
CLASSES OF TRANSFORMATIONS AND BORDERING 
TRANSFORMATIONS 

D. G. BOURGIN 

Introduction. I do not propose to give a complete or closed theory 
of any of the phases of the subjects I touch on in this address. In 
fact one of my primary purposes is to indicate what the natural un­
solved problems are and what it would be reasonable to expect, and I 
shall raise as many questions as I answer. Many of my comments 
bear on results not yet published or on work in progress in connec­
tion with a book on fixed point theory. In a general way the first part 
of my remarks will interpret bordering transformations as those 
metrically near a canonical type, usually an isometry, while my later 
remarks will interpret bordering in a homotopy sense. 

Our initial considerations will be devoted to the implications of 
what we may term uniform departures from standard transforma­
tions. The first to formulate some problems of this type was Ulam. 
In order to bring out their interconnections we present them as spe­
cial cases or modifications of a general form and free the formulation 
from metric dependence although the metric cases alone have been 
treated. Suppose then tha t X and F are uniform spaces with the 
vicinities of the diagonals denoted by SSI and 9JÏ. We assume the exist­
ence of a multiplication in these spaces denoted by O and ©. That 
is to say, O maps XXX into X, and © maps F X F into F. Let T, S 
be transformations on X to F satisfying 

(i) cs(*i o x2), TX1 © TX2) c m. 
We assume also a class of standard transformations from X to F 
which we denote by U. We may then formulate a significant problem 
in the following way: Does there exist a standard transformation U 
and a vicinity Sft' dependent on 2JI alone such that 

(2) (Tx, Ux) C 91', 

and what is the "best" Sft'? 

1. Approximate additivity and isometry. As illustration we can 
take for X a Banach space in its norm topology and for F the real 
line. Let S=T and let O and © be the respective vector addition 

An address delivered before the Evanstön meeting of the Society on November 24, 
1950 by invitation of the Committee to Select Hour Speakers for Western Sectional 
Meetings; received by the editors January 27, 1951. 

223 



224 D. G. BOURGIN (July 

operations. Here U is additive and SDÎ is the e sphere. In more familiar 
guise then we rewrite (1) as 

(3) \\T(x + y) - Tx - Ty\\ < e, 

and ask if an additive transformation U exists with 

(4) || Tx- Ux\\ ^ ke, 

where k is a fixed constant for the space. Later references to k invari­
ably imply k satisfies (4). This problem was suggested by Ulam and 
solved in the affirmative by Hyers [15].1 He showed k could be taken 
as 1 and designated T as an "e linear transformation." A direct 
generalization of this result can be obtained by replacing e by 
*K#> y), a positive monotone nondecreasing symmetric function of 
||*|| and 11 y\ | such that with (4>(x) =^(x ,x) , 2ü)i" ï (0 (2ix)/2i) = /*(*)< oo. 
One can then show by analysis similar to that of Hyers that (4) is 
valid with ke replaced by /z(x). On the other hand (3) and (4) can­
not be replaced by 

(3') I|Mi,M~o||r(* + y)-Tx- Ty\\/(\\x\\ + ||y||) = 0, 

(4') Z ,^ . | | r*- ux||/||*||=0. 
Indeed with E the real line and [\x\ ] the integer part of Ixl the 

choice Tx = x(l+ ^ ^ s ^ U j ^ o r x^ a c c o r d i n g a s | # | ^ 4 o r \x\ < 4 , 
is consistent with (3')- Yet (4r) cannot be satisfied. Obvious trifling 
modification yields a continuous T(x) of this type. 

Suppose now that X and Y refer to the same Banach space in its 
norm topology, that 5 is the identity operator, tha t T0 = 0, that 2JÏ is 
again an e vicinity, and O and © are the vector difference operations. 
Then (1) is 

(5) \\\Tx-Ty\\-\\x-y\\\<*. 

The standard transformation U is now an isometry. For convenience 
we refer to T as an e isometry. The first result here was for X a 
separable Hilbert space. Again U exists satisfying (4) with & = 10 
provided T is an onto transformation. If this last proviso is not met, 
it is easy to give counter examples to show no k is adequate in (4). 
Another result in this direction was for the case of X = C ( 5 ) , the 
Banach space of continuous functions over a compactum, 5, where 
T was required to be single-valued and continuous. Both results are 
due to Hyers and Ulam [16, 17]. I was able to treat the Lp(0, 1) 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
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case for p>\ [4]. Moreover, I was able to demonstrate that a k 
existed for a uniformly convex space subject to two further condi­
tions. Introduce the following notation: 6(7) is the supremum of 
positive numbers compatible with | |si+z2 | | ^ 2 ( 1 —§(7)) max (||si||, 
||s2||) when ||*i —s2 | |èY m a x (||si||, ||s2||) and ^(S)=sup { T | Ô ( 7 ) 

