows. Let *>o<7, and suppose that 
PvC.B(tv) {v<vo). Then we may put, by (35), 

B' ~ B(tVQ)LlC£[v<v,]Pv). 

Then, by (29), !'->(<*, co0)
2; a$F0(B')\ cooGPi(-B'), and there is 

P , 0 C £ ' s u c h t h a t [PVo]
2CKx. This defines P„ for v<y. Put]£[*><7]Pv 

= X. Then X=co07*; [X]2CKi. But this contradicts (34), and so 
(a) is proved. 

PROOF OF THEOREM 32 (b). Let the hypotheses be satisfied but 
(b) be false. Then 
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(36) coo + co* 6 [Ko]; y € [Ki]; Y * € [*i]-

Choose any A. 
ASSUMPTION. |^4i?0(x)| è&o (x&A). 
Then, by Lemma 1, there are sets B(t) C.A, for rational t, such that 

B(t)QL(B(u)) (t<u). There are rational numbers tv {v<y) such that 
tp<tv (ix<v<y). We define xv (v<y) as follows. Let *>o<7, and sup­
pose that xvÇzB{tv) (v<vo). Then, by our assumption, there is 

Xv0 € B(tVo) - S [ v < vQ]Ro(xv). 

Then the set X= {xvlv<y\ satisfies X~y; [X]2Ci^i which is a 
contradiction against (36). Hence our assumption is false, i.e., given 
any A, there is x^A such that |-4i£0(#)| =Ni. By symmetry, it 
follows that there also is y SA such that | ALo(y) | = Ni. By alternate 
applications of these two results we obtain elements xv, yv and sets 
Avt Bv{v<coo) such that the following conditions are satisfied. 

xoGS; yoGRo(xQ) = B0; &i£J?o£o(yo) =Ai; yiGAiRo(xi) = #i ; 

generally, for J><CO0, 

xv+i G BvLo(yv) = Ay+i; yv+i G ^4v+i^o(^+i) = Bp+i. 

Then the set 2^[^<co0] {xV} yv] =D satisfies Z5=coo+co* ; [D]2C.K0. 
This contradiction against (36) completes the proof of Theorem 32. 

PROOF OF THEOREM 31, (27). Let [S]2 = K0+Ki+K2, 

(37) a $ [K,] (v < 3). 

Our aim is to deduce a contradiction. We shall reduce the general 
case to more and more special cases. For the sake of convenience of 
notation we shall use the same notation for the sets in question at 
each stage. 

We put K12 — K1+K2» The functions Fn, L12, R\% refer to K\% in 
the same way as the functions FV1 Ly, Rv refer to Kv. 

Let AC.S. By Lemma 1, there are sets A0, AiQA such that 
AoQL(Ai). Let XQÇZAI. Then |i4L(x0)| =Ni, and there is v0<3 such 
that |^4i„0(x0)| =Ni. By repeating this argument we find numbers 
vp<3 and elements xp (p<coo) such that 

xp G SLp0(xo)Ln(xi) • • • I^-jOtfp-i), 

I SL,0(xo) • • • LVp(xp) J « ft (p < coo). 

There are po<Pi< • • • pw^.i<coo such that z>P0= • • • = ^ m l . W e m a y 
assume PPO = 0 . Put Lo(xPQ, • • • , Xpm_J—Ao. 

ASSUMPTION 1. co0G-FoC<4o). 
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Then there is P C 4 o such that [P]2CK0. Then a g C ; [C] 2 C# 0 , 
where C — P + {xPplv<m}t which contradicts (37). Hence the As­
sumption 1 is false, and we have coo€£PoC4o). We may assume that 

(38) coo € [Ko]. 

For a later application we remark that in what follows we may re­
place S by any nondenumerable subset of S without any of the con­
clusions becoming invalid. 

Now let ^ 4 C ^ Then, by_(29), 2->(co0, a)2 . Also, co0->(coo, co0)
2. 

Therefore, by Theorem 16, A —>(co0, co0, <*)2. Hence at least one of the 
following three relations holds. 

(i) coo G Fo(A), (ii) coo G Fi(A), (iii) a G F*(A). 

Since (i) and (iii) are false, it follows that 

(39) coo G Fi(A) (A C S). 

By symmetry, 

(40) coo G F2(A) (A C S). 

ASSUMPTION 2. There are x„, Av (*><a>o) such that xoG^o; AoRo(x0) 
= -4i; xi(zAi; AiRo(xi) =A2; x^CA^ etc. 

Then [{xo, xi, • • • }<]2CKo which contradicts (38). Hence the 
Assumption 2 is false, and there are i>o<coo; xvGS ( P O O ) such that 
we may put A = P0(#o, • • • , Xy0_i) and we then have |-4P0(#)| ^ ^ o 
(x&A). We may assume that 

(41) | * o ( » ) | S K o (xGS). 

By Lemma 1, there are sets A, B such that A CL{B). By (39), there 
is PQA such that [ P ] 2 C ^ i - For a later application we remark that 
at this stage we might have applied (40) in place of (39) and 
in this way could have interchanged the roles of K\ and K%. By (41), 
| J^[xGP]Ro(x)\ gNo, and hence \BRn(P)\ =Ni. Therefore we may 
assume 

(42) [P]2
 CKÙ PC Ln(S - P). 

ASSUMPTION 3. If QC.P; ACS, then there is xCA such that 

| QLx(x) | = «o. 

Now we argue as follows. By Lemma 1, there are sets AVCS—P such 
tha t A„CL(AV) (juO<co0ra). We define inductively xVf P„ (v<coow) 
as follows. There is xoCAo such that, if P o = P , we have |P0Li(x0) | 
= No. Let 0<p0<<oora, and suppose that 
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x,GA,; PvCP 0> O o ) , 

| P , - JP„| < N o (/* < * <*o). 

Then we can write [0, J> 0 ]= {px*.X<co0}. We can choose y\ such that 

y\ G PpoPpi ' ' ' PPX - {̂ o, • • • , yx-i} (X < «o). 

By (41) and Assumption 3, there is xVoÇzAVQ-- ^[v<vo]Ro(xv) such 
that | {yo, Ju - - - }Li(*,0)| = NO. We put P„0 = {y0j yu • • • }Li(x„0). 
Then, if V<VQ, there is X<coo such that v=p\. Then |P„0--P„| 
= 1 {^o, yu • • * } —-Ppxl <^o . This completes the definition of 
xP, Pv (v<o)oin). 

We have | P , - P M | <No (fx<p<co0m); PvCPLx(xv) (p<œ0m). Put 
X= {xp:v<œ0m}. Then, by (11), [X]2CK1+K2; X = co0w->(m, a)\ 

Case 1. There is D — {xMo, • • • , xM w_1}<C^ such that [D]2(ZKi. 
Then we put P' =Pllml and have, for r<m, 

| P ' - ZxfeT) | ^ | P ' ~ PMr | + | P,T - U{x,T) | < «o + 0. 

By summing over r we obtain |P'—Zi(Z>)| <t$o. Hence we may put 
P'L1(D)=Q, and we then have Q+D^a; [Q+D]2CKi which con­
tradicts (37). __ 

Case 2. There is DCX such that Z) = cr, [D]2Ci^2. This, again, 
contradicts (37). Hence the Assumption 3 is false, i.e., there are 
P ' C P M ' O S such that 

| P'L^x) | < «o (* G A9). 

Then there is A"Q.A' such that the set P'L\{x) is constant for 
^ G i , / . Then there is P " such that P ' ^ W = P " (*Gi4"). We have 
therefore proved that there is P " , A" such that 

(43) [ P " ] 2 C * i ; P " C W ) . 

The whole argument from (38) onwards remains valid if S is replaced 
by any set A. Hence it follows from (43) that if A <ZS> then there are 
P , A'CA such that 

(44) [P]2 C 2fi; P C Z ^ O . 

By Lemma 1, there are ^4o, B0 such that ^loC^C^o). By repeated 
application of (44) we obtain sets P„, Ai (J><CO0) such that 

Po + 4 0 ' C ^oi [Po]2 C Ki; Po C U{A{), 

Pi + Ai C Ai ; [Pi]2 C Ki; Pi C £2(^1'), 

generally, Pv+Ai CAV-X; [P„]2CKi; PvQL2(Ai) ( 0 0 < e o 0 ) . Then 
P,QAoQL(B0) (^<co0), 
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P , C U(Al) C L2(ALI) C L2(PV) ( / * < * < »o). 

We put P i = P 0 P i 2 ( P o + P i + • • • )• Then we have the result that 
there are sets P„, B\ (^<w0) such that 

I[Pv]
2 C Ki; Pv C Zu(A) (* < coo), 

(45) < 
IPM C il(Pr) (M < V < COO). 

Now let v0<co0; P2CP1; P 'CP„ 0 . 
ASSUMPTION 4. |P'L2(:x;)| <K 0 (sG-B*)* 
Then there is P3CP2 such that the set D=P'L2(x) is constant for 

* G £ 3 . By (39), there is QQBZ such that [Q]8CKi. Then [(P'-D) 
•+Q]2CKi\ co02G [i£i] which contradicts (37). Hence the Assumption 
4 is false, i.e. 

if vo < coo; P ' C Pro, then 
(46) . , . . , , 

| {xlxGBt; \P'L2(x)\ < K o } | ^ K o . 
To Pi the same argument applies as to 5, from (38) onwards. The 
only change we make is that, after (41), we apply (40) instead of 
(39), so that now the roles of K\ and K2 are interchanged. We find 
sets Qv, B2C.B1 such that, in analogy to (45), (46), the following state­
ments are true. 

(47) 

(48) 

[QA2 C K2; QV C Ll2(B2) (v < coo), 

Ö» C U(QV) ( / * < " < coo). 

If vo<wo-Q'CQvv then 

[x:xeB2] |G '£i (*) | < N O } | âMo. 

By Lemma 1, there is B! CB2 (P<CO0) such that B£ QL(B!) 
Qi<v<uo). Let P ; C P , ; Q / C Ö , (y<«o). Then, by (46), (48), there 
are at most Ko elements X(ELB2 such that at least one of the relations 

\P!L2(x)\ <Ko; \QUi(x)\ <Ko 
holds. By using this result repeatedly we find elements X\ (X <coo) such 
that, for all P<CO0, 

#o G Po' ; I PpL2(x0) I = I QvLi(x0) I = Ko, 

»i G B{ ; I PvL2(xo, xi) I = I QFZa(&o, *i) I = Ko, 

generally, xxEBJ ; 

I PvL2(x0i • • • , xx) I = I G,£i(*o, • • • , sx) I = Ko (v, X < coo). 

Since co0—>(co0)l, there is a number v < 3 and a sequence Xo <Xi < • • • ; 
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Xp<coo, such that [{x\0, x\v • • • }<]2QK9. By (38), v?*0. We can 
choose y^ zM such that, for M < ^ O , 

y* G PMxo, xh • • • , tfx^); 2M G (?„£i(#o, • • • , ^xw-x). 

