
TOPOLOGICAL PROPERTIES OF DIFFERENTIABLE 
MANIFOLDS* 

BY HASSLER WHITNEY 

I. INTRODUCTION 

1. The Problems In many fields of work one is led to the con
sideration of ^-dimensional spaces. A given dynamical system 
has a certain number of "degrees of freedom" ; thus a rigid body, 
with one point fixed, has three. A line in euclidean space is de
termined by four "parameters." We therefore consider the posi
tions of the rigid body, or the straight lines, as forming a space 
of three, or four, dimensions.f But when we try to determine 
the points of the space by assigning to each a set of three, or 
four, numbers, we are doomed to failure. This is possible for a 
small region of either space, but not for the whole space at once. 
The best we can do is to cover the space with such regions, de
fine a coordinate system in each, and state how the coordinate 
systems are related in any two overlapping regions. They will 
be related in general by means of differentiable, J or analytic, 
transformations, with non-vanishing Jacobian. Any such space 
we shall call a differentiable, or analytic, manifold. 

For a complete study of such spaces, we must know not only 
properties of euclidean w-space En, which we may apply in each 
coordinate system separately, but also properties which arise 
from the manifold being pieced together from a number of such 
systems. It is these latter properties, essentially topological in 
character, which form the subject of the present address. 

Suppose we wish to study differential geometry in the w-di-
mensional manifold Mn. At each point p of Mn, the possible 
differentials (or "tangent" vectors) form an ^-dimensional vec-

* An address delivered before the Society on September 9, 1937, in State 
College, by invitation of the Program Committee. 

f The first space forms the group Gz of rotations in 3-space; it is homeo-
morphic with projective 3-space P3. The second space is homeomorphic with 
the total space (see §2) of the tangent vector space of the projective plane P2, 
or of the 2-sphere S2 if we use oriented lines. This is easily seen by considering 
together all parallel lines. 

Î Differentiable will always mean continuously differentiable. 
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tor space V(p), the so-called tangent space at p. For topological 
considerations, it is sufficient to consider vectors of unit length,* 
or directions, which form a sphere S(p) of dimension n — 1. This 
set of spheres forms the tangent sphere-space of Mn. Most of our 
work will be on the problem, how do the spheres fit together 
over the whole manifold? Suppose Mn is imbedded in a higher 
dimensional manifold Mm (for instance, euclidean Em). Then 
we may consider the normal unit vectors at each point, form
ing an (m — n — 1)-sphere, and thus the normal sphere-space. The 
methods we use in Part II were discovered independently by 
E. Stiefel [ l l ] t a n d myself [15], Here we shall not attempt 
always to describe the most elegant methods, but lean rather 
to the intuitive side. 

In the last part we give some fundamental results, due to 
de Rham,J on the theory of multiple integration in a manifold. 
If we wish to integrate over an ^-dimensional subset, and no 
measure function is given, we integrate "differential forms," in 
other words, "alternating covariant tensors" of order r\ we shall 
call these simply r-îunctions. It is necessary for various pur
poses to find what "exact" r-iunctions exist. This problem, in 
any small region, is rather trivial; again, we must consider the 
whole manifold to answer it. The methods we describe are some
what different from those of de Rham. 

2. Sphere-Spaces. A sphere-space S(K) is defined as follows. 
Let So be the unit j>-sphere§ in E"*1. Let K be a complex. To 
each point p of K let there correspond a v-sphere S(p) ; if p^ q, 
we assume that S(p) and S(q) have no common points. For each 
closed cell <r of K and each point p of <r, let %<r(p) be a ( l - l )map 
of So" into S(p) ; let %a(p, q) be the point into which the point q 
of 5o" goes. If the cells a and crf have the common point p, then 

* As every differentiable manifold may be imbedded in a euclidean space 
(see the bibliography, Whitney [14], Theorem 1), we may define in it a Rieman-
nian metric and thus lengths of vectors, and so on. 

t Numbers in square brackets refer to the bibliography at the end of this 
paper. 

% See [6], [7], and [8]. The main theorem was suggested by E. Cartan, 
Comptes Rendus de l'Académie des Sciences, Paris, vol. 187 (1928), pp. 
196-198. 

§ That is, the set of points ̂ x} =1 in Ev*~*. A 0-sphere is a pair of points, 
a 1-sphere is a circle, and a 2-sphere is a spherical surface. 
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%a{p) and %<r>(p) are both defined. We assume that 

(1) C(P)UP), that is, £\p, UP, q)), 

which is a (1-1) map of So into itself, is orthogonal,* and varies 
continuously with p. We call K the base space, and the set 
©(JST) of all points on all S(p), the total spaced If K were a gen
eral point set, we would replace the cells a by open sets covering 
K. We might replace the S(p) by vector spaces V(p) (in the 
obvious manner for tangent and normal spaces) ; however, the 
topological properties of these are reducible to those of sphere-
spaces. For any sphere-space S(K) and subset L of K, there is 
a corresponding sphere-space 5(L), the part of S(K) over L. We 
shall call the map ÇJp), (p in cr), the o'-coordinate system in ®(<r). 
It determines (for a fixed orientation of So") one of two possible 
orientations of each S(p), (p in a). 

We find invariants which serve to distinguish between sphere-
spaces with the same base space by studying the following ques
tions. First, is it possible to choose, for each p in K, a point 
<j>(p) of S(p), so that <f)(p) is continuous in K? Any such map 
we shall call a projection of K into ®(iT). More generally, is it 
possible to find k projections </>i(p), • • • , <t>k{p) of K into @(1£), 
so that these are orthogonal in each S(p), (lSk^v + 1)? If so, 
we call S(K) k-simple. If S(K) is (J> + 1)-simple, we call it simple. 