^inf (1, S)}. The conditions are 

(6) Z\K2-*C) < oo, 

(7) £x.o,n.iuo((||yo + z - Xyi | | - ||yo + s| |)A) = 0, 

for ||y0|| = 1 and fo(yo) = 1 where ||/o|| = 1 and z and y are annihilated 
by /o. We may remark that the e isometry T can be shown to be a 
36e linear transformation and that U is the unique distributive opera­
tion satisfying ZiyUoo(J|r(x) — C7(x)||/||x||)< 00. The consequences of 
a condition resembling (7) at least in the case 25 = 0 have been re­
cently investigated by Fortet [13]. In the case of C(S) I was able to 
generalize the Hyers-Ulam result by demonstrating a similar theorem 
in which S was completely regular instead of a compactum and in 
which T was neither single-valued nor continuous [5], No serious 
effort has been made in the cases successfully treated to determine 
the "best" value of k. 

There are two parts to the problem. The first is the determination 
of U; the second, the verification of (4). In all cases studied U(x) 
turns out to be Ln^OQT{2nx)/2n. In the first cases mentioned the exist­
ence of the limit is easy to establish; for instance, (6) guarantees 
this. The more difficult part is here the proof of (4), and relations of 
the form of (7) play a role. In C(S) the order of the proof is reversed, 
and U(x) is derived from the consideration of the known general 
form of an isometry on such a space in terms of a homeomorphism of 
S and an analysis of the T maps of certain classes of elements remi­
niscent of maximal ideals. I t is only after (4) is established that the 
limit definition of U is verified. No general method has emerged as 
yet, and it is not known whether k exists for every Banach space. In­
deed the problem is still open in cases such as h where the form of an 
isometry is known. 

If now X or F or both are proper subsets of a Banach space, little 
is known. If, for instance, X is a subset of the Euclidean plane F, 
and if we drop the restriction T(X) (ZX even for compact X, then no 
k satisfying (4) need exist. I owe the counter example to Swain [35]. 
Take for X the triangle with vertices ( — 1 , 0), (1, 0), and (0, a). We 
define T by T(x> y)~{x, y-\-a{\x\ —1)). Then for each value of k 
the choice a = l/4& leads to e^2a2 and may be shown to give an € 
isometry of X and T(X) for which (4) cannot be satisfied for any 
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isometry U. (Swain has shown that it is true, however, that for a 
given k one can assign an e so that (4) and (5) can be satisfied when X 
is a compactum in the plane.) Actually, however, the more natural 
problem is that of X = F where X is a compact subset of the plane or 
more generally of a Euclidean space. I believe that for each such X, 
k does exist; but I have no proof. If compactness is replaced by 
metric conditional compactness, there is the possible complication 
that an isometry may not be onto unless say a residue of some order 
vanishes [27]; and there seem to be no clear indications regarding 
the existence of k. The fact that compactness may be crucial is shown 
by the following example. Consider the set X of vertical segments in 
the plane {F ( n ) | F(w) = (xn, y), 0^\y\ ^hn}. Then if xn~*x, &w-»0, 
there is a finite k; but one can determine a divergent sequence {xn} 
with hn—»0 for which no finite k is available. 

2. Isometries in groups. When the underlying spaces have alge­
braic structure, one may ask whether the metric specification of a 
standard transformation, the isometry, implies algebraic properties. 
A well known result of this character is the Mazur-Ulam theorem 
[28] that an isometry of a Banach space which preserves the origin 
is a linear transformation. It is natural to consider then an isometry 
of a metric group with, say, left invariant metric which leaves the 
identity fixed. I point out here that the fundamental difficulties are 
in the non-Abelian case. The nub of the demonstration of the Mazur-
Ulam theorem is the midpoint construction. This has general applica­
tion and is nontrivial only when the unit sphere is flat. (Thus, the re­
striction to strictly convex spaces may be waived in some of Rothe's 
work [32] as observed to me by Charnes.) Aronszajn [2] has given an 
extension, but this again is for the Abelian situation alone. If one 
requires tha t every element be a square, then under weak subsidiary 
hypotheses the isometry U is a semi-automorphism, that is to say, 
Usts= UsUtUs. In general this is all one can expect. For the case of 
a field Hua [19] has shown that U is either a homomorphism or anti-
homomorphism, and Nakayama [29] has extended this to primary 
rings with a weak chain condition; but the proofs lean heavily on 
the existence of two operations. Of course, in the group case (or 
general ring case), for instance when the groups are product groups, 
the situation for T can be quite involved. I t is not clear how to 
formulate non-artificial conditions that would guarantee our semi-
automorphism is really an automorphism. 