Put X = {xXp:p<m} ; F = {yM:/x<o?0} ; Z = {ZM:M<CO0}. 
Case 1. *> = 1. Then [Z+X] 2 Ci£ i î <*G [# i ] . 
Case 2. y = 2. Then [Y+X]2QK2; aE[K*]. In either case, a con­

tradiction against (37) follows. This proves (27). 
PROOF OF THEOREM 31, (28). If [S]2 = i£ 0+i£i and if we put 

y—coofn then we have, by Theorem 32 (a), either (i) aG[i£o] or 
(ii) P£y€[Kx] or (iii) 0ëcoomgwo7*<$ [# i ] . This proves (28). 

PROOF OF THEOREM 31, (30). Let [S]* = K0+'Ki, 

(49) 4 $ [ * o ] ; a$[Ki\. 

We shall deduce a contradiction. 
By Theorem 2, there is n <coo such that n—>(w, w)3, and £ such that 

(50) (n - 1)(1 + w + w(w - l)/2) < ^ < wo. 

By Lemma 1, there is ZoG-S such that 

|L(»o)|, |*(*o) | > N o 

and then there is CCi?(zo) such that C = rj. 
The following diagram shows the relative position in S and the in­

clusion relations between the various sets to be considered in the 
argument that follows. It might be of help to the reader. 

iyo, yi, >'2Î M * 

l*o", *i"} 
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ASSUMPTION. If D£:[C]P, then | H [ * i , X2(£D]{XQ:XO<ZO; {X0I XU 

#2} $:Ko} I ;gMo. Then there is Zi<z0 such that 

(51) if D G [C]p, then {21, xh x2} Çz Ko for some #1, x2 G -D. 

Then [C]2 = Zo' +K{, where 

# / « {{xi, x2] :xi, x2 G C; {*i, #1, x2} G ^ } (? < 2). 

By (11), C = 77^coo£--*(coo+m, £)2 . Hence there are two cases. 
Case 1. There is EQC such that E=a> 0 +w; [E]*CKQ - Then, 

since, by (49), E=co 0 +m(J [i£i], there are #0', # / , x{ G £ such that 
1 Xo , 3̂ 1 , &2 

} Gi£o. Then [{21, #0', x{, x2 }*]3C^o which contradicts 
(49). 

Case 2. There is GG [C]* such that [ G ] 2 C ^ / . Then {zu xu x2) &K0 

for all xu xt&G, which is a contradiction against (51). 
It follows that our assumption is false, and that there are H G [C]p 

and A QL(zo) such that 
{#0, xu #2} $ KQ for xo Ç. A', xu #2 G #• 

Put 

V(xo, xi) = {^:^2 G # ; {#0, #1, #2} G J£i} for x0, #1 G -4. 

Then [i4]2 = 2£0" + ' 2 £ " , whereJCo" is the set of all {x0, * i } < C ^ such 
that | V(xo, xi)\ *tn. By (28), A—>(co0, co0+w)2. Hence there are two 
cases. 

Case 1. There is PC^4 such that [P]2CK0". Then 

| V(xo9 xi) | à » for {#o, #i}< C P, 

[pp-E[ycff]Jf?, 
where Kw — { {#o, #i}<:#o, tfiGP; F(#o, ^ I ) = T F } . The number & of 
sets W is finite, and coo—>(coo)L by Theorem 1. Hence there are 
P ' C P ; / C # s u c h that [P ' ] 2 CM 3 ) , 

F(xo, xx) = / for {̂ o, xi}< C P ' . 

Then 

| / | en, 

{xo, Xu x2} G Ki for {#o, #i}< C P'\ %2 G / . 

Since [P']zC.Ko+Ki and, by Theorem 1, coo—»(ooo, co0)
3, there are 

Ç C P ' î v<2 such that [<3] 8 C^. By (49), œ0&[K0]. Hence *> = 1; 

Furthermore, [j]zQKo+Ki; 7=w—>(w, m)8. Hence there are 
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MG[J]m; P < 2 such that [M)*CKP. Since m ^ 4 6 [ Z 0 ] , we have 
p = l. Then, in view of QCP'CPCA ; MCJCH, 

[Q + M]* CKi; œo + tn~ Q~+~M G [Kx] 

which contradicts (49). 
Case 2. There is NCA such that N=o)0+m; [N]2CK{'. Then 

| F(xo, xi) | S n — 1 for xo, X\ G N. 

Then 

N = Q1+T; QiCL(T); | r | = f » . 

We have [ ( ? i ] 2 = Z ' [ K < * I ] - * Ï \ where ^ V O (*<&), and two 
elements Z0, Zi of [Qi]2 belong to the same K^ if, and only if, for 
every x2ÇîH, the sets Zo+ {Xi} and Z i + {X2} belong to the same class 
Kv. Then k\ <coo and, by coo—>(co0)fc1, there are Q2(ZQi\ #2 <&i such that 
[Qz\2C.K{^. This means that, for some p(x2) < 2 , 

{x0, »i, #2} G -Kpc*,) for |x0, xi}< C Q2; x2 G H. 

Similarly, we have 

Ö2 = Z ' l > < k2]K?\ where i^f ^ 0 (<c < k2), 

and two elements x0o and x0i of Ç2 belong to the same Kf* if, and 
only if, for every XiÇzT; x2^Hy the two sets {xoo, #i> #2} and {xoi, 
X\y X2 ] belong to the same class Kv. Then k2<o)Q and, by w0—>(coo)&2, 
there are Ç3CÇ2; K$<k2 such that QzCK™- This means that, for 
some cr(xi, X2) < 2 , 

{x0, xi, x2} G ^(«1,*,) for xo G Ça; xi G T;x2G H. 

Put Z7 = Ç3 + r , and choose {x0", x / ' }<C(?3. 
Consider any x 2 Gi? such that there are x0, xiÇzU satisfying 

{x0, xi, x2)<ÇLKx. If xo, X1GQ3, then p(x2) = l ; {x0", x " , x 2 } G ^ i ; 
x2G F(xo",xi"). If x o G f t î ^ i G r , then o"(xi,x2) = 1; {x0",xi, x2} Gi^i; 
x 2 G^(xo", Xi). If xo, XiG^T, then {x0, Xi, x 2 J G ^ i ; X2&V(XO, XI). 
Hence, in any case, 

X2 G W , xi") + £ [ * G =0 W , x) + £ [ { * , ?}< C T]V(x, y) 

and therefore, in view of the definition of X2 and the relations | T\ = m 
and (50), 

I ]CD*o, xi G U]{x2:x2 G H; {x0, xi, x2}< G #1} | 

i) + (n-l)^2j<p= \H\. 
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We deduce the existence of x" Ç-H such that 

{xo, X\, %" } (£ K\ for all xof xi G U. 

Since £/ = coo+m(£ [Ki], there are yo, 3/1, y*G U such that {yo, yu ^2} 
Gi^o. But then [{3^0, 3>i, 3>2, #2" }^]3C^o which contradicts (49). This 
proves (30) and thus completes the proof of Theorems 31 and 32. 

THEOREM 33. Let a<o)o2. Then coi—»(a, a)2. 

PROOF. Let 3=coi; [S] 2 =i£o+' i£ i ; 2^w<co 0 ; a^co 0 +m, 

(52) a $ [IT,] („ < 2). 

We have to deduce a contradiction. Let the conventions concerning 
the use of the letters A> B, P , Q be the same as in the proofs of 
Theorems 31 and 32. Choose any P . 

ASSUMPTION. Let [ P ] 2 C ^ o . Suppose that, if P ' C P , then there is 
A such that 

| P'Lo(x) | = «o (* G A). 

Then we define xv, P„ (P<OJI) as follows. There is XQ such that 
|PLo(xo)| =fc$o. Put Po=PL0(xo). Now let 0 O 0 < w i , and suppose 
that x„GS; PvCPL0(xv) (v<vo); 

\Pv - P M | < N o (M < * < vo). 

Then we can write [0, *>o] = {jux:X<co0}. We can choose elements 
yx(K<o)0) such that y\GP^QP^ • • • PMX~ {y^'P<M (A<w0). Put 
P /== {^x'X<wo}. Then, by our assumption, there is A such that 
|P'Lo(aO| =No (#£-4) . We can choose 

xVo G -4 - ]£[*/ < ^o]({^} + L(xv)). 

We put P„0 = P/Lo(xJ,0). If, now, ^ i O o , then there is X<coo such that 
vi=fx\. Then 

\PV0- Pn\ â | {yo,yi, • • • } - P M X I < K O . 

Also, PVQC.PLo(xVo). This completes the inductive definition of 
xv, Pv(v<coi) such that 

PM C P^ofe) ; | 1% - P„ | < No (M < ^ < coi). 

Put X = {XV :J><O;I}. Then, by Theorem 23, X=co1>co0w—>(m, co0 

+m)2. Since, by (52), œo+mÇ£Fi(X), we have mGPo(X), and there 
is D&[X]™ such that [£>]2Ci£o. Let xp = max [ x G ^ R Then, for 
any x„£Z), | P P —Lo(#„)| g |P P —P y | + | P y —L0(3cy)| <N0 . Hence we 
may put Q = PPLQ(D), and then we have Q + D = w 0 + m è ö ! ; [ ö + ^ ] 2 
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QKQ. This is a contradiction against (52). Therefore our assumption 
is false. 

Now let ACS. T h e n ^ b y Theorem 3, \A\ =Kr->(K0, K I ) 2 and 
hence, by Theorem 14, A =cor-»(co0, coi)2. Since coi$Fi(^4), we con­
clude that cooG^o(^), so that there is PQA such that [P]2CKo- As 
the assumption made above is false, there is P ' C P such that there 
are at most Ko elements x such that |P'Lo(#)| = KO. Then there is 
A'QA such that |P 'L 0 (x) | <Ko (#E^4')- Hence there are at most 
Ko distinct sets P'Lo(x) for varying values x&A', and there is 
A"QA' and E such that 

P'Z,o(x) = E (xE A"). 

Since | E | < K O , we may put P" =P' —E, and since Z"=coi; P"=coo, 
we may put A"'=A"R(P"). Now let xGA'"; y^P". Then 

* G A'" C A"\ y&E = P'Lo(x); y $ L0(x). 

Also, 

x 6 i ' " C i 2 ( n c ^ ) ; 0 ^ 

Hence 

yeui*); ycW")-
So far we have proved that , given any A, there are sets P ' " , A"C.A 
such that P" C.Li(A'") î [P"]2C.Ko, and, moreover, there are at most 
Ko elements x such that |P"L 0 (# ) | = Ko. 

By applying the last result repeatedly, starting with A = S, we 
obtain sets P„(J><CO0) such that 

[ P j 2 C ifo; P„ C Z*(P,) (M < v < coo). 

There is QP such that 

| P.LoW | < Ko (v <m;xES - Q,). 

We can choose BCS-~_J2[v<<»o]Qv such that PVQL(B) (y<<a0). 
Then, by Theorem 23, 5=a)i>co0m—»(coo+w, ra)2; 

and there is Z>E[P]W such that [D]2C.Ki> Then, for every v<wo, 
| ^2[xSD]PvLo(x)\ < K O . Therefore we can choose ^ G W i ( ö ) 
i><co0). If we put <?={:y„:i><coo} then ö + 5 = ( o 0 + w ^ a ; [Q+D]2 

(ZKL This contradiction against (52) completes the proof of Theorem 
33. 

