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evaluated for w = 0; in (30) we make special conventions of the same 
type as those made in connection with (13). 

In connection with Theorem 4, it is of interest to note the 
unexpanded forms corresponding to (20), namely, 

(31) Ym1 = £ s - ^ '-\ — — z-"Fv(w, z) , 
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We prove the following theorem : 

THEOREM. If p is an odd prime, a, j8, and y are integers in the field 
of the.pth roots of unity, «187 is prime to p, and 

ap + pp + yp = 0, 
then p^8,332,403. 

As ordinary integers are integers in the field of the £th roots of 
unity, we infer the following : 

COROLLARY. The equation 

oop + yp + zv = 0 

has no solution in integers prime to p if p is an odd prime less than 
8,332,403. 

To abbreviate statements, we shall say that an odd prime p is 
improper if there are integers a, |8, and 7 in the field of the £th roots 
of unity such that afiy is prime to p and 

ap + @p + yp = 0. 

Then the theorem to be proved can be stated in the form: 

THEOREM. There are no improper odd primes less than 8,332,403. 

The proof is based on a theorem of Morishimaf which, in our 

* Presented to the Society, February 25, 1939. 
t Taro Morishima, Über die Fermatsche Verrnutung, Japanese Journal of Mathe­

matics, vol. 11 (1935), pp. 241-252. Earlier results of a similar nature are due to 
Pollaczek, Frobenius, Vandiver, Mirimanoff, and Wieferich. Compare Dickson's 
History of the Theory of Numbers. 
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terminology, can be stated as follows: 

THEOREM. If p is an improper odd prime, then for each prime m ^ 31, 

ni?-1 = 1 (mod p2). 

Let us say that x is an F number relative to p if 

x*-1 s 1 (mod p2). 

Let g be a primitive root modulo p2. Then the only powers of g which 
are F numbers relative to p are powers whose exponents are multi­
ples of p. Therefore, there are exactly p — 1 residues of p2 which are 
F numbers relative to p. Hence, there are exactly p — 1 integers be­
tween —p2/2 and p2/2 which are F numbers relative to p. However, 
— x is an F number relative to p if x is. This proves the following 
lemma: 

LEMMA 1. There are exactly (p — 1)/2 positive integers less than p2/2 
which are F numbers relative to p. 

Now suppose that p is an improper odd prime. Then, by Mori-
shima's theorem, every prime not greater than 31 is an F number rela­
tive to p. However, the product of two F numbers is an F number. 
Hence, every integer having no prime factors greater than 31 is an F 
number relative to p. Therefore, by Lemma 1, there can be at most 
(p—1)12 positive integers less than p2/2 which have no prime factor 
greater than 31. So if we define (j>n(N) as the number of positive 
integers not greater than N having no prime factor greater than the 
nth. prime, we may state the next lemma: 

LEMMA 2. If p is an improper odd prime, then 

20n(£2/2) g # - 1. 

We seek a lower bound for </>u(x). To this end we prove the following 
statement : 

LEMMA 3. If n}£lf a>l, N^l, then 

Z [log {N/a>)Y > - (log NY + / ^ ' 
8=o 2 (n + 1) log a 

The theorem is obviously independent of the base of the loga­
rithms. However, to simplify later computations, we shall take all 
logarithms to the base 10. 

PROOF. Let w denote [log N/log a]. Let f(x) be the function whose 
graph consists of the series of straight lines joining 
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(0, [log (tf/a*)]») and (1, [log(iV/V)]n), 

(w - 1, [log (N/aw~l)]n) and O , [log (N/aw)]n), 

(w, [log (N/aw)]n) and (w + 1, 0). 

Let g(x) be the step function (log N— [x] log a)n. Then 

to /» w + 1 /» uH-1 x» «j+1 

E [log (#/<.•)]»= I «(*)«**= | (g(*)-/(*))d*+I ƒ(*)<**. 
s=«=0 v 0 ^ 0 • ' O 

For x an integer, ƒ(#) = (log N—x log a)n . As the second derivative of 
(log N—x log a)n is nonnegative, we have that 

f(x) à (log N - x log a)w, 0 ^ x < log iV/log a. 
Therefore, 

to /» to+1 

E [log {N/a°)Y S: («(*) - f(x))dx 
s = 0 • / 0 

ƒi logiV/loga 

(log iV — # log a)nJ# 
0 

-ƒ. 
«+1 (log iV)»*1 

(g(*0 ~ f{oc))dx + o (» + 1) log a 

As the area between ƒ (x) and g(x) is a series of triangles whose bases 
are all unity and whose combined altitude equals (log i\f)w, 

ƒ. 
to+1 

(«(*)-ƒ(*))<**= (log W 2 . 

DEFINITION. Let fn{x) be a polynomial in x defined by the following 
recursion on n: 

x \ Cx 1 
.M*) = -> fn+l(x) = "I My)dy + — ƒ»(*)• 

log 2 log £n+i J o 2 
LEMMA 4. If x ^ 1, /Ae» 0»(*) >/n(log a). 

PROOF BY INDUCTION ON n. If » = 1, put w = [log ff/log 2]. Then 
2°, 21, 22, • • • , 2W are all not greater than x, so that 

cj)i(x) = w + 1 > log #/log 2 = /i(log #). 