For tangent sphere-spaces, the existence of a projection is ob
viously equivalent to the existence of a continuous field of non-
vanishing (tangent) vectors. The only closed orientable surface 
on which there is such a field is the torus.X (If we try, on the 
sphere, making all vectors point north or east for instance, this 
fails at the two poles; see §6.) Note that if we can find one such 
field on an orientable surface, we can at once find a second field 
of orthogonal vectors ; at each point, looking along the first vec
tor, we let the second vector point to the left. It follows that 
the tangent space is simple in this case. 

* It is sufficient to assume that the map is linear. However, this general case 
is easily reducible to that given. Because of the assumption, we may define 
orthogonality on any S(p). 

t For a study of some total spaces, see Hotelling [4], Seifert [9] and [lO], 
Stiefel [ l l ] , andThre l fa l l [12]. 

t For a study of this problem in manifolds, see Hopf [3]; also Alexandroff-
Hopf, Topologie I, pp. 548-552, and Stiefel [ i l ] . 
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Suppose S(K) is simple. Let gi = ( l , 0, • • • , 0), • • • , gy+1 

= (0, 0, • • • , 1) be the unit points of S0
V. Set Ç(p, qi)=<f>i(p), 

(i = l, • • • , v + 1). Then for each p in K, we can define f(/>, q) 
for all other q in So" uniquely so that it is an orthogonal map of 
So" into S(p). Clearly f is (1-1) and continuous. Hence if S(K) 
is simple, then ®(K) is the cartesian product of K and SQ\ 

If the tangent space to Mn is simple, then to each direction 
Ç(Pi q) a t P corresponds a direction f (/>', q), (same q)} at any other 
point p''. Thus a parallelism may be defined throughout Mn if and 
only if the tangent sphere-space is simple. 

Suppose the normal space to Mn in Mm is simple. Then corre
sponding to each normal vector function <t>%{P) we may define a 
function fi{p) in Mm with 4>i(p) as its gradient at p, and vanish
ing in Mn. We may then define Mn as the set of points in Mm at 
which all the ƒ»(£) vanish. Conversely, if it is possible to define 
Mm in this manner, with the gradients of the fi(p) linearly inde
pendent, then the normal space is simple.* 

II . INVARIANTS OF SPHERE-SPACES 

3. Elementary Properties of Complexes.f Let r<9/ be the inci
dence number of the cells a{ and af~l. Define the boundary and 
coboundary of the chain Ar =]Co;*0"*r by 

r ^—\r i r—l r r - ^ r + l i r-f-1 

(2) dA = 2_j d% oii(Tj , dA = 2-j dj <x;<r j . 

Then Ar is a cycle or cocycle if dAr = 0 or 5^4r = 0 ; Ar is homologous 
to Br, Ar~Br, if Ar — Br is a. boundary; similarly, for cohomolo-
gous, for which we use the symbol ^ . If we identify homologous 
r-cycles, we obtain the rth homology group; similarly for the rth 
cohomology group. Define scalar products of r-chains by 

(3) (E <w<r) • Œ /w) = E « A . 

Note that A'-a? is the coefficient of <r/ in ' the chain Ar. As 
derf-erf1 and <r»r- Serf-1 both equal the incidence number r d / , 

* SeeSeifert [10], and Whitney, Annals of Mathematcis, vol. 37 (1936), 
pp. 865-878. 

t For further details, see for instance Whitney, Matrices of integers and 
combinatorial topology, Duke Mathematical Journal, vol. 3 (1937), pp. 35-45, 
and On products in a complex, Annals of Mathematics, vol. 39 (1938). We shall 
refer to these papers as MI and PC respectively. 
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we have, on equating, multiplying by coefficients, and summing, 

(4) dA'-B1-1 = Ar ôBr-K 

We shall use a also for the set of points in the closed cell a, and 
da for its point set boundary. Let Kr be the r-dimensional part 
of K, the sum of all cells of dimensionSr. 

4. Orientability of Sphere-S paces. First note that the part of 
S(K) over K°, S(K°), is simple. We can define ©(X0) as a prod
uct by setting f (a) = %a{a>) for each vertex a. We now ask, under 
what conditions is S(Kl) simple? We attempt to extend f (p) 
through the 1-cells of K. Consider any 1-cell a=ab. S(a) and 
Sib) are given orientations both by f and by £<r. If the orienta
tions given by f are both the same as, or both opposite to, those 

FIG. 1 

given by £„ set Fl(a) = 0; otherwise, Fl(a) = 1. In Fig. 1,* if the 
end point of each vector, say at a. is a '= f ( a , gO, we have 
F^(ab) = Fl(bc) = l, F ( c a ) = 0 . We may say, F^a) is 0 or 1 ac
cording as the orientations given to S(a) and S(b) by f are simi
lar or opposite, when viewed through the (^-coordinate system. 
We define a characteristic 1-cocycle of K by letting Fl{a) be the 
coefficient of a in a chain : 

(5) F1 = y%2P1(<Tl
x)<Ti1 , coefficients integers mod 2. 