The next theorem, while perhaps appearing to be of a rather special 
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and complicated nature, is of interest in that it implies Theorem 7 (i) 
and Theorem 8. It may well be capable of further worthwhile applica­
tions. 

THEOREM 34. Let a, /3, y be ordinals, and a-t->(/3, y)2. Then there are 
ordinals a\ (X<j3"~) such that, if 

1**1 - HEX < / * ] | «x| ( M < / 3 ~ ) , 
then 

a •+» (ao + 1, on + 1, • • • )r Î <*x -+-> (T)AX (X < /3~). 

We begin by deducing (i) of Theorem 7 or, rather, a slightly 
stronger proposition, from Theorem 34. 

COROLLARY 1. Let m and n be such that K J ^ „ (d<k$m). Then 

This implies, a fortiori, ww-fi~»(com, wn+i)2 which, in its turn, by 
Theorem 14, is equivalent to Theorem 7 (i). 

Deduction of Corollary 1 from Theorem 34. Let us suppose that 
co„+i-H»(wm+l, con+i)2. Then, by Theorem 34, there are ordinals ax, k\ 
such that \kp\ = I I [X</x]| ax| (M<com) ; 

(53) con+i •+•> (ao + If a i + 1, • • • )«m, 

(54) aM -*-> (con-fi)*M (M < û>m). 

T h e n , for X<com, 

(55) a* < wn+i. 

For, let JU <com, and suppose that (55) holds for X <JU. Then, using 
\fi\ <Hm and the hypothesis, we find that |&M| ^Nj/*1 ^ N n . Now, by 
(54), we can write |aM| = ]^[^<feM]|p„|, where Pv<o)n+i (v<kp). 
Hence |aM| ^Nn |&M | =^n- This proves (55) for all X<ww. Now, by 
(53) and the obvious relation m^nf 

which is the required contradiction. 

COROLLARY 2. Let Nn' =N„; 2^"<^ n / o r a// v<n. Then 

w» —> (£, co„)2 (j8 < o)n). 

By Theorem 14, this proposition implies Theorem 8. 
Deduction of Corollary 2 from Theorem 34. Let jÖ<con. Suppose that 

w„-t->(/3, o>n)
2. Then, by Theorem 34, there are ordinals ax, k\ such that 

|*,|-III*</*]|ax| 0<iS-); 
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C0n - ^ (ao + 1, ' ' ' ) / r ; dfi •+> (wn)*M (ft < j8 )• 

Let us assume that, for some /x</3~, we have a\<oon (X<jit). Then, 
putting rf=Z[X</i]|ax|, d<Kn; |*„| gdM£2dM<ton; | ^ | 
= 2^ [Ĵ  < ^ ] | P^| > where p„<cow. Then | ceM| <&n> This proves, by in­
duction, that a\<con (X</3~). Now, |cow| = X)lA</3~~]| a*\ > where 
| cr\| ^ | ax | . Therefore |co»| <ftn which is the required contradiction. 

The proof of Theorem 34 depends on a lemma. 

LEMMA 2. Let T be a well ordered set, and [T]2 = Ko+Ki. Then there 
is* a set B=B(T)(ZT which has the following properties. We have 
[B]2(ZKi. If XÇZT — B, then there is y(EB such that {y, x}<G^o . 

PROOF. We may assume T^O. Choose I such that \l\ > | T\. We 
define, inductively, y\ (X</) as follows. Let IJI<1; y\ÇzT (X</x). 

Case 1. There is y G T such that {y\, y} G-^i (X<ju). Then we take 
as y» the first element y of this kind. 

Case 2. If y&T, then there is X</x such that {̂ x, y} QKi. Then 
we have ju>0. We put yn=yo. 

Let B— {y\'\<l}. Then there is m<l such that 

B = {y\i\ < m\ ; {y\, yv\< G Ki (X < ^ < m). 

For, m is the least /x such that 0<ji t</; y»=yo. We have [ 5 ] 2 C ^ i -
Now let xÇzT — B. Then, by definition of ym, there is a least \x<m 
such that {;yM, x\ ÇzK0. Then {̂ x, x} £ i £ i (X<JU) and hence, by defini­
tion of 3V, #>;yM. This proves Lemma 2. 

PROOF OF THEOREM 34. There is an ordered set 5 such that 

S = a; [S]* = Ko + Ki; P $ [K0]; 7 £ [Kx]. 

We choose an ordinal p such that | p | > | a | . Let x £ S . We define 
fm(x) ( M < P ) as follows. Let v<p, and suppose that 

Mx) e s (M < y), 

{ /MO»), #}< G f t if M < v; ƒ,*(*) ^ *. 

Then we define /„(x) by the following rule. If /M(x)—x for some 
ja<pt then put fv(x) —x. Now let fp,(x)?*x ( M O ) - Let T be the set of 
all yES such that {ƒ„(*), ;y}<G-Ko (/x < *>). Then x G r j L e t £ = B ( T) 
be the set given in Lemma 2. Then BCT; [£]2C-Ki; £<Y- If x G 5 , 
then put fv(x) = x. Now let x(£B. Then, by Lemma 2, there is a first 
element z(~B such that {2, x}<G^o . We put/„(x) =2. We have now 
defined fv(x) for v<p\ xG-S, and we have 

8 In fact, there is exactly one such set. 
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{ƒ,.(*)• ƒ>(*) }< S Ko {n<v < p\U(x) * X) ; 

fv(x) ^ x (v < p; x £ S). 

If, for some xrfv{x) <x (*><p), then the contradiction 

I P I = I {M%) '*v < p } \ £ \S\ = \a\ 

follows. Hence, given # £ 5 , there is <r(x) <p such that 

ƒ„(#) < X (v < Cr(x)); fa{x){x) = X (X £ 5 ) . 

Then, for fixed x, [{/v(x):^^(r(x)} ]2C-^o, 

<r(x) + 1 < p; <r(x) < f$~. 

Put M,= {Mx):a(x)^v} (P<P). Then MoCB(S); M0<y; 

s = E t < 0 - ] ^ ; « +> (37o + l, 37i + l, • • • )r. 
Let 0 O < / 3 - . Then 

^ = EI?/» G MpîoTn < v]{f9(x)lcr(x) ^ v;/x(#) = yxforX < v). 

Now, for every choice of vM£M*M ( /xO), the corresponding term in 
the last sum is a set contained in some set of the form B(T). In order 
to see this, consider an element x such that <r(x) ^J>;/M(x) =yfX (fx<v). 
We shall have/M(x) <x (/x<<r(#)) and hence/M(x) <x (JJ,<V). Let T be 
the set used above in the inductive definition of fv(x), i.e. the set of 
all y£5 such that {fp(x), y}<ÇzKç> Qx<v). Then, by definition of 
fv(x), xÇzT and either 

xGB(T); fv(x) -xEB(T) 

or 

x^B(T); fv(x) =zEB(T). 

In either case, fv(x)ÇzB(T). In fact, the set T does not depend on x 
since T is the set of all y £ 5 such that 

{y»y}<£Ko 0* o ) . 
All this proves that, given ;yM£iIi"M (ji<v)t there is T such that, when­
ever 

x £ 5 ; <r0) ;> ?; ƒ„(*) = ;yM (/x < *>), 

then 

ƒ,(*) £ B(T). 

By definition of B(T), we have [J5(r) ]2CKX and therefore J5(r) <Y-
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Hence Mv is a sum of I I [ M O ] | My\ sets each of type less than y. 
This shows that ~Mv-+>{y)\v, when kv is any ordinal such that \kv\ 
= H[jLt<^]| MM | . It now follows that the conclusion of Theorem 34 
holds for ax = 3?x (X</3"). 

THEOREM 35. Suppose that /3^r^3; /3, (3*$a; s>(r~l)\ Then, for 
any type <t> such that |<f>j = |ct\, 

(56) 4>-**(s,py. 

COROLLARY. If r^3; s>(r — l ) 2 , then 

(57) 77 -+» (s, wo + l) r , 

(58) <t>-»(s,üny, 

where <j> is any type such that \<t>\ = | \ | . 

The negative results (57) and (58) are not too far from the ultimate 
truth as is seen by comparing them with the following positive re­
sults. By Theorem 1, 

( 5 9 ) O)0 —• (wo, Wo, # • * , Wo)A: (k < Wo). 

By Theorem 31, 

(60) <j> -» (wo, T ) 2 (7 < «i), 

where <t> is any type such that \<j>\ >fc$o; o>u u>* ds^-
PROOF OF THEOREM 35. The corollary follows by applying the 

theorem to the following two cases. 
(i) /3=co0 + l ; a=co0; <£ = r?, 
(ii) /3=a>i; a=\. 
The proof of the theorem depends on the following lemma due to 

Erdös and Szekeres [7]. Throughout, we put 

S = (f - 1)2 + 1. 

LEMMA 3. If S is an ordered set, r>0, and if z(a)G,S (cr<s), then 
there is {cr0, crïf • • • , ov_i}<C [O, s] such that either 

*(*,) è z(<rP+i) (p + 1 < r) 

or 

z(ap) à *(o>+i) (p + K f). 

We now prove the theorem. Let S < = 0 ; 5 « = a . Then 

[Sy = Zo + '.fiTi; K\ = üTio + üTn, 
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where 

Kio « { {#o, • • • , av-i}<" \%o, • • • , # r - i }« C S\, 

Kn = { {x0, • • • , «r-i}<: {#0, • • • , Sr - i}» C 5 } . 

Cas* 1. There is i l G [S]9 such that [4 ]rC-^o. Then, if A = {s(o-) : 
<r<.j}, an application of Lemma 3 shows the existence of J3£ |y4] r 

such tha t J3£2£i, which is a contradiction. 
Case 2. There is 4 C 5 such that !"<=j3; [4 ] r CKi . We shall prove 

that one of the two relations 

(61) [A]'CK10, 

(62) [AÏCKu 

holds. If both (61) and (62) are false, then there are sets X, YQA 
such that 

(63) X = {#<),•••, %r-i}< — {#o, • • • , # r - i}« , 

(64) F = {y0, • • , yr~i}< = {yo, • • • f y r - i }» . 

Then there is <r < r such that xp = yp (p <<r) ; x^y** We choose X and 
F such that <r is as large as possible. We may assume that x<r<y<r. 
Then, if we suppose that <r + l < r , we find that {yo, • • • , y9-1, %*, 
y<r, - • - , yr-i}< and therefore, by the maximum property of <r, 
{yo, • • • , y*-i, X,, yff, • • • , yr~2}«- Hence {;y0, • • • , y,-i9 y*9 • • • , 
y r _ 2 } « and therefore, since r —2>0, jo<3C>~2 which contradicts (64). 
Therefore < r + l = r , and xo=^o^>^i = ^i. But this contradicts (63). 
This shows that at least one of the relations (61), (62) holds. Now 
(61) implies t3==A< = A<<^S<<=at and (62) implies /3* = 3T> 
= Z « â 3 ? « = a . Both conclusions contradict the hypothesis. We 
have proved that neither Case 1 nor Case 2 is possible, so that (56) 
is established. This proves Theorem 35. 

