NOTE ON A THEOREM DUE TO BORSUK
J. H. C. WHITEHEAD

1. Introduction. Let 4, BCA and B’ be compacta, which are!
ANR'’s (absolute neighbourhood retracts). Let B'CA’ where 4’ is a
compactum, and let f: (4, B)—(4’, B’) be a map such thatfl (4-B)
is a homeomorphism onto 4’ —B’. Thus 4’ is homeomorphic to the
space defined in terms of A, B, B’ and the map g=f I B by identifying
each point b&EB with gb€B’. K. Borsuk [3] has shown that 4’ is
locally contractible. It is therefore an ANR if dim 4’ < «. The main
purpose of this note is to prove, without this restriction on dim A4’:

THEOREM 1. A’ 2s an ANR.

We also derive some simple consequences of this theorem. For
example, it follows that the homotopy extension theorem, in the form
in which the image space is arbitrary, may be extended? from maps
of polyhedra to maps of compact ANR’s, P and QCP. That is to
say, if fo:P—X is a given map, the space X being arbitrary, and if
g::Q—X is a deformation of g, =folQ, then there is a homotopy
fi:P—X,such thatftl Q=g Forlet R=(PX0)J(QXI)CPXIandlet
h:R—X be given by h(p, 0) =fop, h(g, t) =g«q (PEP, ¢€Q). Since
OXI is (obviously) a compact ANR it follows from Theorem 1,
with 4=QXI, B=QX0, B'=PX0, A’=R that R is an ANR.
Therefore R is a retract of some open set UCPXI. If 0:U—R is a
retraction, then #f: U—X is an extension of k:R—X throughout U.
This is all we need for the homotopy extension theorem (see [5, pp.
86, 87]). Thus we have the corollary:

COROLLARY. A given homotopy, g::Q—X, of go=fo| Q, can be ex-
tended to a homotopy, fi: P—X, where P and QCP are compact ANR's
and fo: P—X is a given map of P in an arbitrary space X.

We also use Theorem 1 to prove another theorem. We shall de-
scribe a map £:X—Y as a homotopy equivalence if, and only if, there
is a map, 1t Y—X, such that =<1, £&y=~1, where X and Y are any
two spaces. Thus the statement that £: X—Y is a homotopy equiva-
lence implies that X and Y are of the same homotopy type. Let
A,B,A',B" and f:(4, B)—(4, B’) be asin Theorem 1 and let g=le.
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1 For an account of these spaces, on which this note is based, see [2]. Numbers in
brackets refer to the references cited at the end of the paper.
2 Cf. [4].
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Then we shall prove:
THEOREM 2. If g:B—B’ is a homotopy equivalence so is f:A—A’.

For example B’ may consist of a single point, in which case we
describe the identification of B with B’ as the operation of skrinking
B into a point. Then it follows from Theorem 2 that any (compact)
absolute retract, BC4, may be shrunk into a point, without altering
the homotopy type of 4. As another example let A and B’ be cell
complexes® and B a sub-complex of 4. Then 4’ is also a cell complex,
subject to suitable conditions on the map* g=f| B, and Theorem 2
shows that certain combinatorial operations do not alter the homot-
opy type of A. For example, if B is the n-section of 4 and if B’ is
any complex, of at most # dimensions, which is of the same homotopy
type as B, then there is a complex, 4’, of the same homotopy type as
B, whose n-section is B’.

2. Another theorem. We prove Theorem 1 by means of another
theorem. Let X and YCX be compacta and let ¥ be an ANR. Given
p>0 let V,CX be the subset consisting of points whose distances
from Y are less than p. We assume that

(a) given €>0 there is a p(e) >0 and an e-homotopy, 0,:X—X,
such that §o=1, 0| Y =1, 0, V,(o =Y,

(b) given €, p>0 there is a u(e, p) >0 such that any partial realiza-
tion, g:L—X —V,, whose mesh does not exceed u(e, p), of a finite
simplicial complex, K, can be extended to a full realization, f:K—X,
whose mesh does not exceed €, u(e, p) being independent of K and L.