* For p in ab, all vectors £ab(P) point up or all point down. 
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To show that F1 is a cocycle, we shall find the coefficient 
ÔFl<T2 = Fld<T2 of OF1 in any 2-cell a2 of K. For each 1-cell ab 
of da2, the similarity or dissimilarity of the orientations given 
to S(a) and S(b) when viewed through the afr-coordinate system 
is clearly the same as when viewed through the <72-coordinate 
system. Say da2 — ab-\-bc-\- • • • +ea. If we compare the orienta
tion of S (a) with that of 5(6), then of S(b) with that of S(c), 
the number of changes of orientation is even, as we come back 
to the original orientation of S(a). Hence Flda2^0 (mod 2), 
as required. 

We might have chosen different coordinate systems over Kl, 
and have thus found a different Fl. To find the change made in 
Fl, suppose the orientation of S(a) is changed,* while that of 
each other S(x) is unaltered. Then for each 1-cell a with a as a 
vertex, Fl(a) is changed from 0 to 1 or from 1 to 0, that is, it is 
increased by 1 (mod 2). Thus the new Fl is the old plus da 
(mod 2). Thus we may change Fl only by coboundaries, and 
the cohomology class hl(Fl) is an invariant of S(K). Clearly if F1 

is a characteristic cocycle, we may obtain any other Ffl^Fl 

by reorienting some of the S (a) for vertices a. 
We call the cohomology class hl = h1(Fl) the characteristic 

1-class of S(K). If it vanishes, we call S(K) orientable, otherwise 
non-orientable. Suppose S(K) is orientable. Then we may re
orient some of the S (a) so that F1==0. For each 1-cell ab, S (a) 
and S(b) now have either both the same or both the opposite 
orientations with the a- and 6-coordinate systems as with the 
#&-coordinate system. In the latter case, change the orientation 
in the aô-coordinate system so that the orientations agree. 
Carrying out the same process in the 2-cells, and so on, we 
have finally chosen all coordinate systems so that for any point 
p of K in two cells a and a'', their two coordinate systems give 
S(p) the same orientation. This justifies the term "orientable." 

To answer our original question, we shall show that if S(K) 
is orientable, and only then, it is simple over Kl. If ^x = 0, choose 
the £a so that JF'1 = 0 and set f (a) = £<*(#). Take any 1-cell ab. By 
hypothesis, 

(6) CMUO) and fal(b)Ub) 

* That is, let il denote a reflection in S0
V, and set ^ ' ( a ) = &»(&)&. Clearly 

F1 is independent of the oV-coordinate systems. 
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are orthogonal transformations of So into itself, that is, points 
\p(a) and \f/(b) of the group Gv+l of orthogonal transformations in 
(> + l)-space. As Fl(ab)^0 (mod 2), \p(a) and yp{b) are in the 
same component of Gv+l (of which there are two), and hence we 
may join them by an arc. Let \f/(p) run along this arc as p runs 
along ab> and set 

(7) Ï(P) = SabipMp) 

in ab. Thus f is defined in ab, and in the same manner, through
out K1. Conversely, if f is defined in Kl, set £a(a) =f (a) for each 
vertex a ; this makes Fl = 0. 

Let A be any 1-cycle (mod 2) of i£; then A- Fl is a numerical 
invariant (mod 2) of S(K). For if we had used F'1 instead of Fl, 
then F'1 -Fl = ÔG0 for some G°, and 

(8) 4 Ffl - A-F1 = A-8G0 = dA G° = 0 (mod 2). 

Any closed path in K defines a 1-cycle A ; the orientation of 
S(K) is "preserved" or "reversed" on going around the path ac
cording as A - Fl = 0 or 1 (mod 2). 

It is easily seen that the tangent space to a manifold is orient-
able if and only if the manifold is orientable ; the orientation of 
S(K) is reversed on going around a path if and only if the orien
tation of the manifold is reversed. For an Mn in an Mm, the 
t-class of the tangent space of Mn plus that of the normal space 
gives that of the part of the tangent space of Mm over Mn 

(mod 2).* For an example, consider a Möbius strip in Ez. 
In the future, unless the contrary is specifically stated, we 

consider only orientable sphere-spaces. 

5. Higher Dimensional Invariants. One can find, for oriented 
sphere-spaces, a characteristic cohomology class hr for 2 ^ r 

*̂> + l, in the same manner as we defined orientability. We 
shall illustrate it with v = l, r = 2; for instance, for the tangent 
space of S2. As S(Kl) is simple, we may define f (p, q) for p in Kl. 
Set <f>(p) =Ç(p, £i) ; this is a projection of Kl into @(i£x). (For a 
general v, we would use v orthogonal projections in Kl.) 

Now take any 2-cell a of K) and consider the coordinate sys
tem i> in ®((T) . As p runs around da, ̂ (p) = %<r(p, qi) runs around 
a curve C = \p(d<j) on the torus ©(dcr) (see Fig. 2). Now consider 

* Compare Seifert-Threlfall, Topologie, pp. 272-276. 
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<f>(p). As p runs around da, it runs around a curve D=(f>(da), 
cutting C in the positive sense (given by the orientation of S(p)) 
say a times; it is equivalent to running around C once, and a 
times around an S(p). Set F2(a) = a , and 

(9) F2 = YlF2(<T?)<r? , coefficients integers. 

This chain is easily seen to be independent of the £<# (the ori
entation of the S(p) is preserved). Just as before, we show that 

F I G . 2 

it is a cocycle, and its cohomology class is an invariant of S(K) ; 
also, we may obtain any F'2^F2. 

For a general v and r, we may always choose v — r+2 orthog
onal projections of Kr~l into (&(Kr~l) ; we then consider these 
maps in @((rr), in relation to £,»-, to determine Fr(ar) and thus Fr. 