THEOREM 36. (i) If av<d ( ?<«) , then ]T)|V<n]av-++(\n\+, d)2. 
(ii) a-+*(a'+, a)2 for a>l. 
(iii) ab-t+ia*, b+)2for any a, b. 
(iv) N » - » ( | » | + , ^n)2 , ifn**nr>0. 

PROOF OF (i). Let \A,\ =av(v<n); S = ] £ ' [v<n]Ap; 

[S]2 = Ko + 'Ki; Kt=J2b< n][Av]\ 

Then [X]2CKo implies \XA,\ â l (v<n); \x\ g\n\, and [ X ] 2 C # i 
implies the existence of v<n such that XQAV; \X\ g \AV\ <d. This 
proves (i). 

PROOF OF (ii). By definition of a', the hypothesis of (i) holds for 
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some aVi n, with | n\ = a'; d = a=* ^av. Hence (ii) follows from (i). 
PROOF OF (iii). Let \n\ ==a; a„ = b(v<n). Then, by (i), 

ab = I > „ + > ( a + , b+)\ 

PROOF OF (iv). Since Nn = 1L,[V <n]Rv, (iv) follows from (i). This 
proves Theorem 36. 

THEOREM 37. (i) Let a^Ko, and let b be minimal such that ah>a. 
Leta<&£S#kûab. Then 

(65) «**-<-> (*+,KWfc)
2. 

A possible value for \Ak is a+. 
(ii) NWm+l-H<Nm+i, NWm+1)2 for all m. 

(iii) If No<N* â N f c ^ 2 > \ t}ien ^k^(^u ^wfc)2# £ possible value 
is k — 1. 

Deduction of (ii) from (i). Let a =fr$m, and let b be minimal such that 
ah>a. Then, if k=m + l, we have a<#k = i$kSah and therefore, by 
(i), N*m + 1^(ô+ , No,m+1)

2. This implies (ii). 
Deduction of Cm) from (i). Put, in (i), a = b=\Ao. Then (iii) follows. 
Before proving (i) we establish a lemma. For the sake of further 

applications later on the lemma is more general than is needed for the 
present purpose. 

LEMMA 4. If s ^ 2 ; (30, /3* H>ao; | oi0| = | ai\, ^ew 

OSi "+* (ft), ft, 5 + 1, S + 1, • • • , S + l)'8l. 

PROOF. Let 5<=a:i; 5 « = a 0 . Then to every set Z G [5]* there be­
longs a permutation 7r(X):X—»<r(X) defined by 

X = { # 0 , #1, • • ' , # a - l } < = {#<r(0), #<r(l), ' * ' , # < r ( s - l ) } « . 

Let 7T\ (X<s!) be all permutations of [0, s] and, in particular, 

7TO'.X —> X; 7ritX —> ^ — 1 — X (X < s). 

Then [S]*="£[v<sl]K,t where X,== { X : X £ [S]«; TT(X) =TT,,}. NOW 

suppose that -4 C S ; v <s\ ; [̂ 4 ]*C^« We shall deduce a contradiction 
in each of the three cases that follow and so establish the lemma. 

Case 1. Ï> = 0 ; A<=(3o. Then the contradiction j8o = ^4<<^3î<< = ao 
follows. 

Case 2. v = l; ^4<=/?i. Then the contradiction /3f = ^ 4 « ^ 5 « = a o 
follows. 

Case 3. 2^v<s\\ ? < = s + l . Let 7rv:X--><r(X). Then A = {xo, 
}< and therefore, putting y\ = Xi+\ (X<s), we have 
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(66) {#0, #1, • • • , #s- l }< = {#<r(0), #<r(l), • * * , #<r(8-l)}«, 

{xi, x2, • • • , xs}< = {̂ 0, yi, • • • , }V-i}< 

(67) = {y«r(0)i 3><r(l), ' * • i ^(8-1) } « 

— {#l+cr(0), #l+<r(l)> * * ' , #H-<r(*-l) ƒ « • 

If xo<^#i, then alternate applications of (66) and (67) lead to 
Xo<3Cxi<3Cx2<3C • ' * ^ x « a n d s o t o the contradiction xv = 7To, while, 
similarly, the assumption Xo^>#i leads to the contradiction WV—TTI. 
This proves the lemma. 

PROOF OF THEOREM 37, (i). Let a=fr$w; b=^h and let F be the set 
of all mappings \—>h(\) of [0, co*] into [0, com]. We order F by putting, 
for ho, hiÇ~F, hQ<Oti if, and only if, there is X0<coj such that 

Ao(X) = Ai(X) for X < X0; A0(X0) < *i(X0). 

Then | F\ = a6, and we have, by9 Lemma 2 of [6], if a = N m ; &=Nz, 

(68) ojm+i, coz+i ^ F « = F, say. 

We can choose a set X G [^]*V Let x—>f{x) be a one-one mapping of 
X on [0, co*], and 5 = {(x, *>):x£X; v<Uf(X)\. We order 5 alphabeti­
cally, by means of a relation u<v, and put S< = S=<£. Then 

151 - Z [ * e x]N/<*) ̂  E[x < «*]«•* = «co,. 
On the other hand, if d<fr$w;fc, then d<b$n, for some n<o)k, and there 
is XoG-^ such t h a t / ( x 0 ) > ^ . Then \S\ ^&f(xQ)>d. Hence 

(69) | * | = | s | = « w , . 

1. Let SiQSy and suppose that Si is an ordinal. Put Xi=^2[v<cok] 
• {x:(x, v)ÇzSi\. Then Xi is an ordinal, and X i ^ F . Hence, by (68), 

£ [x G Xx] | ƒ(*) | < «»; * = E [x G Xx]f(x) < œk; 

I Si| = E[*e*i]| {*(*, o esx} | ^ E[*exi]N/w 

(70) cow, S * . 

2. Let »S2C<S, and suppose that (S2)* is an ordinal. Put 
X2= "%2[v<cûk]{x:(x, zOG&J. Then (X2)* is an ordinal, and (X2)* 
^ F . Hence, by (68), (X 2 )*<co w ; |X 2 | k « , . Put, for x £ l 2 , # (*) 
= {":(*> ^ ) G 5 2 } . Then N(x) is an ordinal. On the other hand, 

9 The authors are indebted to G. Kurepa for pointing out that the result of this 
lemma had already been obtained by F. Hausdorff, [9, Satz 14]. 
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(N(x))* is an ordinal, since (W$)*^(§2)*. Hence N(x)<co0; 

| A | = T,[*GXi]\N(x)\ g « o | X 2 | £ « * ; (5*)* <«i+i ; 

(71) «j+i ^ 0. 

3. We now apply Lemma 4 to the case 

s = 2; ao = 0; «i = o^*; £o = o>Uk; ft = Ü>Z+I. 

Its hypotheses are satisfied, by (70), (71), (69). We obtain o)Wk 

-+*(coWJb, coj+i)2. This implies (65), by Theorem 14, and completes the 
proof of Theorem 37. 

REMARK. If a^No and &k = a+, then (i) of Theorem 37 yields a 
stronger result then (ii) of Theorem 36. For, first of all, we note that 
the hypothesis of (i) of Theorem 37 holds, since a < a + = #+'=&<& 
= ^ g a 5 . Hence the latter theorem gives 

(72) «.,-*•» (6+ NWjb)
2. 

On the other hand, (ii) of Theorem 36 gives 

(73) Nwt-»(Kl"t,*W2. 
It is known that , for any m, 

(74) H'„m - fcC 

Hence K ^ N ^ K * ' = a+ '=a+^&+, and (72) is stronger than (73). 
Since we were not able to find a reference for (74) we give, for the 

sake of completeness, a proof now. 
Case 1. Let NI,m=Nn<N'm . Then fc<«m = X)[ ï ;<wn]^xJ /, for some 

X„<com. Put X= 23[^<cow]Xv. Then, since |co»| <^ ' m ; |X„| <\Am we 
conclude that 

| X | = £ [„ < C0M] | X,| < « m ; Nn < M» £ Km â N<omî 

which is the desired contradiction. 
Case 2. Let NI,m>Nn=N'w. Then m > 0 , and K » = 2 [ ^ < « » ] ^ x , for 

some \v<m. Then 2lV<a>n]fc$«x, = Ki for some Z<com; Kx„=|coxJ 
â| / | ; «*=Z^<«»]«x,g | / |«»; tngn; «WW=Z[M<COW]KM; 
K^mS |ww | g ^ n which, again, is a contradiction. This proves (74). 

THEOREM 38. If &»•+*( |j8o|, | f t | , • • • )*, *Aw 

(75) <oM+1 -t-> (/So + 1, ft + 1, • • • )» . 
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We give some applications of this theorem. 
(i) If |/3| - 1 y \ =Km+i, then 

(76) «m+2+>(/3 + 1.7 + D*. 

For, let a = N m , and let b be minimal such that ah>a. Then, by 
Theorem 7, ah-+>(a+, b+Y and therefore Km+i-»->(|i8|, \y\y. Now (76) 
follows from Theorem 38. 

(ii) If N„' =K m ; |jS| =Nm + 1 ; M =N„n, then 

(77) tóMn+1-^(^+l,7 + l)3. 

In order to prove (77), we apply Theorem 36 (ii) to a=fc$Mn. We note 
that , by (74), a ' = N n ' = N m ; a '+=&»+i. Hence, by Theorem 36, 
Kw„-+*(|£| - M )2, and (77) follows from Theorem 38. 

(iii) If |/31 «=«*+,; \y\ =« B i + 1 , then 

(78) 08 + 1, 7 + l)3. 

This follows immediately from Theorem 37 (ii) and an application of 
Theorem 38. 

We note that on putting n~k + l in (ii) above one obtains a result 
which is weaker than (78). For, (ii) becomes: if fc^+i^Wm; \&\ = ^ + 2 ; 
| Y | = N « * + I , then (78) holds. 

The proof of Theorem 38 depends on a lemma. 

LEMMA 5. Let a be an ordinal. Suppose that ft (p<k) and r are such 
thatt whenever f3<a, then /3-++(ft), ft, • • • )£. Then 

(79) a-»(ft) + l,ft + l, • • -)?\ 

PROOF. Let 5 = a ; # £ S . Then L{x) <<x, and hence, by hypothesis, 
there is a partition [L(#)] r= "Zl[v<k]Kp(x) such that, whenever 
XCL(x); [X]'CK,(x), then X < f t . Put K,= {A + {x} ixES; 
AEKv(x)} {v<k). Then [S]r+l=- J^[v<k]Kv. If we now assume that 

(80) S'CS; [SfY^CKv; S' = ft + 1, 

then S' = S " + { x ' } ; S"CL(x')\ S " = f t ; [S"]'CK,(x') which con­
tradicts the definition of Kv(x'). Hence (80) is impossible, and (79) 
follows. 