Eilenberg [12] showed that any member T of a compact group G 
of homeomorphisms of a metric space S is an isometry in some equiv­
alent metric associated with the uniform topology. Is the conclusion 
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still valid if the compactness of G is dropped and the other hypotheses 
are strengthened to read T is a topological automorphism of the com­
pact metric group 5? The answer is in the negative as shown by the 
following counter example I have recently constructed to settle this 
and other questions. We topologize the additive group of the reals 
as a compact group G = {#}, following Halmos [14], by considering 
it as the character group of the additive group of the rationals 
R= {r} taken with discrete topology. Thus x is considered as x(r), 
an element of PR, where P is the set of reals mod 1 with the custom­
ary topology. The topology of G is then indicated by the compact 
open topology for PR. Since the neighborhood basis in P a t p = 0 is 
denumerable and compact sets in R are finite, it follows that the 
neighborhood basis in PR satisfies the first denumerability condition. 
Accordingly, since G is compact, it is metrizable. A sub-basis a t 
x = 0 is given by the neighborhoods C7(e, r ) = { # | | r # | <€ mod 1, 
r £ i ? } . Consider the automorphism A: x—>10x. This is plainly 1-1. 
To show A is topological, it is here sufficient to demonstrate con­
tinuity a t x = 0. However, this follows from the observation that for 
small e 

A:U(e/10,r) = {x\rx = ION ± ô, Ô < c, N = 0, ± 1 , • • • } C U(e, r). 

If A is an isometry, then d(0y x)=d(0, 10x)=d(0t 10M#), that is, 
{lOntf]tt = 0, ± 1 , ± 2 , • • • } is included in any metric sphere con­
taining x. On the other hand consider 9t = £7(1/100, 1). For XT^O, 
we may as well assume that the first nonzero digit follows the decimal. 
Then either x or lO"" 1 ^^^; that is to say, SU cannot contain {10nx}, 
and so A is not an isometry. 

3. Approximate convexity. A slight generalization of (1) involving 
dependence of O and © on a parameter is enough to comprehend 
the case of an affine or convex function on a convex subset of Eu­
clidean n space. The results here were communicated to me by 
Hyers and Ulam [18]. An e convex function is real-valued and 
satisfies 

T(hx + (1 - h)y) - (hT(x) + (1 - h)T(y)) ^ e f o r O ^ i g l . 

Here U is convex; and the main theorem asserts that if X is a convex 
body or merely a convex subset in F, the Euclidean w-dimensional 
space, and if T is continuous, then (4) can be satisfied with 
k = n(n+3)/4:(n + l). 

4. Multiplicative transformations. In view of the cardinal impor­
tance in Banach algebras of maximal ideals which are interpreted as 
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linear multiplicative functionals, it seems worthwhile to consider 
purely multiplicative functionals and transformations, as standard 
transformations, in some detail. Specifically, suppose X=C(S), S 
compact, and let Y be the real line, with O and © the obvious 
multiplications. We are interested in Uxy = Ux Uy, where U is con­
tinuous in the norm topology of C(S). I have recently shown [ó] that 
U is completely determined by the values of x(s) on a denumerable 
closed set D in S which is independent of choice of x. This closed set, 
which is easily shown to be a compactum in the relative topology, is 
referred to as a determining set. Some immediate consequences have 
been noted in unpublished work by Charnes and me [9]. For in­
stance, similar results are valid when Y is the complex field or when 
5 is completely regular and /S(*S) — S is the union of closed Gs sets 
where j3(S) is the Cech compactification of 5. Furthermore, we have 
been able to obtain the essential facts about the representation of 
continuous multiplicative transformations on C(Si) to CXS2) for Si 
and 52 compact. For instance, if one requires the transformation to 
be completely continuous, then a denumerable compactum D in Si is 
again the determining set in the sense that ( Ux){t) = I X i E 0 ! x(sù I "*(e)* 
If the transformation is merely continuous, then the correspondence 
t—*D(t) is upper semi-continuous. Although ^/x»(0 must be con­
tinuous, it is not true the individual /*,-(/)'s need be. In this range of 
ideas there is an expected analogue of the Stone-Banach theorem. In­
deed, we have shown that multiplicative isomorphism of the con­
tinuous multiplicative functionals on two compacta implies homeo-
morphism of the compacta. 

