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GENERALIZED CONVEX FUNCTIONS
BY E. F. BECKENBACH

1. Introduction. We shall be concerned in this paper with real
finite functions f(x) defined in an interval ¢ <x <b. A function
f(x) is said to be convex* in (@, b) provided, for an arbitrary
subinterval (x;, x;) interior to (e, b), the curve y=f(x) lies no-
where above the line segment joining its end points; that is, pro-
vided, for arbitrary xi, xs, x, with ¢ <x; <x <x2<b,

f(x) = F12(x) )

where Fi(x) is the function of the form

Flz(x) = aX + [3
satisfying
Fio(%1) = f(xl), Fia(w9) = f(x2).

Several generalizations of the notion of a convex function to
other classes of functions of one variable have found their way
into the literature.f In what follows we discuss the notions
which seem to underlie these classes of functions.

Let F(x; a, B) be a (two-parameter) family of real finite func-
tions defined for a <x<b and satisfying the following condi-
tions:

(1) each F(x; o, B8) is a continuous function of x;

(2) there is a unique member of the family which, at arbi-
trary x;, x2 satisfying ¢ <x1<x2<b, takes on arbitrary values
Y1, Ye.

For example, such a simple F(x; «, 8) as x24+ax -+ is not in-

* J.L.W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs
moyennes, Acta Mathematica, vol. 30 (1906), pp. 175-193.

t See E. Phragmén and E. Lindeldf, Sur une extension d'un principe
classique del'analyse, Acta Mathematica, vol. 31 (1908), pp. 381-406; G. Pélya,
Untersuchungen dber Lilcken und Singularititen von Potenzreihen, Mathe-
matische Zeitschrift, vol. 29 (1929), pp. 549-640; B. Jessen, Uber die Verall-
gemeinerungen des arithmetischen Mittels, Acta Szeged, vol. 5 (1931), pp. 108-
116; G. Valiron, Fonctions convexes et fonctions entiéres, Bulletin de la Société
Mathématique de France, vol. 60 (1932), pp. 278-287.
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cluded in any of the above mentioned generalizations. Other ex-
amples are ax+3; Ax3+ Bx?+oax-+3, where 4 and B are fixed
constants; ae’*+Be**, where p is a fixed constant; and, with
b—a=m/p, asin px+0 cos px. Still another example of the fam-
ily F(x; «, B8) is the set of images of all non-vertical straight lines,
under a one-to-one continuous transformation of the domain
a <x <b of the plane into itself in such a way that every vertical
line is transformed into itself.

Members of the above family shall be denoted simply by
F(x), not F(x; o, B8), individual members being distinguished by
subscripts. In particular, F;;(x) shall denote the member satis-
fying

Fii(x:) = f(x), Fij(xy) = f(%5), (e <a;<w;j <b).

DEeFINITION 1. The function f(x) shall be called a sub-F(x; «, )
Sfunction, or simply a sub-F(x) function, provided

(3) f(x) < Fr(%)
for all x4, xs, x, with @ <x; <x <%, <0.
DEFINITION 2. Super-F(x) functions are defined exactly as are

sub-F(x) functions, excepting that the sign of inequality is re-
versed; the analysis is the same, mutatis mutandis.

2. The Family F(x; a, 8). We shall prove the following theo-
rem.

THEOREM 1. Let a <x0<b, and let F,(x), F.(x) be two mem-
bers of the family satisfying (1) and (2) such that

(4) F,(.’)Co) = Fs(xo) )
(5) Fi(x) # Fo(2), (@ <=z <b);

then F.(x)>F,(x) for all x in (a, b) on one side of x,, while
F.(x) < Fy(x) for all x in (a, b) on the other side of x.

Proor. By (2), (4), and (5), F.(x)# Fs(x), (e <x <), except
at xo; consequently, by (1), on either side of xo, one of F,(x),
F,(x) is greater than the other. Suppose it could be the same one,
say F,(x), which is greater on each side; we shall show this is
impossible.

Let a <x1<x9<x2<b, and consider F:(x), determined by
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F;(:Xh) = F.s(xl)> Ft<x2) = Fr<x2)-

Then Fi(xs:) < Fs(x2), so that Fi(x) < Fs(x), (x¢1<x<b); in par-
ticular,

(6) Fy(%0) < Fy(x0).
Similarly,
(7N F(x0) > F.(%0).