PROOF OF THEOREM 38. If j8 <«„+!, then | j 8 | âK« , | i 3 | -^ ( | f t | , 
|ft|> • • • )». By Theorem 13, this implies ft+*(ft, ft, • • • )*• Now 
(75) follows from Lemma 5. 

THEOREM 39. (i) If 

(81) / —> («o, « ! , • • • )*, 
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(82) \m\ > £ [ \ < / ] | * K 

then 
r-fl 

(83) m —> («o + 1, on + 1, • • • )* . 

(ii) If r>0; u»-»(ao, ocu • • • )r
k9 and 

(84) 2*> ^ « n /or ir < », 

then 
r+ l 

COn+1 —» («0 + 1, «1 + 1, ' ' * )* • 
(iii) If \k\ <K!»; r ^ O , and if 2*v^\&nfor m^n<m+r\ v<n, then 

r+l 

(85) o)w+r —> (com + r)* , 
(86) cow+r —» (com + r)*.. 

Deduction of (ii) from (i). Let the hypothesis of (ii) hold. If |ce„| O 
for some v<kt then the assertion is trivial, by Theorem 22. Hence 
we may assume that |a„| ^r (v<k). Next, suppose that |a„| ~r for 
some v<k. Then, by Theorem 17, we may apply a suitable permuta­
tion to the system «o, «i, • • • so that for the new system, again de­
noted by ceo, «i, • • • , aV} • • • (v<k), we have 

a, = r (v < feo) Î | a, | > r (h S v < k). 

Here &o is some ordinal, 0<&o^&, and we can write & = &o+&i. Then, 
by Theorem 20, (ii), the hypothesis implies con—»(a&0,

 a*o+i» * * * )*i» 
and the assertion is implied by 

r+l 
COn+1 —> (a!fc0 + 1, «fco+l + 1 | * ' • )*i • 

This shows that we may assume, without loss of generality, that 
|uf„| >r for v<k. Let us, now, suppose that | f e | è ^ n . Then, if 
A = [0, ww], we can write [ i4] r = : ^L,[v<k]Kv, where | i £ „ | ^ l for 
v<k. Since A—»(«<>, •••)*> there are X C ^ , *><& such that X = a„; 
[X]rCK9. Then | X | = | a , | > r ; 1 < | [X]'\ g\K,\ which is a contra­
diction. This proves that \k\ <K». 

Put 

E[X<con] |* |^ r=a. 

It suffices to show that |con+i| >a. 
If n = 0, then a <N 0 . If n >0, then 

a S Z [ X < «n]2l*lWr ^ S M a>n]2«'A, 

for some v\<n. Hence, by (84), a g £ [ X < « „ ] « „ = N„. 
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Deduction of (iii) from (ii). By definition of fcVm, com—>(oom)l. Hence, 
by r applications of (ii), (85) follows. Now (86) follows from Theorem 
IS. 

PROOF OF (i). Let 3? = w; [5 ] r + 1 = £ ) ' [v<k]K9. We choose n such 
that \n\ >\m\. Throughout this proof the letters K, X, p, <r denote 
ordinals less than n, and x, y and z elements of S. The relation 

{#0, • • • , xr} s {)/o, • • • , yr) 

expresses, by definition, the fact that, for some v<k, 

{tfO, ' • * , Xr)y {y 0 , • • • , yr) G Kv. 

We define ƒ«(#) G S as follows. Let x be fixed, and suppose that, for 
some fixed X, the elements ƒ«=ƒ«(*) have already been defined for all 
fc<X. Then we put f\(x)=x, if fK — x for some K < X . If, on the other 
hand, f^x for K < X , then we define f\ to be the first element y of 
S -{ / , : / c<X} such that 

(87) {/«o, • • • , U - v y) = {ƒ«>> ' ' • »U-v ^} for /co < • • • < /cr_i<X. 

This defines fK for all /c. We now prove that 

(88) / x < / „ 

if 

(89) X < ju; /X 3* x. 

First of all, (87) holds for y=x. Hence, by (89) and the definition of 
/x, we have f\<x. This proves (88) in the case when/M = x. Now sup­
pose that f^x. Then (87) holds for ;y=/M and, again, {%S) follows. 
By (88) and \n\ > \m\, there is p(x) such that 

ƒ«(*) < f\(x) = x, ii K < p(x) g X. 

Let, for Ko < • • • <Kr-.i<p{x)t 

{/«0(*)» * * * » /*r-l(*)> # } G ^ ( « o v K r - 1 » * ) = ^ ' («0 , • • ' , « ) . 

We now show that if x and 2 are such that 

(90) p(x) = p(s), 

2T(KO, • • • , ICr-l, X) 

= Z"'(/Co, * * • , Kr-h 2) for Ko < • • • </Cr_i < p(#) , 

then # = £. Let X^p(x), and suppose that 

(92) ƒ,(*) = ƒ.(*) for * < X. 
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Then/x(x) is the first element y of S- {fK(x)lK<\} such that (87) 
holds, i.e. 

{ /«o(*) i * * " • Z"r- l (*) i y } £ £ ' ( * < > , • • • , *r - l , * ) f o r KQ< • • • < K r _ l < X . 

Now, /x(g) is defined by the same property, with z in place of x, and 
(90) and (91) show that f\(x) =/x(z). We have thus proved, by induc­
tion, that fK(x) =/*(s) for all K3*P(X). In particular, by (90), 

* = fP(x)(x) = /P(.)(a) = 2. 

We next prove that p(x0) èZ for at least one x0. Let us suppose, on 
the contrary, that p(x) <l for all x. Let <r<l. Then the cardinal a(o*) 
of the set {x:p(x)=a} is at most equal to the cardinal of the set of 
all functions fe(/co, • • • , Kr~i) <k, defined for K0< • • • <Kr_i<ö\ Hence 

„GO ^ | *|w'; |'m| = | S\ = | I > < *]{**(*) = A I 

S E [ « r < * ] | * K 
which contradicts (82). This proves that p(xo) ^l for some suitable x0. 
Put So= {ƒ,(*<)):*</}. Then 5 0 = /; [So]r= Jj[v<k]K!', where 
^ / ' « { i l ^ e t ^ o h -4 + { x o } G ^ } (?<k). By (81), there are 
SiCSo; v<k such that 5i =a„; [ 5 i ] r C ^ / ' . Then the set S2 = Si + {*o} 
satisfies 52=ay + l ; [5 ,

2]r+1C^i'» and (83) follows. This completes 
the proof of Theorem 39. 

COROLLARY OF THEOREM 39. Given any r and any ordinals k, ft, 
there always exists an ordinal a such that 

a —> (ft, ft, • • • )*. 

For, if r ^ l , then any a can be taken such that | a | > 2 [ ^ < * ] | f t | » 
and the result for r = 2, 3, • • • is obtained by applications of Theorem 
39. The relation (5) shows that the last proposition becomes false if 
a and ft, instead of being ordinals, are allowed to be any order types. 
Later on (Theorem 45) the corollary will be extended, for r = l, to 
the case of arbitrary types ft. 

We mention, without proof, the following further applications of 
Theorem 39 (i). 

(a) (2«)+->(a)2
& if \k\<o'. 

(b) a+->(a)l;œn+1->(œn + l)l 
if a = K n ; |* | < a ' , and 2b^a for all b<a. 

(c) (*«o+...+«A-1-2&-fi+^_2)(fe-l)-1^(a0, • • • , «fc-i)J, if 2 S * , 
«o, • • • , a&_i<coo. 

If in Theorem 39 we take as k> I, av finite numbers we obtain a 
result which implies Theorem 1 of [5]. Denote, in this special case, by 



1956] A PARTITION CALCULUS IN SET THEORY 471 

Pk{r\ «o» «i , • • • , otk-i) 

the least number n such that 

n -* («o, • • • , a/b î)*. 

Without loss of generality, we restrict ourselves to the case k*z2; 
0<rS<Xv In [S, Theorem l ] , an explicit upper estimate was given 
for the number p* (r; a, a, • • • , a ) , which, in that paper, was denoted 
by R(k, r, a). 

Clearly, p*(l; a0, • • • , <*fc-i) = l + a o + • • • +ofc+i — k. By Theo­
rem 39, 

Pk(r + 1; «o + 1, a i + 1, • • • , a*-i + 1) 

££ 1 + £ [ X < Pk(r;oto, • • • , afc-i)]&xr. 

It is easily proved that, for Z<co0, 

(94) l + EDK/]** £*'• 
For, (94) holds for / = 0, and if 0 < w < w 0 , and (94) holds for / = m — 1, 
then 

so that (94) holds for / = w. We have thus proved the following recur­
rence relation. 

THEOREM 40. If 2^é<cu 0 ; 0 < r ^ a „ < « o (v<k), and if p* is defined 
as above, then 

pk{r + 1 ; <xo + 1, • • • , otk-i + 1) S A*<rï"o.-".«*-i>r. 

In particular, we have, using the notation of [5], 

R(k, r + 1, a + 1) ^ t*<*.'.«>' ( i è 2; 0 < r g a). 

This is precisely the recurrence relation established in [5], from which 
the explicit estimate is deduced at once. This is no coincidence, as 
the method of proof of the present Theorem 39 is related to that used 
for proving Theorem 1 of [5]. 

Theorem 39 implies Theorem 4 (i), i.e. 

(95) (2^) + ->(Nn+1)In. 

For, clearly, Nn+i—»(Nn+i)i», a n d t h e r e fo re Wn+i—>(wn+i)iB. Also , 

X ) lA < Ww+l] | (On | S N n fc$n+l = 2 = N W o , 

say. Hence, by Theorem 39 (i), como+i-->(cow+i + l)^n , and (95) follows. 



472 P. ERDÖS AND R. RADO [September 

THEOREM 41. If r^3} then, for all n, 

(96) con+i -+-> (w„ + 2, wo + 1, r + 1, r + 1, • • • , r + l)(Li)i. 

As an application, consider the case r = 3; n = 0: 

(97) coi •+» (coo + 2, coo + l)3. 

This should be compared with : 

coi —» (coo + l)fc (& < co0; r ^ 0) 

which follows from Theorem 39 (ii) and Theorem 1. 
PROOF OF THEOREM 41. Let wn^j8<wn + i . We apply Lemma 4 to 

s = r — 1; ceo = conî «i = ft ft = co„ + 1; /Si = coo 

and obtain 
r—1 

10 H-> (con + 1, coo, r, • • • , r)(r_i)!. 

This holds, a fortiori, if /3<con. Now Lemma S proves (96). 
A type (3 is called indecomposable if the equation /3=y + ô implies 

that either 7^/3 or S^ft It is known10 that the indecomposable 
ordinals are those of the form COQ. The types rj and X are indecomposa­
ble. The next theorem asserts that in Lemma 4 the s\ — 2 classes cor­
responding to the entries s + l in the partition relation may be sup­
pressed in the special case when both ft and ft are indecomposable, 
a t the cost, however, of raising the remaining entries slightly. 