Cardinal number aspects of multiplicative linear functionals seem 
in the spirit of the considerations above. For instance suppose 5 is 
completely regular and the minimal power of a neighborhood basis 
at every point is the same cardinal a. Let 3 be a free ideal, in 
Hewitt 's terminology, of CB(S), the Banach algebra of bounded 
continuous functions. Suppose the power of {X|A} is/3, jS^a, and 
{ x x | A } C 3 - T h e n for some fixed collection {sw| coÇfl a directed set} 
(ZS of power less than or equal to S3, we can assert Lwxx(sw) = 0 for 
each X. An interesting consequence is that the free ideal -3 cannot be 
maximal if it admits a basis of power ^ a . 

Other directions of generalization I have in mind are to subrings of 
C(S) or to the case of S no longer restricted to be compact and to 
function rings other than C(S). For instance suppose G is a compact 
Abelian group and G' is its discrete character group; then L^{G) is a 
ring over the complex field K when multiplication is interpreted as 
convolution while L2(G') is a ring under pointwise multiplication. 
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The intervention of the Fourier transform yields the continuous 
multiplicative functionals on L2(G) in terms of those on L2(G'). D 
is finite here. Multiplicative functionals yield the one-dimensional 
case of representations for the semi group parts of Banach algebras. 

The bordering transformations now are what we may term ap­
proximately multiplicative. I t must be confessed that, in order to 
preserve interesting properties, the approximately multiplicative 
transformations turn out to be either disguises of truly multiplicative 
ones or at best to satisfy somewhat artificial restrictions. For instance, 
we have with Axy = \\Txy — TxTy\\, \x\ i = mîs^8i\x(s)\, the following 
alternative definitions: 

(A) A * y £ 8 m a x ( | | * | | | y | , , ||y|| | * | , ) . 

(B) Axy^ômm(\\x\\\y\h | | ;y| | |*|<). 

(C) Axygô\ x\i\y\i. 

(D) Axy = 0 for | xy |< = 0. 

(E) Axy <Z ô\xy\i + e. 

For more than one point in S2, (C) implies multiplicativity. An 
example of (A) is Tx = x+\x\i. As an example of (A) and (B) we 
have 7x(x) = |x|* (sign x(5))(/S(x(5)/||x||)2—«) with 0 < a < | 3 < 2 a a n d 
2 a + 4 a 2 < ô . This is on C(S) onto C(S). 

The multiplicative transformations or approximately multiplica­
tive transformations yield analogues of the Stone-Banach theorem 
[3, 34]. I have given a rather general condition of the validity of such 
a theorem [5]. Indeed, let 5*, i = l , 2, be compact, and refer to 
{x\ \x(s0)\ ^ M } as a ix ideal. Then if there is a map of C(Si) onto 
C(S2) under which \x ideals in C(Si) go into subsets of ju+p ideals in 
C(S2) and conversely, Si and S2 are homeomorphic. We can state, 
for instance, if T is 1-1 on C(Si) onto C(S2) and satisfies (C) and so 
does T~l

y and if (infs supiixiui (Tx)(s)) (inf* supnxiui ( r - 1 X ) ( 0 ) > 0 , 
then Si is homeomorphic to 52. 

In view of this last theorem and my theorem on the existence of a 
determining set, we can state: If T satisfies (D) and is 1-1 on C(Si) 
onto C(52), then 5i and 52 are homeomorphic. 