Suppose (see Stiefel [ i l ] , §6) we replace the first projection 
<f>i(p) used in defining Fr

y for each p, by the diametrically op-



1937-1 DIFFERENTIABLE MANIFOLDS 793 

posite point of S(p). It turns out that if r is odd, the new Ffr is 
-Fr. But F'r~Fr, hence 2 / ^ 0 , and 2&r = 0. We find the gen
eral theorem : 

For each r,2^r^v + \, there is a characteristic r-class hr, which 
is an invariant of S{K) ; the coefficients used are integers unless 
r<v + \ and r is even, in which case we reduce mod 2. If r is odd, 
2hr = 0; S(K) is (v — r+2)-simple over Kr if and only if hr = 0. 

In regard to hz, see §7. 
For a non-orientable sphere-space, hr is an invariant if we re

duce mod 2 in all cases.* 
As in §4, we can define a numerical invariant Ar- Fr corre

sponding to any cycle Ar. Further, if we do not reduce mod 2, 
then to any cycle Ar (mod JLC), that is, such that dAr=ixBr"1, 
corresponds the invariant (mod /x), Ar-Fr\ for if Ffr is another 
characteristic cocycle, 

(10) Ar-F'r - ArFr = A'-ôG'-1 = »Br-l'Gr-1 = 0 (mod M ) . 

We discuss the possibility of further invariants in Part I I . 

6. Tangent and Normal Sphere-S paces. We shall consider 
(a) the highest dimensional invariant Fv+l for tangent spaces, 
(b) the same tor normal spaces, (c) relations between the spaces, 
and (d) other questions. 

(a) In a closed orientable Mn, there is a "fundamental n-
cycle" Zw, whose multiples give all w-cycles. A single n-cell <rn 

forms a cocycle, whose multiples kan determine all cohomology 
classes. f Any w-chain A n is ^ kan with k = A n • Zn = sum of coeffi
cients of An. Hence, to find the characteristic w-class of S(Mn), 
we need merely find ZnFn. 

Let us do this for the tangent space of the 2-sphere S2. The 
equator E cuts S2 into the hemispheres <TN and <rs- Orient these 
so that 8(TN= —d(Ts=E\ then Z2=<xN+(Ts. To define F2, we must 
choose a projection in K1=E, that is, a point <t>{p) of S(p) for 
each p in E. Let </>(p) be the direction at p pointing south. To 
find F2(<TN), project arN stereographically onto the tangent plane 

* Better, the theorem still holds if we replace chains in K by chains in an 
abstract complex K* obtained as follows. The cells of K* are those of K. Set 
rdif]'— ±rdii (if the latter is ^0) according as the <nr- and o-^-coordinate 
systems determine the same or opposite orientations of S(p) for p in o-y*""1. 

f Compare MI, Appendix I, 
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PN at the north pole N\* then the 4>(P) go into directions <t>f{p) 
pointing away from N. As we run around the projection of E, 
these directions make one complete turn in the same direction, 
that is, in the positive sense as given by &N. Hence F2(<JN) = 1. 
Similarly, projecting onto the tangent plane at 5, we find 
F2(<Ts) = 1. Hence 

(11) Z2-F2 = F2(aN) + F2(as) = 2 ^ 0 . 

It follows that a continuous field of directions on S2 is impossi
ble. 

Similarly, for the ^-sphere Sn, we find Zn- Fn = 2 if n is even 
and = 0 if n is odd.f For any closed Mn (orientable or not), 
Zn-Fn is its Euler-Poincaré characteristic X t By definition of 
the n-class, this equals the "index sum of singularities" of a vec
tor field in Mn. As 2hn = 0 îov n odd, it follows that 2x = 0, X = 0, 
for n odd, as is well known. 

If Mn~ Mz is closed and orientable, then h2 vanishes also, and 
it follows easily that the tangent sphere-space to any closed ori
entable 3-manifold is simple.§ 

(b) Consider first the normal space to a surface (say a Möbius 
strip) in Ez. Let K be a subdivision of the surface. To find Fl

f 

we choose at each vertex a one of the two normals aa''. Suppose 
that for each 1-cell ab, we join the end points a' and b' of the 
respective normals by an arc which lies close to ab (see Fig. 1). 
Then clearly Fl(ab) is the number of intersections (mod 2) of 
afbf with the surface. Thus Fl may be found as follows. Deform 
the 1-dimensional part Kl of K slightly so that the new positions 
af of the vertices a are off the surface; then Fl(ab) is the 
"Kronecker index" (mod 2) of the deformed a'b' with the sur
face. 

More generally, consider an Mn in an Mm with m^2n\ if 
m>n + l, we assume that both are orientable, so that the nor-

* Taking So1 in PN, we may define %<rN as follows. Any direction d at a point 
p of <rN projects into a direction d' in PN, and determines thus a point d* of 
So1; we set s9N(p, d*)=d. 

t It is not known whether or not the tangent space of Sn is simple for all 
odd n. 

% See (for the orientable case) Stiefel [ i l ] , §5, or Alexandroff-Hopf, 
Topologie I, p. 549. The associated complex K* of Mn has a fundamental 
w-cycle even if Mn is non-orientable. 

§ See Stiefel [ i l ] , §5. 
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mal space is orientable. To find a characteristic cocycle Fm~n, 
take a subdivision K of Mn, and deform the (m — n) -dimensional 
part into a new position Kfm~n in Mm so that K,m~n~l does not 
touch Mn. Then Fm-n(am~n) is the Kronecker index (<rm~n-Mn) 
of crm~w with Mn in Afm; the coefficients are integers unless 
tn = n + l. For any chain Am~n, Am~n'Fm~n is the Kronecker 
index (Am~n-Mn), as this is true if Am~n is an (m — w)-cell. 