THEOREM 42. Let s= 3; |ce0| = | « i | ; ft, jöf^ceo, and suppose that 
ft and ft are indecomposable. Then 

(98) (s - 3) + ax •+> ((* - 3) + ft, (* - 3) + ft)'. 

PROOF. Case 1. 5 = 3. Consider a set S with two orders such that 
5<=cei; 5 « = a 0 . Then [S]z = K0+'Ki1 where K0 is the set of all sets 
{xo, Xi, x2}<= {yo, 3>i, ̂ 2}«C«S for which x\—>j\ is an even permuta­
tion of [0, 3] , i.e. one of the permutations 012, 120, 201. Now let us 
assume that 

(99) ai-»G80,ft)». 

I t suffices to deduce a contradiction in each of the two cases that 
follow. 

Case 1.1. There is ACS such that J < = f t ; [A]zCKo- Let x, y, z 
denote elements of A. Then {x, y, z}<= {xi, yu * i } « implies that 
%u yu Zi is a cyclic permutation of x, y> z. Put B = {x:y<&x} whenever 

10 [13, §§75-78]. 
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y<x}; C~A — B. We shall prove three propositions about the two 
orders of A showing their effects on the partition A = B + C. 

1. Let x<y(E:B;xÇzC. Then there is z such that z <x<$Cs; {z,x,y}< 
= {x, y> z}«; z<y<Kz; yCC which is false. Hence x<yÇzB implies 

X £ J 3 , as well as x<£y. Therefore x>y£zC implies x £ C . 
2. Let xÇzB; y(~C; x<^y. Then x<y. There is z such that z<y<£.z. 

Then {xf y, z}« = {z, x, y}<; z<x<£z\ x £ C which is false. Hence 
xÇzB; yÇiC implies y<£x. 

3. Let x, 3>£C; x<y<&x. Then there is z such that z<x<&z; 
{z, x, ;y}<= {y, x, z}« which contradicts the definition of K0. Hence 
xf yÇ.C; x<y implies x<Ky. 

The results of 1, 2 and 3 show that, if we put B< = yQ] C< = yi, then 
ft = ^4<=7o+7i; - 4 « = 7 i + 7 o . Since ft is indecomposable, it follows 
that yP^(3o for some v<2. Then 

(100) ft ^ y>S J « £ 3 « » ao 

which is a contradiction. 
Case 1.2. There is ACS such that I < = f t ; [i4]8CKi. Then 

{#, 3/, z}<= {xi, yu Zi}«<Z.A implies thatffi, yi, Z\ is an odd permuta­
tion of x, y, z. This is equivalent to saying that {x, y, z}<= {x2, 3/2, 
^ } » C ^ 4 implies that x2, 3̂ 2, 22 is an even permutation of x, y, z. 
Hence the result of Case 1.1 holds if ft is replaced by ft, and "<<C" by 
"^>>". We note that ftf is indecomposable. Hence, in place of (100) we 
have 

ft S 1» ^ 5» = at 

which is a contradiction. This shows that the assumption (99) was 
false, i.e. that (98) holds. 

Case 2. s>3. Then, by the result of Case 1, we have ai-+->(ft, ft)3. 
By Theorem 15, this implies (98). This completes the proof of Theo­
rem 42. 

REMARK. If, in particular, ft and ft are ordinals, not zero, then 
(s — 3 ) + f t = f t , so that (98) can be replaced by 

( * - 3 ) +«i-*-»(j8o, ft)8. 

We may also mention here the following corollary of two of our 
lemmas, in which X is the type of the continuum. 

(101) If 2«o = ft*, then ww+x •+> (Q>I + 1, «1 + l)3. 

PROOF. Let con^ax<con+i. Then, by Lemma 4, with a0 =X, we have 
ai-+->(a>i, coi)2. By Lemma 5 this leads to (101). 
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THEOREM 43. If r O g f t ; a-*-»(j80)J; &—>($)*, /Aew 

« -* (ft, ft)*. 

TT^s proposition remains valid if the types a, /So, ft â^0 replaced by 
cardinals. 

PROOF. Let r < s g f t ; a—>(ft, ft)*; ft~->(s)*. We have to deduce that 

(102) a-+(fio)l 

Let 3=<*; [ S ] r = Z ' [v<k]K,. Then [S]« = i£o '+ '# i ' , where 

#o' = J2b><k]{A:AG [S]-, [A]'CK,]. 

Then there are BCS; X<2 such that [5]'C-K\' ; S=/?x . If X = 1, then 
B—>(s)ii and therefore there are A G [5]*; *><& such that [A]rQKyt 

Then ^G-Ko' î A$K{, which is false. Hence X = 0. Let {X, Y}* 
(Z[B]r. Then we can write X={xo, • • - , xr-i} ; F = { # m , • • • , 
xm+r-i}, where 1 ̂ m^r; {x0, • • • , # m + r _i}^ . Put 

XM = {#M, • • • , #M+r-i} 0* ^ »»)• 

Now let fx<tn. Then, since \B\ = | f t ) | è>s>r, there is FMG[$]* such 
that I M + I , + i C F , . But FMG#o', so that X„ X^G [Y,YCKVfl, 
for some Vp<k. Then ^ 0 = ^ i = • • • =pm-i; X = X0GKVQ; Y = Xm 

GKPm_1 = K¥0. Since X and F a r e arbitrary, it follows that vo is inde­
pendent of X and F, and that [B]rCK,0. This proves (102). The 
analogous theorem, with cardinals in place of types, is proved by 
means of the obvious modifications of the above argument. 

Applications of Theorem 43. (a) Let X be the type of the continuum 
and |X| =fc$n. Then, by Theorem 30, K»H->(NI)2. Also, as is easily 
verified, 

(103) 6 ->(3)1 

Hence, by Theorem 43, K»-*-»(Ki, 6)3, and therefore con-+-»(o>i, 6)3. 
Now, by Theorem 15, con-H>(coi, r+3)r (r^3) follows and therefore, 
finally, 

(104) 2«o-+->(«!, r + 3)r (r â 3). 

(b) By (97), 

(105) o)i -+•> (coo + 2)L 

By (103) and Theorem 39, we have 

(106) w-»(4)2, 

where w = l + 2^[/x<6]2^<22 6 . I t now follows from (105) and (106), 
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by Theorem 43, thatcoiH-»(co0+2, 226)4 and therefore, by Theorem IS, 
that 

(107) m -+•> (coo + 2, 226 + r - 4) ' (r à 4). 

We now give a new proof of the theorem of Dushnik and Miller 
[2].11 Our proof bears some resemblance to the original proof but 
can, we think, be followed more easily. 

THEOREM 44. If a^No , then a—>(K0, a)2. 

PROOF. We use induction with respect to a. By Theorem 1, the 
assertion is true for a=fc$o. We assume that n>0 and that the asser­
tion is true for a<k$n, and we let 

| S | =& = N n > N o ; [S]> « Ko + Ki. 

We suppose that 

if X G [ S K then [X]2 (£ Ko, 

and we want to find F G [S]b such that [Y]*CKi. 
There is a maximal set A = {xv:v<l} QS such that /<coo,12 

x, G Uo(xo, • • • , *_i) , 
(108) , i 

| J7o(«d, • • • , * , ) | = Ô (« '< / ) . 
For, the relations (108) imply that [A]*CK0. Put B=U0(A). Then 

(109) | J?tfo(*) | < | B | = b (xEB). 

Case 1. b' = b. Then we define x„ (v<con) as follows. Let J'<w„, and 
suppose that x„£.B GuO)- Then, by (109), 

I Z [M < v]({x,} +££r,(*„))| < \B\, 

and therefore there is xv G 5 - Z [ M < » - ] ( { ^ } + ^ o ( ^ ) ) . W e may put 
F= {#,,:*'<w»}. 

Case 2. 6 ' = f t m < è . Then b— ]C[M<W™]&M> where èM<ô. Let xÇiB. 
Then there is a first ordinal p(x) <com such that | B Uo(x) <bP(X), since 
otherwise we would obtain the contradiction è=X}[M<wm]ôM 

^ | £ ü o ( * ) | N m < & . Now put 

-B(r) = {#:# G B\ p(x) = r} (r < ww). 

We define, by induction, rM, XM (M<COW) as follows. Let, for some 
*><coM, 

Theorem 3, (i). 
The symbol UQ was defined in §2. 
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Then, by definition of rn, 

\T,[n<v,xe XM]({x} + BUo(x)) | ^ 2 [M < *>; * G X,](l + z g 

= E [ M < ^ ] ( 1 + U ^ <*. 

Hence |Z>| =6 , where Z>=JB~- £)[/*<>; x £ I , ] ( j x } + Uo(x)). There 
is a first ordinal r„<com such that |D5(r„) | <bv, since otherwise we 
would have the contradiction 

b = | # | = Z [M < ««] | Z?5(M) I ^ «<« < *. 

Now we can choose XVG [DB{rv)]
b*. Then I , C K ( ^ ) ( JUO<Û> W ) . 

By the induction hypothesis there is FM£ [-X̂ ]6** s u c n that [F / i]
2Ci^i 

(jLt<com). Then we may put F = X ) [ M < W » » ] F M . This proves Theorem 
44. 

Our next theorem may be considered as providing, in the case 
r = l, an extension of the Corollary of Theorem 39 to the case of 
arbitrary types ft, not necessarily ordinals. In view of (5), the exten­
sion to values r ^ 2 is false. 

Let k>0, and consider any types ft (v<k). Let J3„=ft, and denote 
by P the cartesian product of the sets Bv, i.e. the set of all mappings 
V—±XV<ELBV defined for v<k. We order P alphabetically and call the 
order type 7r of P the alphabetical product of the types ft and write 

7T = I I X [v < *]ft. 

This multiplication has been considered by Hausdorff [lO]. 

THEOREM 45. If k>0, then ]Jx |><*]ft-->G3o, ft, • • • )i. 

PROOF. In spite of its somewhat complicated appearance the proof 
is, in fact, very simple, as can be seen by following it in the case 
k = 2 or k = 3. Let P=J^[p<k]Kv. We want to find XCP and 
vo<k such that X = f t 0 ; XQKVQ. We use the notation (s0, Zi, • • • , 2n) 
for the system of all 3„ such that p<n} ordered according to increas­
ing v. Thus 

P = {{#o, #i, • • • , Xk\ *xv G Bv for v < k}. 

Case 1. There is v<k such that the following condition is satisfied. 
There is a system of elements x^B^ (IJL<V) such that, given any 
xv(E.By, there is some system z(xv) — (xo, xi, • • • , #&) which belongs 
to Kv. Then we may put X= {z(x):xÇzBp}, 

Case 2. There is no v such that the condition of Case 1 holds. 
Then, given any v<k and any elements #MG5M (M<*0> there is a 
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function/„(xo, xif • • • , # „ ) £ J B „ such that, for any choice of X\&B\ 
(p<\<k), 

\X0) Xif * * • , Xyt JV\XQ) ' ' * f Xv) t 

In particular, the function fo(xo) is constant. Then we define, induc­
tively, elements yv{v<k) as follows. We put, for p<k, yv 

~fv(yoy ' ' ' 9 $p)> Then yM£5M(jit<k), and hence there is v<k such 
that (y0, • • • , $k)GKv. But then 

(yo, yi, • • • , &, /r(yo, • • • , ^ ) , y^-i, • • • , %) G #* 

which contradicts the definition of ƒ„. The theorem is proved. 

