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GENERALIZED CONVEX FUNCTIONS 
BY E. F . BECKENBACH 

1. Introduction, We shall be concerned in this paper with real 
finite f unctions ƒ (x) defined in an interval a<x<b. A function 
fix) is said to be convex* in (&, b) provided, for an arbitrary 
subinterval (xi, #2) interior to (a, b), the curve y—fix) lies no­
where above the line segment joining its end points; that is, pro­
vided, for arbitrary wi th a<Xi<x<X2<b, 

f(x) £ * ! , ( * ) , 

where Fuix) is the function of the form 

Fit(*) = ax + p 

satisfying 

F12O1) = / O i ) , F12ix2) = f(x2). 

Several generalizations of the notion of a convex function to 
other classes of functions of one variable have found their way 
into the literature, f In what follows we discuss the notions 
which seem to underlie these classes of functions. 

Let Fix; a, j8) be a (two-parameter) family of real finite func­
tions defined for a<x<b and satisfying the following condi­
tions : 

(1) each Fix; a, /3) is a continuous function of x; 
(2) there is a unique member of the family which, at arbi­

trary xif X2 satisfying a<Xi<X2<b, takes on arbitrary values 
yu y*> 

For example, such a simple F(x; a, /3) as x2-\-ax+fi is not in-

* J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeur s 
moyennes, Acta Mathematica, vol. 30 (1906), pp. 175-193. 

t See E. Phragmén and E. Lindelof, Sur une extension d'un principe 
classique de Vanalyse, Acta Mathematica, vol. 31 (1908), pp. 381-406; G. Pólya, 
Untersuchungen über Lücken und Singularitdten von Potenzreihen, Mathe­
matische Zeitschrift, vol. 29 (1929), pp. 549-640; B. Jessen, Über die Verall-
gemeinerungen des arithmetischen Mittels, Acta Szeged, vol. 5 (1931), pp. 108-
116; G. Valiron, Fonctions convexes et f onctions entières, Bulletin de la Société 
Mathématique de France, vol. 60 (1932), pp. 278-287. 
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eluded in any of the above mentioned generalizations. Other ex­
amples are ax+j3; Axz+Bx2+ax+f3, where A and B are fixed 
constants; aepx+f3e~px, where p is a fixed constant; and, with 
b — a tS-ir/p, a sin px-\-f3 cos px. Still another example of the fam­
ily F(x; a, /3) is the set of images of all non-vertical straight lines, 
under a one-to-one continuous transformation of the domain 
a <x <b of the plane into itself in such a way that every vertical 
line is transformed into itself. 

Members of the above family shall be denoted simply by 
F(x), not F(x\ a, /3), individual members being distinguished by 
subscripts. In particular, Fi3'(x) shall denote the member satis­
fying 

Fij(xi) = f(xi), Fij{xj) = f(xj), (a < Xi < Xj < b). 

DEFINITION 1. The function ƒ (x) shall be called a sub-F(x;a, 13) 
function, or simply a sub-F(x) function, provided 

(3) ƒ(*) ^ FM 

for all Xi, X2, xf with a<xi<x<x2<b. 

DEFINITION 2. Super-F(x) functions are defined exactly as are 
sub-F(x) functions, excepting that the sign of inequality is re­
versed; the analysis is the same, mutatis mutandis. 

2. The Family F(x; a, 13). We shall prove the following theo­
rem. 

THEOREM 1. Let a<xo<b, and let Fr(x), Fs(x) be two mem­
bers of the family satisfying (1) and (2) such that 

(4) Fr(xo) =F.(*o) , 

(5) Fr(x) ^F8(x)y (a < x <b); 

then Fr(x)>Fs(x) for all x in (a, b) on one side of xo, while 
Fr(x) <Fs(x) for all x in (a, b) on the other side of XQ. 

PROOF. By (2), (4), and (5), Fr(x)^Fs(x), (a<x<b), except 
at x0; consequently, by (1), on either side of x0, one of Fr(x), 
F8(x) is greater than the other. Suppose it could be the same one, 
say Fs(x), which is greater on each side; we shall show this is 
impossible. 

Let a<Xi<x0<X2<b, and consider Ft(x), determined by 
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F*(*i) =Fs(x1)) Ft(x2) = Fr(x2). 

Then Ft(x2)<F8(x2), so that Ft(x)<F8(x), (xi<x<b); in par­
ticular, 

(6) Ft(x0) <F8(x0). 