As an application, suppose Afn is a closed orientable manifold 
in Em. By joining each point of Mn to a fixed point in Em, we 
construct a "singular chain" F n + 1 bounded by Mn (or more 
properly, by the fundamental w-cycle Zn of Mn) . Set s = m — n, 
and 

(12) G*"1 = ( - l ) - £ ( « r r ^ ^ ^ V r 1 . 
ƒ 

Then, by a simple property of Kronecker indices (see for in
stance Lefschetz, Topology, page 169, (20)), 

3 

= ( - l)s(d<Tis-Yn+l) = (<^-J l f») = T ^ - o V , 

and it follows that Fm~n = ôGm-n-%, and hm~n = Q. 
Consider two particular cases. In m = 2n, the normal space is 

1-simple, and it follows that there is a continuous field of nor
mals to any closed orientable Mn in jE2n.* If m = ?z + 2, then the 
2-class vanishes; as the S(p) are 1-dimensional and the normal 
space is orientable, it follows easily that S(Mn) is simple.f 

We remark that any hr may be studied for Mn in Em, 
(tn>n+r), by projecting into En+r.% Further using methods 
in [14], we may construct a closed orientable Af4 in E9 contain
ing an S2 with 5 2 F 2 = 1 (mod 2); thus lower dimensional in
variants may be non-vanishing. 

(c) For an S2 in Ed or in E4, the tangent space has the in
variant 2, while the normal space is simple. With this in mind, 
we shall look only for relations between the invariants of the 
two spaces after reducing mod 2. A complete relation for orien-

* The theorem is probably not true in the generality stated in [14], foot
note 25. 

f See Seifert [lO], Satz 1, and Whitney [15], §8, (d). 
j See Whitney [15], §9. 
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tability was given at the end of §4. For an orientable Mn in an 
orientable Mm, it may be shown that the same statement holds 
for the characteristic 2-classes, after reducing mod 2. This is 
probably not true for the non-orien table case. (Consider a pro
jective plane in £4.) For still higher dimensional invariants, no 
complete results are known. But if the normal or tangent space 
is simple, the duality theorem holds for any dimension.* It fol
lows immediately, by results in (a) and (b), that a closed orient-
able manifold Mn with odd characteristic x cannot be imbedded 
in En+2."\ This is the case, for instance, for the complex projec
tive plane, for which x = 3. 

(d) Consider two sphere-spaces S»(K) and SP(K) with the 
same base space K. There is a unique sphere-space S^+v+l{K), 
their product, in which the first two spaces may be imbedded so 
that for each p in Ky SM(£) and Sp(p) are orthogonal great 
spheres in 5 / i+"+1(^). As an example, for Mn in Afm, the product 
of the tangent and normal spaces gives the part Sm~l(Mn) of the 
tangent space of Mm over Mn. A sphere-space which may be 
expressed as a product is reducible. A simple sphere-space is com
pletely reducible, that is, it is a product of (J> + 1 ) O-sphere-spaces ; 
any even number of these may be taken as non-orientable, the 
rest being simple. A ^-simple sphere-space is the product of k 
simple O-sphere-spaces and another space. See also §9. 

The normal space to a closed orientable Mn in En+l is of 
course simple. But, one may ask, in what manner does this 
space lie in the tangent space of En+l? The outward normal at 
each point p of Mn determines a point yp(p) of the unit sphere 
S0

n in £w + 1 ; thus Mn is mapped by \f/ into 50
n . The degree of \f/ 

is the generalized curvatura intégra of Mn in En+l.% If n is even, 
it is independent of the imbedding of Mn in En+1, and equals 
one half the characteristic of Mn. 

For another problem on the imbedding of one sphere-space 
in another, consider a manifold Mn with a boundary B in a 
manifold Mm. Suppose a vector distribution is given over B; 
can it be extended over ikfn?§ We may also consider sets of vec-

* See Stiefel [ i l ] , §6, No. 2. 
t SeeSeifert [lO], Satz 2. 
t See H. Hopf [2], for various results in the direction noted. 
§ See Morse [5]. 



1937-] DIFFERENTIABLE MANIFOLDS 797 

tors, and so on. Of course, in defining the invariants, we consid
ered exactly this problem, with Mn replaced by a single cell cr. 
The general problem of discussing how one sphere-space lies in 
another is almost untouched. 

I I I . GENERAL PROPERTIES OF SPHERE-SPACES 

7. On the Classification of Sphere-Spaces, We shall now study 
in how far the invariants characterize a sphere-space with a 
given base space. But first we must clear up a matter of defini
tion. We have allowed changes of coordinate systems in a 
sphere-space, considering the space to be unchanged thereby. 
We shall say that two sphere-spaces S(K) and S'(K) with the 
same base space K are equivalent if there is a continuous function 
f(p) in Ky such that, for each p, f{p) is an orthogonal map of 
S{p) into Sf(p). In other words, there is a homeomorphism be
tween <&(K) and &'(K) in which S(p) and S'(p) correspond for 
each p, the homeomorphism being orthogonal there. Then if we 
identify corresponding points of corresponding spheres, one 
sphere-space is obtained from the other merely by changing 
coordinate systems. If S(K) and Sf(K) are both oriented, and 
there is an ƒ(£) which preserves orientations, we call them posi
tively equivalent. 