8. Canonical partition relations. Let 5 be an ordered set, and con­
sider a partition 

(110) [5]- = £ ' [v < k]K,. 

To every such disjoint partition there belongs an equivalence relation 
A on [S]r defined by the rule that elements X, Y of [S]r are equiva­
lent for A, in symbols: 

X^ F(-A) 

if, and only if, there is v<k such that X, YÇ:KV. This equivalence 
relation A is unaltered if the classes Kv are renumbered in any way. 
The partition (110) and the corresponding equivalence relation A 
is called canonical1* if there is a system (e0, €i, • • • , cr_i) of numbers 
€p<2 such that, for X = {x0l • • • , x r_i}<C5;. F = {y0> • * • , yr-i}< 
(ZSt we have X= F(-A) if, and only if, xp=yp for every p<r, such 
that €p = l . 

The canonical equivalence relation defined by means of the num­
bers ep is denoted by A«o6l.. .« r l . The canonical partition relation 

(111) a - » •(|8)r 

has, by definition, the following meaning. Whenever 6 , =a, and (110) 
is any disjoint partition, with any arbitrary fe, then there is BQS 
such that 5=j8, and such that the equivalence relation A belonging 
to (110), if restricted to [B]r, coincides with some canonical equiva­
lence relation A«0...€rl. The main result of [4] is expressible in the 
form coo—>*(w0)

r. The problem arises of finding canonical partition 
relations between types other than coo. The main difference between 
canonical and noncanonical relations derives from the fact that if the 

13 [4; 5]. The notation used in the present note differs slightly from that used in 
the earlier papers. 
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canonical relation (111) holds then a certain choice of a subset of S 
can be made irrespective of the number | k\ of classes of (110). The 
relation wo—> * (coo)1 is equivalent to the statement that, if a de-
numerable set S is arbitrarily split into nonoverlapping subsets £„, 
then there are either infinitely many nonempty subsets 5„ or else at least 
one of the subsets Sv is infinite. 

The following theorem establishes a connection between canonical 
and noncanonical partition relations. 

THEOREM 46. (i) Let q8 denote the number of distinct equivalence 
relations which can be defined on the set [0, s]. Let 

(ii2) s~Çï); l ^ > 2 r î «-»#)£• 
Then a~>*(j3)r. If |/3| > 4 ; a-»(|8)a», then a-»*(/3)8. 

(ii) If m, r ^ O , and 2***'<^n for m ^n<m + 2r + l; v<ny then 
(œm + 2r + iy+K 

REMARK. The first few values of q8 are : 

qo = 1; qi = 1; g2 = 2; q* = 5; g4 = 15; q& = 52; q6 = 203. 

A rough estimate for all s is 

q* S 2® > 

obtained by observing that an equivalence relation is fixed if for 
ix <v <s it is decided whether JU=J> or JJL^V. It is easy to prove that, for 
s>0, 

^- (ó ) * + (D* - i + "" + C) 0o 

and hence q8^sl. 
Deduction of (ii) from (i). By Theorem 39 (iii), we have 

2r-f2 
<0m+2r+l —> (Wm + 2f + 1)* (& < O)0), 

and the conclusion follows from Theorem 46 (i). 
PROOF OF (i). Suppose that (112) holds. Let S = a , and consider 

any disjoint partition (110). Let A be the equivalence relation on 
[S]r which belongs to (110). Our first aim is to define a certain 
equivalence relation A* on [S]2r . 

Let [[0, 2 r ] ] ' = {P0, Pi , • • • , P . - i}„ . Then 

-0 
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#0» * • * i X2r—1 ^ C S . Define the equivalence relation A(X) 
on [0, s] by putting, for j u O < s , 

M = K'A(X)) 

if, and only if, {xx:\GP,} e {xx :XGP,}( 'A). Put, for X, F G [ S ] 2 ' , 

X - F(A*) 

if, and only if, A(X)=A(F) . 
Now, by definition of q8y A* has at most q8 nonempty classes. By 

(112), there is BQS such that 5= /3 , and any two elements of [B]2r 

are equivalent for A*. This means that, in the terminology of [4], 
A is invariant in [B]r (cf. [4, p. 253]). Choose any AQB such that 
2 r < | ^ 4 | <No, which is possible since |/3| >2r. Then A is invariant 
in [A ]r and hence, by [4, Theorem 2], canonical in [A ] r . Thus there 
is a canonical equivalence relation A(A) on [B]r such that A=A(A) 
on [A]r. It only remains to show that A(A) is independent of A. 

Let ilo, AiCB; 2 r < | 4 0 | , | i l i | <No, and let A=A(A0)=Ar
€Q...€r_l 

on [i40]', A = A ( i l i ) = A r , 0 . . . w on [Ax]\ Then 2 r < | i 4 0 + i 4 i | <No, 
and hence, for some K P < 2 , A=A(ilo+-4i) =A£0.../fr_1 on [ylo+i4i]r. 
Let -4o= {yo1 3>i, * • • , yir-\, ***}<• Consider the sets 

P = {j2x:X < r) ; Ö = {?2x+i-ex:X < r } . 

By definition of A ^ . . . ^ , we have P ^ Ç ( A « 0 . . . 6 r l ) . Hence 

P = Ö(.A); P s Ö(-A;o...,r J ; K P ^ 6 P (p<r). 

Similarly, by considering the sets P and Q'= { ^ x + i - ^ X o } , we 
find that P s ^ ' ^ - J ; P^<2'(A); 

P s G ' C - A ^ . . . . ^ ) ; € p g « P ( p < r ) . 

Hence €P = KP for all p. For reasons of symmetry, rjp~Kpy and so, 
finally €P=?7P ( p O ) . Therefore A(A) is independent of A, which 
means that A is canonical in the whole set [B]r. This proves Theorem 
46. 

9. Polarised partition relations. The relation a—»(&o, fa)2 refers to 
a partition of the set of all pairs of elements of a set 5 of cardinal a. 
Instead of pairs of elements of one and the same set we shall now con­
sider pairs of elements, one from each of two sets So, Si. The relation 
a—»(&o, bi)2 can be thought of as referring, in the terminology of 
combinatorial graph theory (linear combinatorial topology), to 
decompositions of the complete graph of cardinal a into two sub­
graphs. The new kind of relation to be defined now refers to decom-
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positions of the "complete" even graph of cardinal-pair a0, au i.e. 
the graph obtained by joining every "point" of a set of cardinal a0 

to every point of a disjoint set of cardinal ax. 
More generally, we introduce the notation 

[So, Si, * • • , 5 w H ' , , , ' r r t 

for the cartesian product of the t sets [S\\ r \ i.e. we put 

[So, • • •, S«- iK" . '« - i - {(Xo, • • •, X*-i):Xx G ISxJ^ for X < / } . 

We shall always have 0</<co0 . The introduction of this set leads 
naturally to the following definition of a corresponding partition 
relation. The relation 

(113) 

do 

01 

0«-l 

ôoo 

ho 

[bj -1,0 

box 

bn 

&*-i,i 

,rt-i 

)k 

has, by definition, the following meaning. Whenever \S\\ = #x for 
\ < £ , and 

[So, • - - , S w h ' « = E [*<k]K„ 

then there are sets B\C.S\ and an ordinal v<k such that | JB\| =6x» 
for \ < £ , and [B0, • • • , B t_ i ] r o ' " , , r ' - 1 C^. There is a similar kind 
of relation involving order types which will, however, not be con­
sidered here. If the number of classes is finite we write in the rows 
on the right hand side of (113) a last element. The negation of (113) 
is obtained by replacing —» by -+>. If, for X</, &xo = &xi=: * * • , we use 
the obvious abbreviation for (113). Cf. Theorem 49. 

The passage from our former type of partition relation i.e. the case 
t = ly to the more general kind (113) bears a certain resemblance to 
the process of polarisation used in the theory of algebraic forms, 
which accounts for the name polarised partition relation suggested 
for relations of the form (113). 

We shall deduce some results for polarised relations but will not 
develop the theory to the same extent as was done in the case of the 
nonpolarised relation. 

In [ l l ] one of us has considered polarised canonical parition rela­
tions between finite numbers, and also involving coo. 

THEOREM 47. If a' =b', then 
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'a IV-1 

(114) CXT 
In particularf (114) holds if 1 <a, &<Ko. 

THEOREM 48. The relation 

holds if, and only if, either b = 0 or b' >No. In particular, 

\ 2«o / V«o 2«o/ 

PROOF OF THEOREM 47. If l < a < N 0 , then &' = a' = 2; 1<&<N 0 . 
Let, in this case, A = [0, a ] ; £ = [ 0 , 6]. Then [il, B p ' ^ X o + ' - K i , 
where 

2To = {(/c, X):/c < a; X < b; K + X even}. 

Then, for any K<a, the pairs (K, 0) and (/c, 1) lie in different classes 
Kv, and the same holds for (0, X) and (1, X). This proves (114). Now 
let a^Ko . Then a' —b' =fc$», say, and we can write 

a = YJ iv < un]av; b = ] £ [* < «»]&,, 

where a„<a ; è„<ô. Let A = X)' [p<co„]i4„; - B = ] C [*"<Wn]-S*; 
|i4„| = a„; | 5 F | =6, . Then [A, B}l>l^Ko+Ku where 

Ko = {(a, y):a G A ri y G Bv; /i < ? < « » } , 

Kx = {(x, y):x G -4/1 î ? G £»; *>^A*<wn}. 

Let X G U ] a ; 3>oG#. Then y0EBv for some *><con. We have | ^ M X| 
g |i4M| < a and hence, by definition of n, ^[jiÛp]\A^X\ <a= \X\. 
Therefore we can choose XoGX — ̂ [fxSv]Ap.Then (xo,yo)^Ko,and 
and hence [X, {y0} ]ltl <£ ;K0. By symmetry, it follows that, if F G [£]&; 
tfiG-4, then [{#i}, F ] 1 ' 1 ^ ^ . This proves (114) and completes the 
proof of Theorem 47. 

PROOF OF THEOREM 48. If è = 0, then (115) obviously holds. If 
0<&<No, then (115) is false, as is seen by considering the partition 
of the set in question in which i£i = 0. Next, if è'=fc$ó, then, by 
Theorem 47, 

/Ko\ /Ko I V 1 
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Hence, a fortiori, (115) is false. It remains to prove (115) under the 
assumption è'>No. 

Let \A\ =NO; \B\ = b; [A, B]1'1 = K0+Ki. We may suppose that 

(117) (X, Y) G [A, Bp* implies [X, Y]l-l<tKi. 