Then we prove:

THEOREM 3. Subject to these conditions X is an ANR.

For this we shall need a sharpened form of the homotopy extension
theorem. Let P and QCP be compacta and let fo: P—M be a given
map of P in a metric space M. Let g,:Q— M be an e-deformation of
2o =fol Q. Assume that either

(1) M is a (separable) ANR or that

(2) P is a finite polyhedron and Q a sub-polyhedron.

Then we have:

LeMMA 1. Given € >0 there is an (e-+e€’)-deformation, f.:P—M,
such that fg[ Q =g

8 That is, a complex of the sort defined in [6], and in a forthcoming book by S.
Eilenberg and N. E. Steenrod.

4 For example, gB"(C B’ for each n=0, 1, - - - , where K denotes the #n-section
of a complex, K, or A»(CB, gB(B'» for a particular value of #.
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By way of proof it is sufficient to add a few comments to a standard
proof of the homotopy extension. (See [5, pp. 86, 87].) Let R= (P X0)
U(QXI)CPXIandlet h: R— M be given by k(p, 0) =fop, h(g, t) =g
(pEP, ¢€Q). If P is a polyhedron and Q a sub-polyhedron, then R
is a polyhedron and hence a neighbourhood retract of P XI (in fact R
is a deformation retract of P XI). Therefore % can be extended
throughout some neighbourhood, UCP XI, of R, as it can be if M
is an ANR and P, Q arbitrary compacta. There is a neighbourhood,
VCP, of Q such that VXICU. Since Q is compact we may take V
to be the neighbourhood given by 8(p, Q) <p, for some p >0, where
8(p, ') is a distance function in P. On following the argument given
by Hurewicz and Wallman [5, pp. 86, 87] it is easily seen that the
extension f;: P—M is an (e+e¢’)-deformation provided p is sufficiently
small.

We now proceed to prove Theorem 3 by showing that X is LC*,
as defined by Lefschetz.? Given e>0 let 7' =17(e/2)/4, o' =p(n")/2,
where 7 is an extension function® for ¥ and p(n’) means the same as
in the condition (a). Let

£1(e) = min (29, o).
We shall prove that
5(6) = u{’él(f), p’}

is an extension function for X. Let K be a finite simplicial complex
and LCK a sub-complex, which contains all the vertices of K. Let
g:L—X be a partial relization of K, whose mesh does not exceed
£(e). We first assume that sCL if g(s\L)CX —V,,, where s is the
closure of any simplex in K. Let K;CK be the sub-complex consisting
of all the (closed) simplexes, s€K, such that g(s\L) meets V,.
Then K=K,UL. Let Li=K\N\L, gi=g| L. Then it is sufficient to
prove that g can be extended to a full realization, fi1: K;—X, whose
mesh does not exceed e. For since Ky\L =Ly, fi| Ly=g| Ly, the de-
sired realization, f: K—X, will be given by f | L=g f l K, =f,. Clearly
£(e) =£1(e) and we shall prove this special case on the weaker assump-
tion that the mesh of g:L—X does not exceed £ (e).

Since £1(e) =p’ we have gLy C Vapr = V, where p=p(n’). Let 0,: X—X
be the n’-deformation associated with V, as in condition (a). Since
KYCK°CL, KiCK;, we have KiCL: Also 6,V,CY. Therefore
61g1:Li—Y is a partial realization of K, in ¥, whose mesh does not
exceed

s [2, pp. 82, 83, 84] (N.B. K°C L).
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Ei(e) + 20" = 27'n(e/2) + 27'n(e/2) = n(e/2).

Therefore 61g1: Li— Y can be extended to a full realization, fo: K;—7Y,
whose mesh does not exceed ¢/2. By Lemma 1 there is an (' -+¢/8)-
homotopy, f.:Ki—X, such that fi|Li=0;_.g. Clearly n(e/2) <¢/2,
whence 7'-+¢/8=<¢/8+¢/8=¢/4. Therefore the mesh of fi:K;—X
does not exceed €/2+2(n’+€/8) <e and fi| Li=00g, =g:. Therefore
this special case is established.