Now (6) and (7) contradict (4), establishing the theorem.

COROLLARY 1. If a <x1<x2<b, and if F.(x1) <Fs(x1), Fr(xs)
< Fy(xs), then F.(x) < Fy(x) for x1=<x=x2; but if F.(x1) <Fs(x1),
F,(x9) > Fi(x2), then F,(x) < Fy(x) for a <x =1, and F,(x) > F,(x)
for xa<x <b.

THEOREM 2. Let the points (X, ¥n), (Xa , ¥n ), (n=0,1,2, - .),
satisfy a <xn, <x, <b, and

lim (xm yn) = (xo, yo)y lim (xn,) yn/) = (xOIa yOI);

n— 0 n—oo

and let F,(x) be determined by

(8) Fu(%) = ya, Fuo(x)) = ya;
then
9) lim F,(x) = Fo(x), (a < x<b),

n—>o0
uniformly in any closed subinterval of a <x <b.

Proor. For a given €>0, and for an arbitrary % in (a, b), with

T#xo, %0 , let the functions Fp(x), - - -, F,(x) be determined
by

(10) Fp(x0) = Fo(0), (11) Fp(8) = Fo(%) + ¢,

(12) Fo(%0) = Fo(0), (13) Fy(&) = Fo(7) — ¢,

(14) Fu(xd) = Fp(xg),  (15) Fi(&) = Fp(%) + e = Fo(%&) + 2,
(16) Fy(xd) = Fyo(=g), (17) Fo(%) = Fy(%) — € = Fo(&) — 2e.
Let & denote the least of the four (minimum) distances from the

curves y = F.(x) and y = F,(x) to the points (x¢, ¥0) and (x4, y¢ ).
It is easily verified, by Theorem 1 and (10)-(17), that 6 >0. Let
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(18) 6*=min(6,|a‘c—£o|,|x—xo'|);

then 6*>0.
Now let #o=n,(%) be so large that

{(xn — %0)2 + (yn — yo)2}”2 < 6%,
{(xd — )2+ (3 — 9{)2}V2 <%, (nZ ).
We shall prove that
(20) | Fa(5) — Fo(#) | < 2, (n Z mo).

Three cases arise, as follows.

(19)

CasiE 1. xo<x<x( . In this case, by (10),(11),and Theorem 1,
Fy(xd) > Fo(xd ); consequently, by (10), (14), (15), and Theorem
1, F,(xo) >Fo(xo), F,(xo’) >F0<xo,). Similarly, Fs(xo) <Fo(x0),
Fy(xd) <Fo(xd). By (1) and (19), then, for z =n,,

Fy(%) < yn = Fu(2,) < Fr(),
Fo(#n) < ya = Fa(@)) <Fy(xd),

whence it follows from Corollary 1 that
(21, A) Fo(x) < Fu(x) < F.(%), (2, < x < %), = np).
In particular,
(22) F (%) < F.(%) < F.(%), (n = ng).
Now (20) follows from (15), (17) and (22).

CASE 2. x¢ <x%<b. The above analysis gives this time

Fy(20) < Fo(x0) < Fo(w0),  Fr(wd) > Folad) > Fa(aq),

and therefore, for # =n,,

Fa(xn) > Yo = Fn(xn) > Fr(xn);
Fs(x,[) < yn, = Fn(xnl) <Fr(xn,))

whence it follows from Corollary 1 that
(21, B)  Fy(®) <Fa(®) <Fu(x), x <x<0b, (n2mn).
In particular, (22), and therefore (20), hold in this case.

CASE 3. ¢ <% <xo. The same analysis gives now
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F,(x0) > Fo(wo) > Fs(%0),  Fr(xd) <Fo(wg) < Fo(wd),
and therefore, for # = n,,
Fo(%n) < yn = Fa(@,) < Fr(n),
Fo(%7) > yd = Fu(d) > Fo(x4),
whence
(21,0) Fo(x) < Fn(x) < F.(%), (a < x < %} 1 = my),

so that again (22) and (20) hold.