Similarly, 

(7) Ft(x0) >Fr(xQ). 

Now (6) and (7) contradict (4), establishing the theorem. 

COROLLARY 1. If a<xi<x2<b, and if Fr(x{) <F8(xi), Fr{x2) 
<Fs(x2), then Fr(x) <Fs(x) for Xi^x^x2; but if Fr(xi) <F8(xi), 
Fr(x2) >Fs(x2), then Fr(x) <Fs(x) for a<x^xlf and Fr(x) >Fs(x) 
for x2^x<b. 

THEOREM 2. Let the points (xn} yn), (xn
f, yù ), (n = 0, 1, 2, • • • ), 

satisfy a<xn<Xn <b, and 

lim (xn, yn) = Oo, yo), lim (xn', y I) = (s0 ' , yó), 

and let Fn(x) be determined by 

(8) Fn(xn) = yny Fn(Xrt) = yn ' ; 

//zé?* 

(9) lim Fn(ff) = Fo(x), (a < x < b), 

uniformly in any closed subinterval of a<x<b. 

PROOF. For a given e>0 , and for an arbitrary x in (a, b), with 
x^xo, X^XO , let the functions Fp(x), • • • , F,(^) be determined 
by 

(10) Fp(x„) = Fo(*o), (11) F,(«) = F0(«) + t, 

(12) Fa(x0) =Fo(*o), (13) F,(*) = F0(«) - «, 

(14) Fr(*,') = F,(*0 ' ) , (15) Fr(«) = F,(«) + « = F,(«) + 2e, 

(16) F.(*o') = F,(«o'), (17) F.(«) = F,(«) - e = Fo(«) - 2e. 

Let Ô denote the least of the four (minimum) distances from the 
curves y = Fr(x) and y = F.(x) to the points (#0, yo) and (x0', yo' )• 
It is easily verified, by Theorem 1 and (10)-(17), that 3 > 0 . Let 
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(18) 5* = min (ô, | x — XQ\, \ x — xó | ) ; 

then S*>0. 
Now let no = fto(x) be so large that 

{ ( * » - XoY+hn- J0 ) 2 } 1 / 2 <0*, 

{(*»' - * 0 ' ) 2 + « - ^ ) 2 } 1 / 2 < 5 * , ( » £ » o ) . 

We shall prove that 

(20) | Fn(x) - Fo(x) | < 2€, (» ^ »o). 

Three cases arise, as follows. 

CASE 1. X^<X<XQ . In this case, by (10), (11),and Theorem 1, 
Fp(xo) >F0(xd); consequently, by (10), (14), (15), and Theorem 
1, Fr(xo)>Fo(xo), Fr(xo)>Fo(xd). Similarly, Fs(x0) <F0(x0)y 

ftW)<W). By (1) and (19), then, for n^n0, 

F8(xn) < yn = Fn(xn) < Fr(xn)9 

F8(x:) < y I =Fn(x7!) <F r (*„ ' ) , 

whence it follows from Corollary 1 that 

(21, A) Fs(x) < Fn(x) < Fr(x), (x* < x < sn ' , n ^ n0). 

In particular, 

(22) Fs(x) < Fn(x) < Fr(x), {n ^ n0). 

Now (20) follows from (15), (17) and (22). 

CASE 2. xj <x<b. The above analysis gives this time 

Fr(xo) < Fo(xo) < F9(xo), Fr(xi) > F0(x<!) > Fs(x{), 

and therefore, for n^no, 

Fs(xn) > yn = Fn{xn) > Fr(xn), 

F8(xJl) < y I =Fn{xl) <Fr(xi), 

whence it follows from Corollary 1 that 

(21, B) F9(x) < Fn(x) < Fr(x), xl < x < b, (n ^ nQ). 

In particular, (22), and therefore (20), hold in this case. 

CASE 3. a <x <x0 . The same analysis gives now 
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Fr(x0) > Fo(xo) > F8(x0), Fr(x{) < F0(x<!) < F.(*0 '), 

and therefore, for n^n0j 

F8(xn) < yn = Fn(xn) < Fr(xn), 

F.(*i) > yn =Fn(Xr[) >F f (*„ ' ) , 

whence 

(21, C) F8(x) < Fn(x) < Fr(x), (a < x < xn) n ^ n0), 

so that again (22) and (20) hold. 
For each x in (a, ô), except for XQ, XQ , (9) follows from (20). 