If K is an open or closed cell, then its cohomology groups 
vanish, so there can be no invariants as above described. But 
also any S{K) is necessarily simple. It will turn out that the in
variants characterize sphere-spaces also whenever v = 0 or 1, and 
whenever dim (K) ^ 3 . 

If Ï> = 0, there is just one type of S(K) for each 1-cohomology 
class of K with coefficients mod 2. Suppose now that v = l and 
S(K) is oriented ; if not, we use the methods in the footnote to 
§5. To show that S(K) is characterized by its 2-class, suppose 
that S'(K) has the same 2-class; we must prove S(K) and S'(K) 
to be positively equivalent, that is, we must find the map ƒ of 
S(K) into S'(K), preserving the orientation of the S(p). We 
first choose projections </>i(p) and <f>i (p) of Kl into ©(i^1) and 
©'(2C1) so as to determine the same F2 = F'2 . As S(K) is oriented, 
we may choose a projection <t>*(p) of Kl into ^>{Kl) orthogonal 
to the first, so that, for each p, the ordered pair <f>i(p), faip) de
termines the positive orientation of S(p). Do the same for Sr(p). 
These projections determine coordinate systems f (p) and f r(p) 
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throughout Kl with f(p, q{) = <f>i(p), (i—l, 2), and similarly for 
f'; set 

(13) f(p) = Ç'(p)rl(p) in KK 

Now take any 2-cell a. For each p in da, set 

(14) HP) = C\p)f(P)Up); 

this maps So1 into S(£), then into S'(p), and then back into So1, 
and is a rotation. Thus \p(p) is a point of the group G2 of rota
tions of So1 into itself; topologically, G2 is a circle. It is easily 
seen that Ff2(a) = F2(a) implies that the degree of \p is 0.* Hence 
we may extend \p throughout a so that it is continuous, and de
fine ƒ there by inverting (14) : 

(15) f(p) =Ü(pMp)lü\p). 

Thus ƒ is extended throughout K2. The boundary of a 3-cell is 
a 2-sphere, and any map of a 2-sphere into a circle G2 may be 
shrunk to a point ;f hence the same process extends ƒ through
out K*, and so on. 

Next take any v, and suppose dim (K) ^ 3 . The above proof 
applies again, with G2 replaced by Gv+l. That ƒ may be extended 
through each az follows from the fact that any map of a 2-sphere 
into any Gv+l may be shrunk to a point. J What has happened 
to the 3-class, which should differentiate further between 
sphere-spaces? The above proof shows that it can play no role. 
In fact, given the 2-class, the sphere-space (over Kz) is com
pletely determined, and hence so is the 3-class.§ 

In the next simplest case, v — 2 and dim (K) — 4, the invariants 
are insufficient. To show this, note that for K = Si, the cohomol-

* Define C and D in @(d<x), using ^ and f, as in §5, and define C' and D' 
similarly. Under / , D goes into Dr, while C goes into C* say. As F (<r) = Ffl(a), 
C cuts D, and hence C* cuts D'', the same algebraic number of times that C' 
cuts D'. Hence C* cuts C' zero times algebraically, \p{p, q\) cuts qi in So1 zero 
times algebraically, and the degree of ^ is 0. 

f See for instance Alexandroflf-Hopf, Topologie I, p. 516, Satz II . 
t This does not seem to have been published yet. It has been proved inde

pendently by E. Cartan, Ch. Ehresmann, and myself. 
§ The exact relation between h2 and hs is as follows. As F2 is a cocycle 

(mod 2), if we choose G2 with integer coefficients so that reducing mod 2 
gives F2, then dG2=*2F3 for some F3; then Fz is a characteristic 3-cocycle. 



1937-1 DIFFERENTIABLE MANIFOLDS 799 

ogy groups of dimensions 1, 2, and 3 all vanish, so that there 
can be no invariants of the above sort. Now let di and (72 be the 
4-cells into which SA is divided by a great 3-sphere r. To define 
abstractly an S(S4), we suppose that coordinate systems ^ and 
£,2 are given, and we shall define the relation between them, that 
is, the orthogonal maps <t>(p)=:^â2

1(P)^<ri(p) of S<? into itself 
(p in T) . We must thus choose a map 0 of the 3-sphere r into the 
group Gz. As the latter is homeomorphic with projective 3-
space, whose covering space is the 3-sphere, these maps may be 
chosen in an infinity of distinct ways, thus defining an infinity 
of non-equivalent sphere-spaces. To define a 4-dimensional in
variant distinguishing between them, we must use, for instance, 
the "homotopy groups" of maps of a 3-sphere into a 2-sphere 
as coefficient group in the 4-chains considered. 

To classify sphere-spaces with v — 2 and dim (K) = 4, more ad
vanced methods must be used.* 

8. An Imbedding Theorem. We shall show that all possible 
sphere-spaces can be generated from certain simple ones. If 
S(K) is a sphere-space and K' is any complex (or point set), 
then each continuous map <j> of K' into K generates a sphere-
space Sr(Kf) as follows. For each p' in K', let $r(p') be the 
sphere S(0(/>'))-

The spaces S\y> fx] of great v-spheres in the fx-sphere S'o1*f form a 
set of universal sphere-spaces] any S"(K) may be generated by 
mapping K suitably into the base space of S[v, ju], with 
JJL = *>+dim (K).t We shall illustrate the proof for v — 1. For each 
vertex a of Ky let <j>(a) be an arbitrary point of the base space of 
S[l9 JU]. Let f (a) be an orthogonal map of S (a) into the corre-

* Such methods have been found, but the classification has not been car
ried through. Similar methods were used in classifying the maps of a 3-complex 
into a 2-sphere; see Whitney, this Bulletin, vol. 42 (1936), p. 33S. 

t Note that the space S[lf 2] of (non-oriented) great circles on 50
2 is 

equivalent to the tangent space of P2; the points on each circle give the direc
tions from one of the corresponding poles. The base spaces of the S[v, /x] 
have been studied recently by C. Ehresmann, Journal de Mathématiques Pures 
et Appliquées, vol. 16 (1937), pp. 69-100. If we consider only oriented sphere-
spaces, we may use the space of oriented great ^-spheres in So. 