In general let KoCK be the sub-complex consisting of all the
closed simplexes, s€K, such that g(sL)CX —V,.. Let Ly=K,N\L.
Then g[ Lo is a partial realization of K,, whose mesh does not exceed
Ee)=u {El(e), p’}. By condition (b) it can be extended to a full
realization, fo:K¢—X, of mesh at most £ (e). Since K¢ \L=L,,
fo]Lo=glLo, a map, g': K\\JL—X, is defined by g’|K0=fo, g’]L=g
and its mesh does not exceed £:(¢). Therefore L may be replaced by
Ko JL and the theorem follows from what we have already proved.

3. Proof of Theorem 1. We shall prove Theorem 1 by showing that
the conditions (a) and (b) in §2 are satisfied when X=A4', Y=B’. Let
8(ay, as) be a distance function in 4 and let ¢ >0 be given. Since 4 is
compact there is a N(e) >0 such that &§'(fai, fas) <e provided &(a1, az)
<\(e), where 6'(af, af) is a distance function in 4’. Let U,C4 be
the neighbourhood of B which consists of all points, a &4, such that
d(a, B) <7v. As shown by Borsuk [3], there is a homotopy, ¢.: U,—4,
such that ¢o=1, qS,[ B=1, $,U,=B for some v>0. By uniform con-
tinuity thereis a >0 (u<v) such that 8(¢.a, b) =08(¢.a, ¢:0) <A(e)/4
if 8(a, b) Sp. Hence ¢:| T, is a N(¢)/2-deformation. By Lemma 1,
dn] T, can be extended to a A(e)-deformation y;:4A—A (Yo=1). Let
0,:A’—A’ be given by 8,| B’ =1, 8,|fA =f.f | fA. Since f-!| (4’ —B’)
is single-valued and since f~'B’=B and ¢,[B=1 it follows that 0,
is single-valued. It is therefore continuous.® Since 6,/B’=1 and
the diameter of the trajectory, ¥.a, of any point ¢ EA4 is less than
M(e) it follows that 6, is an e-deformation. Also ,(fU,) =/, U, =fBCB’.
Therefore 6,(B’\JfU,)=B’. Since f|(4 —B) is a homeomorphism
onto A’ —B’ and fBCB’ it follows that B’\UfU, is an open subset
of A’. For

f4 -0 =f{(4 - B) - (V.- B)}
= 4" — B — f(U,— B)
= A" — (B'U JU,).
But 4 — U, is compact, whence f(4 — U,) is closed and B’\UfU, open.
¢ See §5 below.
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Therefore there is a p(€) >0 such that V, CB/'\JfU,, whence 0V,
= B’. This establishes (a).

Let a(e’) be an extension function for 4. Since f“I( (A’—B') is a
homeomorphism and A’—V, is a compact subset of 4’—B’, for a
given p>0, there is a u(e, p) >0 such that, if 6'(a’, a’’) <ule, p)
(@', '’ CA’'—V,), then 3(f1a’, fa') <a{Ne)}. If y:L—A'—V, is
a partial realization, of mesh at most u(e, p), of a complex K, it fol-
lows that f~4W:L—A4 is of mesh at most a{)\(e)}. The latter can
therefore be extended to a full realization, ¢: K—A4, of mesh at most
A(e). Then ¢’ =f¢p: K—A4' is a realization of K, whose mesh does not
exceed e. Moreover f¢|L =ff- =y. Therefore (b) is satisfied and
Theorem 1 is established.

4. Proof of Theorem 2. We first prove a lemma. Let X, ¥ be
topological spaces”: let Xo,CX, Y,CY be closed subsets and let
¢: (X, X¢)—(Y, Yy) be a map such that ¢|X—Xo is a homeo-
morphism onto Y — ¥, Moreover let the topology of ¥ be such
that a subset FC Y is closed if, and only if, F\ Y, and ¢~ F are both
closed.

