
1935-1 SCHLICHT FUNCTIONS 535 

T H E BLOCH CONSTANT 21 FOR A 
SCHLICHT FUNCTION* 

BY R. M. ROBINSON 

The following theoremf is due to Bloch. 

There is an absolute positive constant P with the following prop­
erty. Letf(x) be regular f or \x\ < 1 , / ' ( 0 ) = 1. Then y=*f(x) maps 
the circle \x\ < 1 on a region (in a Riemann surface over the y 
plane) containing a circle of radius P in a single sheet. 

(Without the condition /'(O) = 1 there is a circle of radius 
P | / ' ( 0 ) | . ) 

Landau J defines three absolute constants connected with this 
theorem. $8 is the upper bound of the P which satisfy the theo­
rem as stated. £ is the upper bound of the P if we require only 
that there be a circle of radius P in the y plane each point of 
which is covered by some sheet of the map. 21 is the correspond­
ing bound if f(x) is given as schlicht (that is, f(x\) ^fix^) for 
X I T 2 ^ , so that the map has only one sheet). 

We have clearly 33^ S^2t. The chief object of the paper by 
Landau is to give as close lower and upper bounds as possible for 
these three constants. He proves 0.39 <33 <0.56, 0.43 < 2 <0.56, 
and 21 > 0.56 (so that 2 <2I). However, as an upper bound for 21 
he obtains no new result, but mentions a result of Szegö 
2l^7r/4, as the best result which he knows. This follows from 
consideration of the function 

1 1 + x 
y = — log = * + • • • , 

2 1 — x 
which maps the circle | x\ < 1 on the strip | $jy\ < x / 4 . 

A better bound than 7r/4 can be obtained by mapping | x\ < 1 
on as simple a region as a circle slit along a radius from the center 
to the circumference (Theorem 1). Still better bounds may be 

* Presented to the Society, October 27,1934. 
t For a proof and further references, see a paper by Landau, Über die 

Blochsche Konstante una zwei verwandte Weltkonstanten, Mathematische Zeit-
schrift, vol. 30 (1929), pp. 608-634. 

% Loc. cit. 
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obtained by using several slits extending along radii part way 
to the center (Theorems 2 ,3 ,4 ) . Using this method I shall show 
2t<0.66. 

LEMMA 1. If 

Kx) = — ~> (\*\ < 1), 
\1 x) 

and K is the inverse function, and we put 

4r 
P = PW = / I , M' (0<r< 1), 

(1 + r)2 

then z — K(pk(x)) maps the circle \x\ < 1 on the circle \z\ < 1 slit 
from —I to —r. 

PROOF. This is an immediate consequence of the fact that 
k{x) maps the circle \x\ < 1 on a plane cut from —1/4 to —• <x> .* 

THEOREM 1. An upper bound for 21 is given by the formula 

3 + 2(2)^2 

21 S ( < 0.729). 
8 

PROOF. If we combine the transformations 

z = K(pk(x)) = p% + • • • , y - - ^ 4 = r + (1 - r*)z + • • • , 
rz + 1 

we have a transformation y =ƒ(#) which maps the circle | x\ < 1 
on the circle j y\ < 1 slit from — 1 to 0. We have 

4r(l - r) 
ƒ (0) = p(X - r*) = - — 

1 + r 

We choose r so that ƒ'(0) is a maximum; 

r = (2)1'2 - 1, /'(O) == 4((2)1 '2 - l ) 2 . 

Since the map contains no circle of radius greater than 1/2, we 
have 

1 3 + 2(2)^2 

21/(0) S — > 2t ^ — 
2 8 

* See Landau's book, Darstellung und Begriindung einiger neuerer Ergeb-
nisse der Funktionentheorie, 1929, pp. 112-113. 
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LEMMA 2. If a function F(x), regular for \x\ < 1 and such that 
F(0) = 0, maps the circle \x\ < 1 on a plane region R, then F(xn) 
maps \x\ < 1 on n copies of R connected by a branch point at the 
origin, so that [F(xn)]lln maps \x\ < 1 on a plane region which 
is n-fold symmetric with respect to the origin. 