Let xt, x[, with xt <x{, be any other two points in (&, b). Then 
the sequences 

(23) (xt,Fn(xt)), {xl,Fn{xl))> (n = 1, 2, 3, • • • ) , 

satisfy, by the above analysis, 

lim (xt,Fn(xt)) = (xt,Fo(%t)), 
n—>oo > 

(24) 
lim 0 / , J7„(*/ )) = (*/, F0(xt' ) ) . 

Now since (24) holds, the above analysis can be applied to the 
sequences (23), giving (20) this time for x^xt, x = xl, in particu­
lar for x = XQ and for x = x0'. Therefore (20) and (9) hold through­
out (a, &). 

In each of the above three cases, by (1), there is an interval 
x — y)<x<x-\-r), where rj = rj(x) >0 , in which 

F8(x) > F8(x) - €, Fr(x) < Fr(x) + e, | F0(x) - Fo(x) | < e, 

and therefore, by (15), (17), and (21, A, B, C), in which 

\Fn(x) - F o ( * ) | < 4 e , 

(# — Y](X) < x < x + y]{x)) n ^ n0(x)). 

The same discussion holds, according to the preceding para­
graph, for intervals about Xo, Xo • 

Then (25) holds for arbitrary 
xt with a<x<b, whence the uniformity of (9) for any closed 
subinterval of a<x<b follows from a simple application of the 
familiar Heine-Borel Theorem. 

COROLLARY 2. Any subset of the family F(x; ce, /3) is compact, 
provided the ordinates are bounded for two distinct abscissas. 
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PROOF. One readily sets up sequences satisfying the condi­
tions of Theorem 2. 

3. Some Properties of Sub-Fix; a, (3) Functions. 

THEOREM 3. If fix) is a sub-Fix) function, then for any xi, x2, 
with a<Xi<X2<b, the inequality fix) ^ Fn(x) holds f or a<x<xi, 
and for x2<x<b. 

PROOF. Fix #3, with x2<x%<b. Since 

^13(^1) = ^i20i) = f(x\), Fn{x2) è F12O2) = f(x2), 

it follows from Theorem 1 that 

fix*) =Fu(xs) ^Fu(xz). 

A similar proof holds for a <xs <xi. 

THEOREM 4. If f(x) is a sub-Fix) function, and if, for some 
xi, x2, X9, with a<Xi<X3<X2<b, 

(26) f{xz) = F i , ( * , ) , 

then f(x)=Fn(x), (xi^x^x2). 

PROOF. By (2) and (26), 

(27) F12(x) s /? l t (*) =F32(x); 

consequently, by Theorem 3 and (27), 

(28) F12(x) s Flz(x) S f(x), (xz ^ x < b), 

(29) Fi2(x) s F32(x) S f{x), ia < x^ Xz). 

But according to (3), 

(30) Faix) è fix), ixi ^ x ^ «2). 

The theorem follows from inequalities (28), (29), and (30). 

THEOREM 5. If fix) is a sub-Fix) function, and if a < xz ^ x± < x2 

^Xi<b, then 

(31) Fztix) ^ Fuix), ixz g x ^ Xi). 

PROOF. By Theorem 3, 

Fzti%z) = fixz) ^ Fuixs), Fui%i) = fix*) ^ F12ixé), 
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whence, by Theorem 1 and its corollary, (31) follows. Inciden­
tally, by (2) and Theorem 1, the sign of equality in (31) holds 
nowhere in Xs^x^Xt, except at most at one of the end points, 
unless it holds identically. 

THEOREM 6. Iff(x) is a sub-F(x) function, then f (x) is continu­
ous. 

PROOF. We shall show that ƒ (x) is continuous at an arbitrary 
#o, with a<xo<b. Let a<xi<x0<X2<b. Then, by Definition 1 
and Theorem 3, for Xi<Xo — h<Xo+h<X2, 

F10(x0 - h) ^ f(x0 - h) ^ ^02(^0 - A), 

jPio(tfo + h) ^ f(x0 + h) ^ Fozixo + h). 

Let h—>0; the theorem follows from (1). 

REMARK. Though a convex function necessarily possesses a de­
rivative almost everywhere, not all sub-F(x) functions possess this 
property. 

PROOF. Let </>(x) be a nowhere differentiate function; the 
family 

F(x; a, 0) s (t>(x) + ax + p 

satisfies conditions (1) and (2). Now any particular member of 
this family is itself a sub-F(x) function, but is nowhere differ­
e n t i a t e . 