For each x in (a, b), except for xo, x¢, (9) follows from (20).
Let x., x{, with x; <x/, be any other two points in (a, b). Then
the sequences

(23) (xt: Fn(xt))) (xtlyF”(xt,))) (n = 1; 2: 37 T ))
satisfy, by the above analysis,
lim (%, Fa(x:)) = (%, F?(xt)),

n—r 0

lim (%, Fa(%!)) = (x{, Fo(x{)).

n—0

(24)

Now since (24) holds, the above analysis can be applied to the
sequences (23), giving (20) this time for Z#x;, £=x/{ , in particu-
lar for £=x9and for £ =x( . Therefore (20) and (9) hold through-
out (a, b).

In each of the above three cases, by (1), there is an interval
#—n <x <x+n, where n=7(x%) >0, in which

Fi(x) >Fi(8) —¢, Fi2) <F{®) +e, |Fo(a) —Fo(8)| <e,
and therefore, by (15), (17), and (21, A, B, C), in which
| Fa(x) — Fo(%) | < 4e,

(@ —9(2) <2 <&+ 9(2);n = n(2)).

The same discussion holds, according to the preceding para-
graph, for intervals about xo, x¢ . Then (25) holds for arbitrary
%, with ¢ <#<b, whence the uniformity of (9) for any closed
subinterval of ¢ <x <b follows from a simple application of the
familiar Heine-Borel Theorem.

(25)

COROLLARY 2. Any subset of the family F(x; , B) is compact,
provided the ordinates are bounded for two distinct abscissas.
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ProoF. One readily sets up sequences satisfying the condi-
tions of Theorem 2.
3. Some Properties of Sub-F(x; a, 8) Functions.

THuEOREM 3. If f(x) s a sub-F(x) function, then for any x1, X2,
with a <xy<x2<b, the inequality f(x) = Fi2(x) holds for a <x <x,
and for x; <x <b.

PRroOF. Fix x3, with x; <x3<b. Since
Fig(%1) = Fia(%1) = f(%1),  Fis(w2) Z Fra(wa) = f(®2),
it follows from Theorem 1 that
f(xs) = F1s(%5) Z F1a(xs).
A similar proof holds for a <x; <.

THEOREM 4. If f(x) is a sub-F(x) function, and if, for some
X1, X2, X3, With a <x; <x3<xg <b,

(26) f(xs) = F1s(xs3) y

then f(x) = Fio(x), (x1=x=19).

Proor. By (2) and (26),

(27 Fiy(x) = Fis(x) = F3a(%);

consequently, by Theorem 3 and (27),

(28) Fia(x) = Fy3(x) £ f(x), (s = 26 <b),
(29) Fio(x) = Fy(x) £ f(%), (¢ < % = x3).

But according to (3),
(30) Fia(%) 2 f(x), (21 = % = wx9).
The theorem follows from inequalities (28), (29), and (30).

THEOREM 5. If f(x) s a sub-F(x) function, and if a <xs = x1 <x»
Sx¢<b, then

(31) F34(%) 2 Fra(%), (%3 = & = x0).
ProoF. By Theorem 3,
F3i(xs) = f(x3) Z F1a(x3), Fyy(x) = f(%4) Z F1a(%4),
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whence, by Theorem 1 and its corollary, (31) follows. Inciden-
tally, by (2) and Theorem 1, the sign of equality in (31) holds
nowhere in x3; Sx < x4, except at most at one of the end points,
unless it holds identically.

THEOREM 6. If f(x) is a sub-F(x) function, then f(x) is continu-
ous.

Proor. We shall show that f(x) is continuous at an arbitrary
X9, with @ <x9<b. Let a <x; <x¢<x2<b. Then, by Definition 1
and Theorem 3, for x; <xo—h <xo+ 7 <xs,

Fio(xo — ) = f(%9 — k) = Foa(xo — £),
FlO(xO + h) = f(xo + h) =< Foo(xo + k)
Let 2—0; the theorem follows from (1).

REMARK. Though a convex function necessarily possesses a de-
rivative almost everywhere, not all sub-F(x) functions possess this
property.