Assume that the theorem is true for n. Then <j>n+i(x) is the number 
of integers not greater than x, having no prime factor greater than 
pn+i. These may be counted as follows. First count the ones not di-
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visible by pn+i- There are <t>n(x) of these. Then count the ones divisible 
by pn+i, but not by (pn+i)2. There are c/>n(x/pn+i) of these, and so on. 
Hence, if w = [log x/log pn+i], then 

w w 

<£»+lO) = T,<t>n(x/(pn+l)8) > Z / n ( l 0 g x/(pn+l)
s). 

s*=0 ««=«0 

By Lemma 3 and the definition of/w+i(x), we get 

4>n+iO) > jfn+i(log x). 

By successively computing /i(x), /2(a;), • • • , we computed ƒu(x). 
The result was 

fn(x) = 0.00000005447197741a;11 + 0.000003295918757a;10 

+ 0.00008081950130a;9 + 0.001046349948a;8 

+ 0.007817038320a;7 + 0.03463081936a;6 

+ 0.09016427288a;5 + 0.1322851609a;4 

+ 0.1003412456a;8 + 0.03325580732a;2 

+ 0.003244070402 a;. 

Let Si, 22 , • • • , Sn_i denote the elementary symmetric functions 
of log 3, log 5, log 7, • • • , log pn. 

LEMMA 5. 

1 ( »Si 
fn(x) = < Xn ~\ Xn~l 

J ^!(log2)Sw_1\ ^ 2 

n(n — 1)22 

— — a;--2 + 

+ 

22 

x>. 

PROOF BY INDUCTION ON n. If n = 1, the proof is simple. Suppose the 
lemma true for n. Let 2i*, 22*, • • • , 2)w* denote the elementary sym­
metric functions of log 3, log 5, log 7, • • • , log />n+i. Then 

2i* = Si + log £n+1, 22* = 22 + Si log pn+l, - • • , 

2n*_i = 2n_i + 2n_2 log ^ w + i , 2n* = Sw_i log />n+i. 

From these relations, it readily follows that jfw+i(ff) has the desired 
form. 

The value computed for fu(x) was checked by use of the above ex­
plicit formula. The computations were performed on a ten place ma­
chine, the tenth place being rounded off. This produced unavoidable 
errors in the tenth significant figure. However, the largest discrepancy 
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which occurred between the two computed values of fn(x) was five 
units in the tenth significant figure. This seemed a satisfactory check. 

We now prove the main theorem. Let p be an improper odd prime. 
As 22 = 4 (mod 9), 24 = 16 (mod 25), and 26 = 15 (mod 49), p is not 
3, 5, or 7. So* p^ll and p2/2>60. However, 20n(6O) = 108. So by 
Lemma 2, £ ^ 1 0 9 and £ 2 /2>5940. Therefore by Lemma 4, 
2<f>n(p2/2)>689.18. So £ ^ 6 9 1 and £2 /2>238,740. Similarly, we get 
2<t>n(p2/2)> 6993.24, £ ^ 6 9 9 5 ; 20n(£2 /2) > 67,682.70, £^67,684; 
2</>ii(£2/2)>411,815.08, £^411,817. Now 

d 22(0.4343) 
- (/"dog (*2/2))) < ' /ndog (x2/2)). 
a* a; log (x1/!) 

If x^411,817, then 22(0.4343)/log ( * y 2 ) < l , and so 

— (2/n(log (**/2))) < - 2/u(log (*V2)) • 

Hence,if^>2/n(log(x2 /2))and411,8l7^x<3;,then3;>2/i1(log(3;2 /2)). 
However, for * = 8,332,366, we have 2/u(log(x2/2)) =8,332,366.22. So 
for 411,817^x^8,332,366, 

2/n(log (*2/2)) > x. 

Therefore p-\ >8,332,366 and £^8,332,403. 

CORNELL UNIVERSITY 

* It was shown by Meissner (Sitzungsberichte der Akademie der Wissenschaften, 
Berlin, vol. 35 (1913), pp. 663-667) and Beeger (Messenger of Mathematics, vol. 55 
(1925), pp. 17-26 and Nieuw Archief voor Wiskunde, vol. 20 (1939), pp. 51-54) 
that 1093 and 3511 are the only primes p less than 16,000 such that 2*,~1s=l (mod p2). 
From this, one could quickly conclude that an improper odd prime must be 
greater than 16,000, because the only possibilities below 16,000 are 1093 and 3511, 
and we eliminate these as follows: 37 = 1 + 2 1093, so tha t 31092 = (1 + 2 • 1093)156 

= 1+312-1093 (mod 10932). Hence, 1093 is not improper. If 3511 were improper, we 
would have 35103610 = (2 • 32 • 5 • 13)3510 ̂  1 (mod 35 l l2) by Morishima's theorem. How­
ever, 35103610 = (3511-1)3510 = 1-3510-3511 (mod 35112) = 1+3511 (mod 35112). As 
a matter of interest, it might be noted that one can prove that 33510s 1 + 7 -3511 
(mod 35l l 2 ) . 