LemMA 2. If X is a deformation retract® of X, then Y, is a deforma-
tion retract of Y.

After replacing X by a homeomorph, if necessary, we assume that
it has no point in common with Y, and we unite X, Y, in the space,
Q=XUY,, of which X and Y, each with its own topology, are
closed subspaces. Then Y has the identification topology® determined
by the map ¢:Q—Y, where ¢|X =6, ¢| Yo=1. Let £:X—X be a
homotopy such that & =1, Etl Xo=1, §X =X, and let £, be extended
throughout Q by taking £t| YVo=1. Let n,=yEyg1:Y—Y. Clearly
Y| V— Y, is single-valued. Also y~1 Vo= X,\U Y. Since £ Xo\J Yo=1
it follows that 7, is single-valued and hence continuous. Obviously
no=1, n;| Yo=1, 0, ¥ = ¥,, which establishes the lemma.

Notice that the topology of Y certainly satisfies the above con-
dition if X is compact (that is, bi-compact) and if ¥V is a Haus-
dorff space. For let this be so and let FCY be such that ¢—'F and
FN\ Y, are both closed. Then ¢~1F is compact, whence ¢¢™1F is also
compact and hence closed. But ¢¢p—1F=FN¢X and

F=FNsX)U FNTYy,

7 We do not need to assume that X and ¥ satisfy any separation axioms.

8 Following Lefschetz [1, p. 40] we do not admit that X, is a deformation retract
of X unless there is a retracting deformation throughout which each point of X, is
held fixed (see [7]).
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whence F is closed. The converse follows from the continuity of ¢
and the fact that Y, is closed.

We now turn to Theorem 2. We recall that f: (4, B)—(4’, B') is
such that f| (4 —B) is a homeomorphism onto 4’ —B’ and g=f[B is
a homotopy equivalence. Replacing 4, A’ by homeomorphs, if
necessary, we assume that no two of the spaces 4, 4/, A XI have a
point in common. We form the mapping cylinder, T, of the map f
by identifying (a, 0) €4 XI with @ and (a, 1) with faEA’ for each®
a&EA. The theorem will follow when we have proved that 4 is a de-
formation retract!® of T

Let C=(4 X0)\U(BXI). Then Cis an ANR, as shown in §1. Let
8:: A XI—A XI be the retracting deformation of 4 XI onto A4 X0,
which is given by &(a, £) =(a, t—st) (0=s=1). Then §,CCC and it
follows that C is a deformation retract!® of 4 XI. Let ¢: 4 XI—T be
the map which is given by ¢(a, 0) =a, ¢(a, 1) =fa, ¢(a, t) =(a, t) if
0<t<1. Since fBCB’ and f[ (4 —B) is a homeomorphism onto
A’'—B’ it follows that ¢| (AXI)—(BX1) is a homeomorphism
onto I'—B’. Therefore ¢>| (AXI)—C is a homeomorphism onto
I'—(B'U¢(C). It follows from Lemma 2 that B'\U¢C is a deforma-
tion retract of I'. Since g=f I B is a homotopy equivalence, B is a de-
formation retract® of T',=B’'U¢(BXI), which is the mapping
cylinder of g:B—B’. A homotopy, 7,:T,—T,, such that n,=1,
n,l B =1, 3 I',=B, can be extended throughout B’"\U¢C =B’ U¢p(B XI)
UA by writing n.!A =1. The result is a retracting deformation of
B"\U¢C onto A. Therefore 4 is a deformation retract of B’\U¢C and
hence of T, which proves the theorem.