5. Banach isomorphisms. We now turn attention to some phases 
of the problem of the Banach isomorphism of two Banach spaces 
Ei and E2 [3]. There are interesting modern connotations because 
the isomorphism may be construed as merely a change of the multi­
plication definition in a Banach algebra in many cases. The general 
reference for the results in this section is [9]. Let ~ indicate Banach 
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isomorphism. Evidently a multiplication can be introduced in the 
Banach space E under which it is algebraically isomorphic to C(M), 
M compact, if and only if E~C(M). Tha t C(M) represents either 
the Banach space or the Banach algebra will cause no confusion. If 
M and N are compact but not homeomorphic and C(M)~C(N), 
then the multiplication in C(N) can be used to define a new multipli­
cation in C(M). Since the "C norm" is the minimum one among all 
B isomorphs of C(M) for which the identity of C(M) has norm 1, it 
may be shown that if two multiplications exist such that E~C(M) 
and E~C(N), then N and M are homeomorphic if and only if 
M = N where the bar denotes the w*(E*) closure of the convex hull 
(when M and N are considered subsets of £*). I t is natural to ask 
when (a): C(S)~C(S)XC(S), S compact. A set of sufficient condi­
tions is: S contains A, B, and S' = A^JB} all homeomorphic to it, S ' 
satisfies (a), and AC\B is a retract of S'. The proof depends on the 
observation that if L is a retract of the compact set S and if CL(S) 
= {X\X\L = 0}> then C(S)~C(L) XCL(S). The existence of proper 
subsets homeomorphic to 5 is not essential. Indeed {a) is true when 
5 is the unit circle H and in fact C(H)~C(I) where I is the unit 
interval O ^ ^ ^ l . We have no example in which C{S) is not finite-
dimensional and yet (a) is not satisfied. Among other results we have 
shown that if Ai, i = l, 2, is compact and connected and convergent 
sequences Si, s» = {a?}, i= 1, 2, exist in Ai and A2 respectively, and if 
B is the space Ai^JA2 with a" and a% identified, then C(B)~C(A\) 
X C ( i 2 ) . I can make a small remark on the open problem of whether 
C(IXI) is isomorphic to C(7), namely, that C(lXs)~C(I) where 

6. Orthogonal sequences. We now turn to another aspect of iso­
metric transformations and consider a problem that seems equivalent 
to the characterization of a class of unitary transformations. In the 
early 1930*8 in several lectures and conversations I raised the ques­
tion as to whether for even or odd functions 

1 r * 
(I) — I f(nx)f(xm)dx = Ônw, nf m = 1, 2, 3, • • • , 

TT J -re 

was sufficient to guarantee periodicity of f(x) even under restrictions 
to class C or C' functions, or the like. This question is still open 
(though I expect an answer in the negative), but more success has 
been achieved with the characterization of periodic odd functions 
satisfying (I). C. Mendel and I [8] demonstrated the existence of 
various types of solutions of (I) under the inessential restriction 
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that f(x) is odd. In a subsequent paper [7] I established some 
necessary and sufficient conditions besides the obvious one that 

00 

(II) ]C an^m/n = 5nm, 

where a» = 0 for nonintegral i and, for i a positive integer, is the ith 
coefficient in the Fourier sine series expansion of the odd function 

I call attention to merely one facet of the general problem, namely, 
the fact that if an vanishes except when n~p{1 • • • p$ for fixed 
primes p±, • • • , pN, the most general solution is obtained by finding 
the analytic functions of N complex variables which take on boundary 
values of unit modulus almost everywhere on the distinguished sur­
face |w|,- = l, i=l, • • • , N. Call this problem (III) . Indeed, if a 
solution is X X v - f y wî* ' * ' w1Ny then the constants Cil...iN = ajy 

j = p\i • • 'pty, satisfy (II), and conversely. In the case N=l the 
function theoretic problem admits the representation B(w) exp H(w) 
where B(w) is a Blaschke product and H{w) is the well known Herglotz 
factor [33]. For N>\ no such representation theorem is known, 
though I have shown, for instance, that if {ct-r..»-n} £ / i , then the 
representative function must be a special type of rational function 
[7]. The converse would be the following: if {an}&u then there 
is a corresponding rational function of a finite number of complex 
variables satisfying ( I I I ) ; but I have no proof. A solution of (I) and 
(II) yields a solution of (III) . For instance, there is a solution of (I) 
in terms of the properties of the Dirichlet expansion of a determining 
function <t>(z). Another criterion is one involving equivalence with 
the unitary transformation in L2(0, 00), gQC)—df^H{TK)f{t)l''1dl/dk% 

where H is a self-reciprocal kernel defined by H(K) = 2«>i/x ann~112. 
Indeed, if 

(IV) I - A _ L _ l _ i rfx = min (k, 1) 
J o X2 

and {an}&u or satisfies even weaker convergence conditions, we 
have a solution of (I). I believe tha t if (IV) is satisfied, then {an} &2 
is sufficient to yield the general solution of (I). If this were estab­
lished, we should have another tie-up with problem (III) . On the 
other hand, in the general case it is clear we should get the generaliza­
tion of (III) to holomorphic functions of an infinite number of com­
plex variables. 