% If K is a compact metric space of finite dimension, we may easily prove 
the theorem by imbedding K in some E2, defining a sphere-space with an open 
set in E2 containing the image of K for base space, and applying the theorem 
to this space. 
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sponding sphere S(<j>(a)). We next extend cj> and ƒ over any 1-cell 
ab of K. If we define ƒ(p, qx) and f(p, q2) for p in ab so that they 
are orthogonal points of 50

M for each p, and attach to the given 
values at a and &, then there is a unique orthogonal map f(p) of 
S(p) into a great circle of So1" which takes on the values already 
given; this defines cj>{p) also. 

We may let f(p, qi) run along any curve on S0
M from/(a, qi) to 

f (by qi) as p runs along ab. Now for each p in a£, there is a great 
(/* —T)-sphere Sti~1(p) of points on S0

M orthogonal to ƒ(/>•, <?i) ; 
f(p, q2) must lie on this sphere. These spheres form a sphere-
space Sfi~l(ab)f which is simple, as ab is a 1-cell (see §7). With 
the help of a coordinate system f (p, q) in it, it is easy to join 
f (a y q2) tof(py q2) by the required arc, as fx — 1 ^ 1. The extension 
of ƒ through cells of higher dimension is carried out in the same 
manner. 

9. On Simple Sphere-Spaces. If S(K) is simple, it can be ex
pressed as a product KXS0

Py that is, a coordinate system f (p, q) 
may be defined for all p in K. In how many ways may we do 
this, preserving the orientation of the S(p) ? To answer this, let 
f o be a fixed coordinate system. Then any other one, f, deter
mines a rotation <j>(p) = Ç~l(p)Ço(p) of So"; there is thus defined 
a continuous map cj> oî K into G"+1. Conversely, any <j> deter
mines a new coordinate system f from the given one f o. Thus 
^ e expressions of S(K) as a product, preserving orientation, co/re-
spond to the maps of K into the group Gp+l of rotations in (v + 1)-
space. 

Fof an example, take v — \y K a circle; ©(ÜT) is a torus. G2 

is a circle, and there are an infinity of non-homotopic maps and 
corresponding coordinate systems. For v = 1 and any Ky the es
sentially distinct expressions of S(K) as a product correspond to 
the elements of the 1-dimensional cohomology group of K with 
integer coefficients. 

I V . ^-FUNCTIONS IN A DIFFERENTIABLE MANIFOLD 

10. An Imbedding Problem] Vector Functions. We begin by 
considering the problem of imbedding a differentiate mani
fold Mn in euclidean space. Suppose ƒ is a (continuously) dif
ferentiable map of Mn into Em. Then f(p) has m coordinates 
fi(P) y ' ' ' ifm(p), and if we use a coordinate system (xi, • • • , xn) 
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in a region of Mn, each fj(p) =fj(xh • • • , xn) is differenti
a t e . The ith contravariant coordinate vector at p is 
mapped into a contravariant vector in Em with components 
dfi/dxi, • • • , dfm/dxi. If these ^ vectors, ( i = l , • • • , »), are 
independent, then clearly a neighborhood of £ goes into Em in 
a (1-1) way. If this holds for each p in Mn, we call the map 
regular. It is regular at p if the matrix 

ith row = map of ith coordinate vector, 

yth column = gradient V/y of ƒ/, 

is of rank n. The j th gradient V//, a covariant vector in Mn, 
may be considered as the "dual map" into Mn of the jth. co-
variant coordinate vector of Em. A regular map is always possible 
if m^2n (see [14], Theorem 3). To study the question for 
m<2nf perhaps the best method is to look for m covariant 
vector functions in Mn such that (a) they are gradients, and 
(b) at each point of Mn, n of them are independent.* 

We are thus led to the problem, when is a given (covariant) 
vector function v a gradient? As is well known, v is a gradient 
if and only if its integral Jc

v ~ fcïlvdxi around every closed 
curve C in Mn vanishes. Now let us ask, when is a vector func
tion such that integrating around any curve gives the same re
sult as integrating around any sufficiently nearby curve? The 
answer is, if and only if the integral around any sufficiently 
small curve is 0; or, the function is exact, that is, all numbers 
Wij = dvi/dxj — dvj/dxi in any coordinate system in Mn vanish. 
In any simply connected region, a vector function is a gradient 
if and only if it is exact; but this does not hold in general over 
the whole manifold. For the relation of these functions to chains 
in a subdivision of the manifold, and generalization to higher 
dimensions, see the next section. 

For a thorough study of gradients Vf and their singularities 

* If we use [l4], Theorem 4, we need not distinguish between contra vari
ant and covariant vectors. 

dx\ dxi 

0L.. ?h 
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(critical points of/) , we refer to the work of Morse and others,* 
Almost no study has been made yet of sets of gradients.f 

11. r-Functions in a Manifold.\ By an r-function in a differ-
entiable manifold Mn we shall mean a differentiate § alternating 
covariant tensor a of order r. We may find the integral Jaa of a 
over an r-cell <r; then we define the integral over an r-chain by 

(16) f a = X>> f a. 