Let (X, Y)E[A, B]*t*. 
1. Put Yo=J2[xeX]{y.(x, y)EK0}. Then [X, Y=Y0]

l'1CKu 

and hence, by (117), | Y- F0| <b, 

£ [ * € * ] I {y:yGY;(x,y)GK0}\ ^ \ YY0\ = b. 

Since &'>&$o = |-X"|, this implies the existence of XoGX such that 

| {y:yGY;(x0,y)eKo}\ = b. 
Put 

4>(X, Y) = x0; *{X, Y) = {y.y G Y; (*0, y) G Ko}. 

Then 
<j,{X, Y) G X; +{X, Y) G [Y}, 

[{<1>(X, Y)},t(X, Y)]^CK<,. 

2. Putf(y) = {x:xGX; (x,y)GK0} (yGY). If 

(118) yGY implies \f(y)\ < «„, 

then Ô = | F | = X ) [PCX; \P\ <K„]| {^J-GF;/^) = P } |. But, since 
there are only t^0 distinct sets P, and &'>i$o, there is PiQX such that 
|P i | <N0; | Y,\ =b, where F 1 = { j ^ G F ; / ( y ) =PX}. Then [X-Pu 

YiY^QKi, which contradicts (117). Therefore (118) is false, and 
there is y , G F such that \f(y{)\ =N0. Put <t>x(X, Y)=yi; ^(X, F) 
=f(yi). Then friX, Y)GY; ^(X, Y)G [X}*«; 

[h(X,Y), {UX, F)11UCX, 

3. We define sequences x„ y„, -X",,, F„ (p <a>o) as follows. 

X() = <t>(A, B); Yo = 4'(A, B);yo = <t>i(A-{x0}, F0); X0 = <hC4- {x0}, F0). 

For 0 0 < w o , we put 

x, = < (̂Z,_i, F,_j - {y,-i}); Y, = iKX,_i, F,.! - {y,-!}); 

y, = <t>i(X,-i — {xv}, Y,); X, - iAi(X„_i — {x,\, Y,). 

Then 

x„ G Xr-i C -X"»-2 — } av-i} C X»-s — {x»-2, £y-i J C • • • 

C I o - {*i, • • • , aV-i} C 4̂ — {xo, • • • , x„-i\ ; 
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ywGYpC Yv-i - {jv-i) C • • • C To — {̂ o, • • • , y,-i\ 

C B - {y0t • • • , yv-i}; 

[{*,}, F,]1-1 C Ko; [{*,}, {yvi yv+h • • • J]1*1 C #o; 

[X„ \yv] Y'1 C i^o; [{*,+!, xv+2, • • • }, {y,} F C i^o; 

(x», yO G i^o (/*» v < wo). 

This proves (115). Finally, as is well known [13, p. 135], (2**o)'>N0, 
so that (116) is a special case of (115). This proves Theorem 48. 

We introduce the notation 

{:} -1 w-
where A is a set such that 1-41 = a . If a, & <fc$o, then 

{;} 
is the ordinary binomial coefficient 

G) 
The following lemma is probably well known. 

LEMMA 6. If a è K o , then 

\ > = ah for b ^ a and < > = Ofor b > a. 

PROOF. The result is obvious for & = 0 and for b>a. Now let 
0<b<a. Choose n such that \n\ =&, and Avt A such that \Av\ —a 
forv<n, andi4 = ]C ' [v<n]A,. Then \A\=ab = a. UXE[A]b, then 
X = {xv\v<n\. Every xv has a possible values. Hence 

{1} s * 
On the other hand, if yvÇz.Av for v<n, then F = [y„:v<n}& [A]b, 
and the set of all such Y has a cardinal ab. Hence 

il) B *• 
and the lemma follows. 
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THEOREM 49. Suppose that 0<s<t<&0; k>0; 

[September 

/ 

(119) 

(120) 

Then 

(121) 

ao 

\{%)W 

bo ) 

IrlZl) 

d$-lj lfts-1 

[dt-1 

do 

dt-1 

(b8 y»'---*'*-

[bt-i)i 

f h 

bi 
PROOF. We use the notation of the partition calculus explained 

in the proof of Theorem 25. In addition, if A is a partition of M, and 
M'C.M, then the relation 

| A | S d in M' 

expresses the fact that the number of classes of A containing at least 
one element of M' is at most a. (119) and (120) imply that b\^a\ 
for X</ . If b\<r\ for some \<t, then (121) holds trivially. Hence we 
may assume that 

(122) r\ g h â d\ for X < /. 

Let \A\\ =a\ for X</ , and consider any equivalence relation A on 
[Ao, • • , At„i]r<> rt~l such that |A| 2 S | * | . Our aim is to find 
Bx£[Ax]

h*(\<t) such that 

(123) | A | g 1 in [Bo, • • • , Bt^]^"'^K 

Put, f o r X x G M x h (s£\<t), 

A1(X81 • • • , W = I I A(Xo, • • • , X,_x), 

where the last product is extended over all systems (X0, • • • , X8-i) 
Çz[Ao> • • • , A8-x]ro r*~1. By (122), this product has at least one 
factor. I t follows that | Ai| £*\l\. Hence, by (120), there is J3X£ [^x]6x 

(s£\<t) such that 

I Ai| g 1 in [B9t • • • , B w J f - , " - n 



1956] A PARTITION CALCULUS IN SET THEORY 485 

By (122), we can choose 

Fx 6 [J3xh (s£\< 0. 

P u t l f o r Z x G [ i 4 x h ( X < 5 ) > 

A2(X0, • • • , X_i) = A(Xo, • • • , X-u 79t • • • , F M ) . 

Then |A2| g | é | , and therefore, by (119), there is Bx£[Ax]\ (\<s) 
such that |A2| ^ 1 in [B0, • • • , £a-i] r° r«-1. By (122), we can 
choose FXG [#x]r* (X<$). Then, for any XXG [Bx]

r* (\<t), 

(Xo, • • • , Xt~-i) s (Xo, • • • , X,_i, F„ • • • , F<-i) 

s ( F o , • • - , F8_!, F., • • - , F « ) ( - A ) . 

This proves (123) and so establishes Theorem 49. 
We note the following special case of Theorem 49. 

COROLLARY. If 

a0 •—> (6o)*; #1 —-> (6i)ifci«o 

/ a 0 \ /Ô0V1 

V ai/ \ bJk 

We give some applications of this last result. 
(a) If 0 < d < N o g a i , then 

\ ax / \ai/2 

This is best possible in the sense that, if 2d — l is replaced by 2d —2, 
the last relation becomes false. We even have, as is easily seen, 

/2d-2\ / A 1 ' 1 

V / \ l ) (°<^<«o^a!) . 

(b) U a0' >\k\ >0; af >\k\a\ then 

\ aj \ aJk 

In particular, if we assume that 2^0 = ^ ^ then 

W VN2/2 ' 
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More generally, if 2^»=fc$w+i, then 

This is best possible in the following strong sense, 
(c) If a'£\k\ ;&>0, then 

o-o:-
To prove (c), choose n^k such that \n\ = a'. Then a = ^2[v<n]av, 
where av<a. Choose sets Ap, A, B such that \AV\ = a„ (v<n)\ 
4 = Z ' [v<n]Av] \B\ = &, and put [4 , B ] 1 ' 1 » Z ' [v<k]K„ where 
Kv=[Av,BY>l(v<n). If, now, 0^XCA;yGB; [X, [y}]^lCKPior 
some v<k, then v<n; XC.A„; \X\ <a. This proves (c). 

The following theorem is a corollary of a result due to Sierpinski. 
THEOREM 50. If 2»o = K1, then 

W W2 
PROOF. Let 4̂ = [0, w0]; 3 = [0, cox]. According to Sierpinski14 the 

assumption 2Ho = fc$x implies, and is, in fact, equivalent to, the existence 
of a sequence of functions f\(y) £2? (XÇ-4), defined for yG.B, such 
that , given any F e [ S f i , there isXoG^ such tha t{A(y) :yGF} = 5 
(Xo^X<coo). Then [A, BY'^Ko+'Ku where i£0={(X, y):\GA; 
yEB;fx(y)=0}.H, now, (X, F ) G [ i , 5 ] « then, by the property 
of the functions/x, there i s X G ^ ; 3>o, yiG Fsuch tha t /x (^ ) =v (v<2). 
Then (X, yv)G. [X, Y]l>lKv (v<2). This proves the assertion. 

THEOREM 51. If a, b>l; 

o-er 
Then 

PROOF. Let Z and m be such that | / | = a ' ; |m | =£ ' . Then 
0 = H[*<lW; b= J^[fJi<m]bfl1 where a x < a ; b»<b. Put 4 ' = [0, / ] ; 
B ' = [ 0 , w ] , and suppose that [A', B']l*l=J^[v<k]Ki. Then we 
choose sets A\, A, B^ B such that \A\\ =a\ (X</); | J5M| = èM (ju<m); 

14 [14], French translation in [16]. See also [l] . 
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4 - 2 ? [X</]ilx ; £ = Z ' \p<m]B>. Then | 4 | « a ; | S | « 6 ; 
[il, 5 ] M = I > < f c K , where * , « { ( * , y):xeAx; yEB,; (X, M) 
Gi f ; } (p<k). By hypothesis, there is (X, Y)E[A, B]a>b and v<k 
such that [X, F ] 1 - 1 ^ , . Put 

A" = {X:X < I; AXX ^ 0} ; B" - {M:M < « ; B»Y 9* 0} . 

Then a = | X | = Z [ \ G 4 " ] M x X | ; | ^ X X | g | 4 X | < a . Hence, by 
definition of a', \A"\ ^a'. But, \A"\ £\l\ = a'. Hence | i i " | = a ' a n d , 
by symmetry, \B"\ = Ô'. 

Let XE-4"; ixÇ^B". Then we can choose xG-^x-X"; ^ G 5 ^ F , and we 
then have (*, y ) G [ X , F j ^ C K , ; (X, n)EKi. Hence [ 4 " , 5"]1*1 

CKi ; ( i l" , B " ) G [4 ' , £']«'•»', and Theorem 51 follows. 

COROLLARY. If a>lt then 

T A M 

\ a ) \ a ) 2 ' 2 

For, if 

\ a ) \ a ) 
; 

2 

then, by Theorem 51 and the known equation a" — a', we conclude 
that 

U7 U 
which contradicts Theorem 47. 

We may mention that there is an obvious extension of Theorem 51 
to relations 

( 0o \ /a° \ 
J —> I . j for any /. 

ai-i' \ ad 
In conclusion, we collect some polarised partition relations involv­

ing the first three infinite cardinals. They follow from Theorems 
47-50. We put N0 = a; Ni = &; N2 = i . 

CHT-CKD" 
/d\ (A IV1 

d r i l J (Theorem 47); 
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If 2a = £, then 

and 

( a\ /a aX1 

if \d d) 

( a\ (a (A1 

(Theorem 49) 

(Theorem SO). 

It seems curious that the continuum hypothesis should enable us 
both to strengthen 

to 

and to show that 

/ a \ /a a\1A 

\ d / \ a d) 

/ a\ /a aX11 

\rf/ \d d) 

CHS 
cannot be strengthened to 

(;KT-
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