7. Fixed point index. From now on the bond of association of 
standard and bordering transformation is the notion of homotopy. 
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I t is commonplace in the modern literature of analysis and applied 
mathematics to base existence statements on the Leray-Schauder 
theorem [26]. This theorem is concerned with a homology type of 
invariant, namely, the index. Such an index can be denned in the case 
of a polyhedron in En even though no restriction on homogeneity 
in the dimension sense be imposed. Thus let a regular point of 
the polyhedron be one with a neighborhood in the complex homeo-
morphic to E8 for some s^n. A regular fixed point is then an iso­
lated fixed point which is regular, and we assign it the dimension 
factor ( — l)8 . (Non-regular fixed points are handled by approximating 
T by Tn with regular fixed points.) The index of such a fixed point 
xo is its order j under the transformation T with respect to the con­
tinuous cycle obtained by mapping some sufficiently small 5 sphere 
with Xo as center by T. The index of an open set is then the algebraic 
sum of the indices of all fixed points contained in the open set under 
the proviso that none are on the boundary, that is to say, 
X)««(~ l)*j<*s. When the open set is replaced by the polyhedron, this 
is simply the Lefschetz number. 

We now signalize another formulation. The transformation T in­
duces chain and cochain mappings, and Lefschetz has used these to 
define his now classical zero cycle termed the combinatorial graph of 
T. The Lefschetz number can be considered an intersection number 
or Kronecker index associated with the graphs of T and of the 
identity transformation [21 ]. I t would appear that the index is 
bound to the concept of the Lefschetz number, and it seems likely 
it should be capable of definition as a Lefschetz number if relative 
chains and cochains are introduced. Part of the difficulty involved in 
a definition of the index in this way attaches to the point set assign­
ments of carriers or supports, for there do not exist altogether satis­
factory formulations of the notion of general position. Improvement 
and extension of the intersection theory for the relative homology 
case would permit corresponding extensions in the effective definition 
of the index. 

The Leray-Schauder degree is an extension of the index beyond the 
finite complex or Euclidean space stage for the special situation that 
the transformation is "equivalent" to one restricted to a finite-dimen­
sional linear subspace. The modern method of generalizing topological 
concepts from polyhedra to spaces is to replace the space and its 
mappings by a collection of nerves of coverings and to define the 
relevant notions by suitable limits. This suggests the following 
schematic plan for generalizing the index of an open set. Let W be 
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the nerve of the finite open cover ZJP, and let m^ and rfi refer to the 
maps of X into W and ffi into X respectively. The maps are to be 
defined so as to guarantee continuity, and this condition can be met 
for, say, coverings admitting locally finite refinements as shown by 
Lefschetz [22] and Dowker [ l l ] . We can then associate with T the 
map T? onW->W such that T*-mPTn*. The open set OCX cor­
responds to {nP)~lO. Suppose ip can be defined on W for the sub-
complex {n$)~l0. I t is then plausible to define the index for O by the 
requirement that ip remain constant for all /3 >/3o so that ip is in a sense 
determined by the complex Sft̂ 1, j3i>/3o. Thus, for example, a sub­
class of the compact spaces with homology groups those of a finite-
dimensional complex forms a natural category. Both Leray [23, 24, 
25] and later Browder [lO] have defined an index for some spaces of 
this type. Browder's definition is essentially that given above for a 
compact absolute neighborhood retract which is uniformly locally 
equiconnected and is referred to below as a Q space. Leray treats a 
space he designates as convexoide, defined as one admitting a certain 
class of closed coverings, but no equivalent definition in terms of con­
nectivity properties has been given. Very likely the convexoide 
spaces form a subclass of the Q spaces. 

I t is highly desirable that the restriction to compact spaces be 
waived. For locally compact Hausdorff spaces, I have little doubt 
that results will obtain of the same sort as in the compact case. 
However, since the usual infinite-dimensional metric linear spaces 
are not locally compact in the metric topology, further extension is 
called for. The schematic program I have given above suggests an 
extension in which locally finite covers replace finite covers. One must 
first define the index for locally finite complexes. I may remark that 
preliminary work indicates the feasibility of such extension of the 
index to certain paracompact, normal spaces and also extensions of 
the index in the case of certain general spaces when the transforma­
tions are restricted. 

8. Fixed point classes. We should expect greater information and 
more precision by introducing homotopy invariants. The central 
problem for us here is: Given T:S(ZS, what is the minimum number 
of fixed points of T or, in slightly more general form, what is the 
minimum number of fixed points of a transformation arising from T 
by a homotopy? This is the natural question when one has to deal with 
branches of solutions. In the case of two-dimensional manifolds with 
or without boundaries, Nielsen [30 ] introduced the notion of fixed 
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point classes. This work was generalized in part by Wecken [36] to 
the case of polyhedra in Euclidean space and by Browder [lO]. Let 
S be the universal covering space of a compact, connected, locally 
connected, and locally simply connected space 5. This consists of 
equivalence classes of paths with common initial point, and each 
class may be indicated by square brackets boxing a representation 
path. Suppose then T maps S into 5. Let P denote the path, from 
the fixed initial point po to p. Let C be a path from po to T(po). We 
define T on S to 5 by T[P] = [CT(P)]. Evidently other nonequiva-
lent definitions can be given for T differing in the choice of the paths 
C from pQ to T(p). 