ProoF. Let ¢(x) be a nowhere differentiable function; the
family

F(x;a,8) = ¢(x) + ax + 8

satisfies conditions (1) and (2). Now any particular member of
this family is itself a sub-F(x) function, but is nowhere differ-
entiable.

4. Characterization of Sub-F(x; o, 8) Functions.

THEOREM 7. A necessary and sufficient condition that a con-
tinuous funciton f(x) be a sub-F(x) funciton is that for all x,, with
a<x0<b, and for all § >0, there exist a positive h="h(x,, 8) <8,
with

(32) a<x1=x0—h<x0<xo+h=x2<b,
such that
(33) f(%0) = Fra(wo).

NEecEessITY. If f(x) is a sub-F(x) function, then for all % such
that (32) is satisfied, (33) holds as a special case of (3).
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SuFrFICIENCY. If f(x) is not a sub-F(x) function, then by (3)

there exist x3, x4, %5, With @ <x3 <xs <x,<b, such that

(34) Sf(®s) > Fau(ws).

By (34) and the continuity of f(x) and of F3.(x), there exist
X1, %2, With x3 S x; <xs <xp < x4, such that

(35) f(x) Z Fau(%), (21 = & = w),

the sign of equality holding at the end points but not elsewhere;
then F3,(x)= Fi2(x), so that (35) can be written as

(36) f(%) > F1a(%), (21 < & < &)
Fix xs, with a <x3<x;, and let Fi(x) satisfy
Fi(%s) = Fia(xs),  Fu(xs)= Fra(e)+Ek=Ff(x2)+ k;
in particular,
37 Fo(x) = Fra(x).

Let % increase continuously from k=0; then, for any x >x; in
(a, b), by Theorems 1 and 2, Fi(x) increases continuously. Fur-
ther, it is easy to show, by Theorem 1 and the Heine-Borel
Theorem, that for & sufficiently large,

(38) f(x) < F(x), (1
By (36), (37), and (38), there is some largest ko >0 for which
f(x) = F,(x)
has a solution in x; Sx < x.. Let %7 be the largest value for which
(39) f(x7) = Fy,(%1), (%1 £ 27 £ x9).

Since ky>0, we have x; <x7 <x».

Suppose (33) could be satisfied at x; for the above function
f(x), which is not a sub-F(x) function, and for some arbitrarily
small positive %; we shall obtain a contradiction. Let %, with
a1 <xg=2x7—h <xX71n=2%9 <Xz, be a value for which (33) is satis-
fied:

(40) f(®7) £ Feo(7).
By the choice of k,

IIA

XS %)
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Fyy(ws) = f(ws) < Fi,(ws),
Fso(x9) = f(25) < Fr (),
so that, by Theorem 1 and its corollary,
Fgo(w) < Fy,(x), (ws < x < b);
in particular,
(41) Fgo(x7) < Fr,().
Now (41) contradicts (39) and (40).

THE RICE INSTITUTE

SUFFICIENT CONDITIONS FOR A NON-REGULAR
PROBLEM IN THE CALCULUS OF VARIATIONS*

G. M. EWING

1. Introduction. Given J = [J*f(x,y, y")dx, it is well known that
a minimizing curve satisfies the necessary conditions of Euler,
Weierstrass, and Legendre, which we shall designate as I, II,
and III,7 respectively. If further, f,,(x, ¥, ¥") 0 on the mini-
mizing curve, the Jacobi condition IV is necessary, while the
stronger set of conditions I, II{, III’, and IV'] are sufficient
for a strong relative minimum.

The purpose of this study is to obtain a set of sufficient con-
ditions for a curve without corners along which f,/,» may have
zeros. Since the classical theory gives only the necessary condi-
tions I, II, and III, we wish to obtain a Jacobi condition; and
with this in view, introduce the integral

L= | &%y 5)dx, ¢(z,9,9) = f(x,,9) + B[y — ()],

" (01 £ o < w4, £S0),
by means of which we find a necessary condition that we shall
call IV}. Suitably strengthened, this becomes IVz, and the

set of conditions I, II, III;, and IVy, are found sufficient for
an improper strong relative minimum.

* Presented to the Society, November 27, 1936.
t G. A. Bliss, Calculus of Variations, 1925, pp. 130-132.
t Bliss, loc. cit., pp. 134-135.