5. Note on identification spaces.!! Let ¢:P—X be a map of a
space P onto a space X, which has the identification topology de-
termined by ¢. That is to say a subset X(CX is closed (open) if, and
only if, $~1X, is closed (open). A subset PyCP is said to be saturated
(with respect to ¢) if, and only if, Py=¢"'¢Py. Therefore X CX is
closed if, and only if, it is the image under ¢ of a saturated closed set
Py=¢1X,. If P is compact and if X is a Hausdorff space then X
certainly has the identification topology determined by ¢. For in this
case, if PoC P is closed, and hence compact, P, is compact, and hence
closed, whether P, is saturated or not.

Let f: P—Z be a map of P in any space Z.

® The points in 4 and A’ shall retain their individualites in T, so that 4, 4'CT.

19 See [7, Theorems 1.4 and 3.7] and [8].

1 Cf, [9, pp. 61 et seq.] and [10, pp. 52 et seq.]. Concerning the theorem on p. 56
of [10] and Lemma 4 below see the correction at the beginning of [11].
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LeMmMA 3. If X has the identification topology determined by ¢, then
the transformation fo=': X—Z is continuous if it is single-valued.

If pEP, then p E¢~19pp, whence fp Efp—1pp. If fo—1 is single-valued
it follows that fp=f¢—1¢p, or that (f¢p—!)¢ =f. Therefore the lemma
follows from Theorem 1 on p. 53 of [10].

Let X have the identification topology determined by ¢:P—X
and let £: P XI—X XI be given by k(p, t) =(¢p, t) (pEP, 05t<1).
Then it follows from Lemma 4 below that X X I has the identification
topology determined by %. Therefore we have the following corollary
to Lemma 3, with P, X, ¢ and f replaced by PXI, X XI, k and
fiPXI—Z, where f(p, t) =fip.

COROLLARY. If f;: P—Z is a given homotopy in any space, Z, then
Jp i X—2Z is continuous if it is single-valued.

Let :Q—Y be a map of a space, Q, onto a space, ¥, which has
the identification topology determined by ¢ and which satisfies the
following condition. Each point in any saturated open set, VCQ,
is contained in a saturated open set, whose closure is a compact sub-
set of V. This condition is satisfied if, for example, Q and Y are com-
pacta. For in this case, if ¢& V, there is a neighbourhood, WCY, of
¥q, such that WCy¢ V. Then ¢~'W is a saturated open set, whose
(compact) closure is contained in V. In particular the condition is
satisfied if Q=Y =TI and ¢y =1.

Let X, Y have the identification topologies determined by maps
¢:P—X, y:Q—Y, which are onto X and Y, and let Y satisfy the
above condition. Let %: PXQ—X XY be given by k(p, ¢) =(¢p, ¥q)
(pEP, ¢€Q). Then we have:

LEMMA 4. The space X X Y has the identification topology determined
by k.

Let WC P XQ be an open subset, which is saturated with respect to
k, and let (xo, ¥0) be an arbitrary point in AW. Then we have to prove
that there are open sets UCP, VCQ, which are saturated with re-
spect to ¢, ¥ and are such that

(%0, y0) € ¢U X YV C hW.
Let poEd%0, goEY 1y, and let
(Po X Q) N W = po X Qo

Then it is easily verified that Qp is an open subset of Q, which is
saturated with respect to Y. Therefore go is contained in a saturated
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open set, VCQ, such that V is a compact subset of Qy. Let U be the
totality of all points, pE P, such that p XV CW. Then po& U and
UXV CW, whence

(%0, y0) €E ¢U X YV = (U X V) C bW

and the lemma will follow when we have proved that U is a saturated,
open subset of P,

If Xo, Yy are any subsets of X, ¥ we have 2 1(X,X Yy) =¢71X,
Xy~1Y,, whence

¢ U XV C o 9U X ¢V = k(U X V) C bW = W.

Therefore ¢~1¢ U C U, whence ¢~1¢ U = U, that is, U is saturated. Let
p be any point in U. Then p XV CW and since W is open and V is
compact it is easily proved that there is an open set, NCP, such that
pPEN and N XV CW. Therefore NC U. Therefore U is open and the
lemma is established.
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