Let 7r(5, po) be the fundamental group of *S based at po with ele­
ments the equivalence classes [ ] of closed loops. Then one shows 
easily that 

T[yP] = H(y)T[P] 

where 

H(y) « [CT(y)C-i]. 

A fixed point class is the set of the projections of the fixed points on 
S of [7 ] - 1 ?[ .P] . Under contractibility hypotheses on 5 one can 
assure tha t these fixed points are in the same class if and only if for 
some joining curve, T, (T(p), p)C.yi for all p on I \ The index is as­
signed to each fixed point class by taking an open set 0 containing the 
elements of some class and none on the boundary and using i(0). 
Fixed point classes with nonzero indices remain fixed point classes of 
the same index under homotopic variation of T. When the index is 0 
it is possible that a class may be homotopically correlated with one 
containing no fixed points. 

Consider the homogeneous space derived from 7r(5, po) by intro­
ducing the equivalence classes or cosets originally suggested by 
Reidemeister [31 ], namely, a~(S if and only if for some [7] £7r(5, po), 
H(y)ay~l~fi. Denote the coset containing a by (a). Then it was 
shown by Wecken [36, II ] tha t each fixed point class corresponds to a 
coset (a). For spaces of the type (Q) it may be shown that the num­
ber of fixed point classes is finite. Under homotopy the number of 
classes with 0 index may change. If the number of cosets is finite, 
then obviously the number of fixed point classes has a finite upper 
bound. Otherwise it may be unbounded, though, of course, the num­
ber of classes with nonzero index stays fixed. 

There are evidently a t least as many fixed points as there are fixed 
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point classes of nonzero index. Wecken has given an example where 
there is only one fixed point class, yet no transformation in the 
homotopy class has less than 2 fixed points. 

Again preliminary analysis indicates that compactness may be 
replaced by <x local compactness without seriously affecting the main 
features of the results. However, further weakening such as, say, to 
paracompact spaces, runs into difficulties that suggest only restricted 
homotopies be used in view of Kakutani's result [20 ] that the Hil-
bert sphere {x\ \\x\\ = 1} is nomotopic to a point over itself. 

I conclude with a few comments about sets of fixed points. In a 
general way it has been shown by Aronszajn [2] that when a trans­
formation into a compactum can be uniformly approximated by 
transformations admitting unique solutions, then the fixed point 
set is an intersection of a decreasing sequence of absolute retracts 
and is referred to as an JR§ after the usual signification of ô. An R& 
set is like an absolute retract as regards its trivial fundamental and 
homology groups, but may have different local properties as indicated 
by the mathematician's vade mecum, the sin 1/x curve plus the 
vertical segment a t x = 0, which obviously is an i?s. I mention in 
passing that it would be of interest to give an internal characteriza­
tion of an R8. The precise statement of Aronszajn's result is: If T is 
completely continuous on the Banach space E into itself, and if there 
is a sequence of completely continuous transformations Tn such that 
(a) €w>|| Tx — Tnx\\ for x £ Z a bounded closed set, with en I 0; (b) 
w = Hnz = z—Tnz maps K in 1-1 fashion on a set containing a fixed 
sphere in E independent of n (this guarantees uniqueness in K of 
solution of HnZ — w for w of sufficiently small norm); then the set of 
fixed points of T is an R&. There seem obvious applications of the in­
dex and fixed point class concepts in extending this result. Moreover, 
quite apart from the extension where compact replaces compact 
metric, another direction of generalization would be to the cases 
that the approximating transformations were not necessarily single-
valued. There is reason to surmise then that the corresponding fixed 
point set would be an intersection of absolute neighborhood retracts. 

BIBLIOGRAPHY 

1. N . Aronszajn, Caractérisation métrique de Vespace de Hubert, des espaces vec-
torieles et de certains groupes métriques, C.R. Acad. Sci. Paris vol. 201 (1935) pp. 811— 
813 and 873-875. 

2. , Le correspondant topologique de Vunicité dans la théorie des équations 
différentielles, Ann. of Math . (2) vol. 43 (1942) pp. 730-738. 