Corresponding to any r-îunction a there is a derived (r + ^-func
tion a; a is exact iî a ' = 0. A 0-f unction is a scalar f unction ; as its 
derived is its gradient, it is exact if and only if it is a constant 
(at least if Mn is connected). For a vector function, that is, a 
1-function, with components ut-, the derived has the components 
Wij as given above. The function a is derived if it is the derived 
of an (r —1)-function j8. As ( a / ) , = : 0 , any derived function is 
exact. By Stokes's theorem, for any r-function a and any (r-\-1)-
chain ^4, 

(17) f « = f «'; 
for this holds for any ar. This corresponds to (4). 

Take any subdivision K of Mn. To each r-iunction a corre
sponds an r-chain, with real numbers for coefficients, defined by 

(18) <Ka;0Or= I «, *(«)== E *(«; *-/Kr; 

then fAa-A -0(a). By (7) and (4), for any <r = o,r+1, 

<j)(a') - a = I a ' = I a = cj)(a) • da = 00(a ) -c r , 
*/ o* •/ da-

and hence, as an equivalent of Stokes's theorem, 

(19) 0(a') = 50(a). 

* See for instance M. Morse, The Calculus of Variations, Ch. VI. 
t See A. E. Pitcher, this Bulletin, vol. 43 (1937), p. 167. 
t Compare de Rham [ó], [7], and [8], and, for non-continuous functions 

with general coefficient groups, J. W. Alexander, Proceedings of the National 
Academy of Sciences, vol. 21 (1935), pp. 511-512. 

§ The theory holds if we use tensors with continuous partial derivatives of 
order k, that is, of class Ck, the derived tensors being of class Ck~l. 
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From this formula it is apparent that if a is exact, then <j>(a) is 
a cocycle, and if fi=a' is derived, then </>(/?) is a coboundary. 

We shall need an existence lemma: If a is an exact r-function, 
and B is an (r — 1) -chain such that ôB=cf>(a), then there is an 
(r—I)-function /3 such that </>($) =23 and fi' =a. We define /3 over 
K cell by cell, using an extended form of a lemma of de Rham* 
and a theorem on the extension of differentiable functions.f 
From this we deduce two facts: (a) If a is exact and cj>(a) is a 
coboundary, then a is derived. For B exists, (b) For any cocycle 
B there exists an exact function fi with 0(/3) —B. For we may 
use a = 0. 

We now prove the fundamental theorem : If we identify any 
two exact r-functions whose difference is derived, we obtain the rth 
cohomology group of K with real coefficients. We map each class 
of exact functions a into the cohomology class of <f>(a) ; this is 
easily seen to be a well defined homeomorphism. That it is ac
tually an isomorphism follows at once from (a) and (b) above. 

Each cocycle A may be considered as a linear function L 
defined on cycles, with L(dB)=0, if we set L{B)=AB. The 
group described is isomorphic with the set of all such functions. 
Hence, if G, • • • , Cp form a maximal set of independent 
cycles (p is the rth Betti number of the manifold), the integrals 
f%. may be chosen arbitrarily, a being determined up to de
rived functions. These integrals are called the periods of a. 

12. On Products of Functions.t Given an r-îunction a and an 
^-function fi, we define as usual their (alternating) product, giv
ing an (r+s)-function a/3. We recall that 

(20) (apy = a'0+ ( - l)'aj8\ 

Also, chains of dimensions r and 5 may be multiplied, giving a 
chain of dimension r+s; if certain simple conditions are satis
fied, including 

(21) ô(Au B) = ôAu B + ( - îyAuÔB, 

* See de Rham [ô], §21, L ,emma I I ; we do not need his Lemma III in our 
method of proof. 

t Whitney, Transactions of this Society, vol. 36 (1934), pp. 63-89, Lemma 
2. 

J Compare de Rham [ó], §27, and [7]. The proof below clearly holds for 
both orientable and non-orientable manifolds. 
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then there is a uniquely defined corresponding product in the 
cohomology groups.* We wish to show that these products cor
respond. 

First, it is possible to construct f an r-iunction œ(ar) corre
sponding to each r-cell ar (for all r), such that co((7r) vanishes 
outside the star of ar, and setting co(]T/^cr/) =^a t<o(o ,ir), we 
have 

(22) co'(A) = co(&4), *(co(i4)) = A, (all A). 

Also, if I is the sum of the vertices of K, then co(7) = 1. 
Now to each r-chain A and s-chain B we construct a corre

sponding (r+s)-chain 

(23) Au B = <l>[a(A)a(B)]. 

Applying (19) and (20), we derive (21). Also 7 u B=*B. Noting 
also a certain local condition, we see that it follows that the 
product thus defined has the required properties. We now prove 
easily in turn: (a) If a is exact, then so is co(<£(a)), and 
<j>[a — oo(<l>(a))] =0 , so that a — co($(a)) is derived. (Use (a) of 
§11.) (b) If j3 is exact also, then a(3 — co(0(a))/5, and also 
a/?-w(0(a))w(0(j8)), are derived. (Use (20).) Finally, 

(24) 0(o0) - 0 [«(*(a))û>fo(|8)) ] = 4>M u *(0). 

Hence the products of f unctions and the products of cocycles de
termine the same products in the cohomology groups. 
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