4. Characterization of Sub-F(x; a, /3) Functions. 

THEOREM 7. A necessary and sufficient condition that a con­
tinuous function f {x) be a sub-F(x) function is that for all x0, with 
a<x0<b, and f or all 5>0 , there exist a positive h = h(x0, 8) <8, 
with 

(32) a < Xi = Xo — h < Xo < x0 + h = x2 < b, 

such that 

(33) f(x0) ^F12(xo). 

NECESSITY. If f(x) is a sub-F(x) function, then for all h such 
that (32) is satisfied, (33) holds as a special case of (3). 
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SUFFICIENCY. If f(x) is not a sub-F(x) function, then by (3) 
there exist x3, x4, #5, with a<Xz<x$<Xt<b, such that 

(34) ƒ(*«) >Fu(xs). 

By (34) and the continuity of ƒ(x) and of Fzt(x), there exist 
Xu x2, with #3^#i<#5<#2^#4, such that 

(35) f(x) ^ Fzi(x), to ^ x ^ x2), 

the sign of equality holding at the end points but not elsewhere ; 
then Fu(x) = Fu(x), SO that (35) can be written as 

(36) f(x) > F12(x), (xi < x < x2). 

Fix Xe, with a<x%<xu and let Fk(x) satisfy 

Fk to) = Fn to), Fk to) = Fi* to) + k =ƒ(**) + * î 

in particular, 

(37) Fo(x) s F „ ( * ) . 

Let & increase continuously from k = 0; then, for any x>x& in 
(a, ô), by Theorems 1 and 2, /^(x) increases continuously. Fur­
ther, it is easy to show, by Theorem 1 and the Heine-Borel 
Theorem, that for k sufficiently large, 

(38) f(x) < Fk(x), (xi S x S x2). 

By (36), (37), and (38), there is some largest &0>0 for which 

f(x) = Fko(x) 

has a solution in Xi Sx Sx2. Let x7 be the largest value for which 

(39) f to) = Fkoto), to g x7 g * 2 ) . 

Since feo>0, we have Xi<x7<x2. 
Suppose (33) could be satisfied at x7 for the above function 

f(x)y which is not a sub-F(x) function, and for some arbitrarily 
small positive h; we shall obtain a contradiction. Let h, with 
Xi<xz = x7 — h<x7+h = x9<x2, be a value for which (33) is satis­
fied: 

(40) f(x7) ^Fsvto). 

By the choice of ko, 
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-FSQOS) = f(xs) S Fko(xs), 

^89(^9) = f(x9) <Fko(x9), 

so that, by Theorem 1 and its corollary, 

F 8 9 0) < Fh0(x), (xs < x < b); 

in particular, 

(41) FS9(x7) < FkQ(x7). 

Now (41) contradicts (39) and (40). 

T H E R I C E INSTITUTE 

SUFFICIENT CONDITIONS FOR A NON-REGULAR 
PROBLEM IN T H E CALCULUS OF VARIATIONS* 

G. M. EWING 

1. Introduction. Given J=fxîf(xf y, y')dx, it is well known that 
a minimizing curve satisfies the necessary conditions of Euler, 
Weierstrass, and Legendre, which we shall designate as I, II , 
and I I I , t respectively. If further, ƒy>y'(x, y} y^^O on the mini­
mizing curve, the Jacobi condition IV is necessary, while the 
stronger set of conditions I, IIÖ', I I I ' , and IV'J are sufficient 
for a strong relative minimum. 

The purpose of this study is to obtain a set of sufficient con­
ditions for a curve without corners along which ƒy/y> may have 
zeros. Since the classical theory gives only the necessary condi­
tions I, II , and III , we wish to obtain a Jacobi condition; and 
with this in view, introduce the integral 

<t>(x} y, y')dx, <j>{x, y, yf) s ƒ(*, y9 y') + k2[y' - e'(x)}\ 

(xi ^ x ^ x2, k$0), 

by means of which we find a necessary condition that we shall 
call IV£. Suitably strengthened, this becomes W'u and the 
set of conditions I, II&, III&, and IVz,& are found sufficient for 
an improper strong relative minimum. 

* Presented to the Society, November 27, 1936. 
f G. A. Bliss, Calculus of Variations, 1925, pp. 130-132. 
t Bliss, loc. cit., pp. 134-135. 