3. S. Banach, Théorie des opérations linéaires, Warsaw, 1932. 



236 D. G. BOURGIN [July 

4. D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. vol. 52 (1946) 
pp. 704-714. 

5. , Approximately isometric and multiplicative transformations on continu­
ous f unction rings, Duke Math. J. vol. 16 (1949) pp. 385-397. 

6. , Multiplicative transformations, Proc. Nat. Acad. Sci. U.S.A. vol. 36 
(1950) pp. 564-570. 

7. , A class of sequences of functions, Trans. Amer. Math. Soc. vol. 60 
(1946) pp. 478-518. 

8. D. G. Bourgin and C. Mendel, Orthogonal sets of periodic f unctions of the type 
f(nx), Trans. Amer. Math. Soc. vol. 57 (1945) pp. 332-363. 

9. D. G. Bourgin and A. Charnes, Unpublished. 
10. F. Browder, Thesis, Princeton University. 
11. C. H. Dowker, An extension of Alexandroff's mapping theorem, Bull. Amer. 

Math. Soc. vol. 54 (1948) pp. 386-391. 
12. S. Eilenberg, Sur les groupes compacts d'homéomorphie, Fund. Math. vol. 28 

(1937) pp. 75-80. 
13. R. Fortet, Remarques sur les espaces uniformément convexes, Bull. Soc. Math. 

France vol. 69 (1941) pp. 23-46. 
14. P. Halmos, Comment on the real line, Bull. Amer. Math. Soc. vol. 50 (1944) 

pp. 877-878. 
15. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. 

Sci. U.S.A. vol. 27 (1941) pp. 222-224. 
16. D. H. Hyers and S. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 

vol. 51 (1945) pp. 388-392. 
17# 1 Approximate isometries of the space of continuous functions, Ann. of 

Math. (2) vol. 48 (1947) pp. 385-389. 
18. , Unpublished. 
19. L. K. Hua, On the automorphisms of a field, Proc. Nat. Acad. Sci. U.S.A. vol. 

35 (1949) pp. 386-389. 
20. S. Kakutani, Topological properties of the unit sphere of a Hubert space, Proc. 

Imp. Acad. Tokyo vol. 19 (1943) pp. 269-271. 
21. S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Publications, 

vol. 27, New York, 1942. 
22. 1 Topics in topology, Annals of Mathematics Studies, no. 10, Princeton, 

1942. 
23. J. Leray, Sur la f orme des espaces topologiques et sur les points fixes des repré­

sentations, J. Math. Pures Appl. (9) vol. 24 (1945) pp. 95-167. 
24. , Sur la position d'un ensemble fermé de points d'un espace topologique, 

J. Math. Pures Appl. (9) vol. 24 (1945) pp. 169-199. 
25. , Sur les équations et les transformations, J. Math. Pures Appl. (9) vol. 

24 (1945) pp. 201-248. 
26. J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. École 

Norm. (3) vol. 51 (1934) pp. 45-78. 
27. A. Lindenbaum, Contributions a l'étude de l'espace métrique I, Fund. Math, 

vol. 8 (1926) pp. 209-222. 
28. S. Mazur and S. Ulam, Sur les transformations isométrique d'espaces vectoriels, 

normes, C.R. Acad. Sci. Paris vol. 194 (1932) pp. 946-948. 
29. T. Nakayama, Unpublished. 
30. J. Nielsen, Untersuchungen zur Topologie der geschlossen zweiseitigen Flâche, I, 



i95i] CLASSES OF TRANSFORMATIONS 237 

Acta. Math. vol. 50 (1927) pp. 189-358; II, vol. 53 (1929) pp. 1-76; III, vol. 58 
(1932) pp. 87-167. 

31. K. W. Reidemeister, Automorphismen von Homotopiekettenringen, Math. Ann. 
vol. 112 (1936) pp. 586-593. 

32. E. Rothe, The theory of topological order in some linear topological spaces, Iowa 
State College Journal of Sciences vol. 13 (1939) pp. 373-390. 

33. W. Seidel, On the distribution of values of bounded analytic functions, Trans. 
Amer. Math. Soc. vol. 36 (1934) pp. 201-226. 

34. M. H. Stone, Applications of the theory of Boolean rings to general topology, 
Trans. Amer. Math. Soc. vol. 41 (1937) pp. 375-481. 

35. R. L. Swain, Unpublished. 
36. F. Wecken, Fixpunktklassen, I, Math. Ann. vol. 117 (1939) pp. 659-671; II, 

vol. 118 (1941-1943) pp. 216-234; III, vol. 118 (1941-1943) pp. 544-577. 

UNIVERSITY OF ILLINOIS 