This known result is so evident as to require no proof. 

THEOREM 2. An upper bound for 2Ï is given by the formula 

3 
21 g _ ( 6 ) i / « ( < 0.682). 

8 

PROOF. In Lemma 2, put F(x)=K(pk(x)) and n = 3. This 
leads to the result tha t y=f(x) = [K(pk(xz)) ] 1 / 3 maps the circle 
\x\ < 1 on the circle | y\ < 1 with three cuts along equally spaced 
radii to within a distance (r)lfz of the origin. For this,function 
f'(0) = (p)in. If we choose r = l / 8 , then the three cuts extend 
half way to the origin (Fig. 1). The largest circles that can be 

FIG. 1. 

drawn in the map are of radius 1/2, there being four of this size. 
Hence 

2^)1/3 ^ _ ; g g _ ( 6 ) l / » . 
2 8 

LEMMA 3. If 

Pi = Pfa), p2 = p(r2), (0 < n < 1, 0 < r2 < 1), 

and p is determined from the relation 

1 _ 1 1 

ppi pi pi 
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then the f unction F{x) = K(pik( — K(pk(x)))) maps \x\ < 1 on a 
unit circle cut from — 1 to —r\ and from 1 to r%. For this f unction 

1 

no) 
l / i i \ 

= — [n + — + r2 + — ). 
4 \ rx rj 

PROOF. K(pk(x)) maps \x\ < 1 on a unit circle cut from —1 
to — r. For —K(pk(x)) the cut is from 1 to r. Proceeding to F(x) 
inserts a second cut from —1 to — r\ as required, but distorts 
the first cut. The symmetry of the figure with respect to the real 
axis shows that the cut will still lie along the real axis. Its end 
point r is taken to K(pik(r)), which is equal to r2l as required, if 
pik(r) =k(r2). Since 

k(r) \p(r) 
this becomes 

(r) \p(r) J' 

— 4 ( - - A = 4 ( - - l Y = _ + _ - ! . 
Pi \P / \p2 / PP\ Pi Pi 

Since | F'(0)\ =ppi, this gives the last statement of the lemma 
if we put in the values of pi and p%. 

F I G . 2. 

THEOREM 3. An upper bound for 31 is given by the formula 

(1 + v2Y(l + v - Î>2) 
2P <: -̂  - — for (2)1'2 - l g K l . 

_ 16D 2 (1 + z>)3(l - v) 

Putting v = 0.55, we find 31 <0.666. 
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PROOF. We shall map the circle | x | < 1 on a unit circle with 
cuts from 1 to u, — 1 to — w, i to vi, —i to — vi (Fig. 2). The 
quantities u, v are to be so related that each of the four circles 
tangent to the real axis at ± « , and tangent to the unit circle, 
shall pass through one of the points ± vi. Let the radius of these 
circles be p. Then 

u2 + p2 = (1 - p)2, u2 + (v - p)2 = p2, 

from which we find 

v(l — v) 1 + v2 

./2 = 

1 + » 2(1 + ») 
If z;^ (2)1/2 — 1, the maximum circles in the map are six of radius 
p, the four mentioned, and two through ±u and one of the 
points ±vi. (For z/ = ( 2 ) 1 / 2 - l , */ = ( 2 ) 1 / 2 - l and four of the 
circles are tangent to both axes, the other two coinciding at the 
center.) Hence if f(x) is the mapping function, 311 ƒ'(0) | g p. To 
accomplish the mapping, we first map \x\ < 1 on a unit circle 
with cuts from —1 to — v2 and from 1 to u2 by the function 
F(x) of Lemma 3 (putting ri = v2, r2 = w2). For this function 

1 1 / 1 1 \ (1 + ,2)2(1 + v - v2) 

| F'(0) | 4 \ v2 u2) 4z;2(l + v)(l - v) 

We then put f(x) = [F(x2)]1/2 for the final mapping function. 
Since | / ( 0 ) | 2 = | F'(0) | , we have 

si21 n o ) | ^ p2, 

which gives the theorem. 

THEOREM 4. An upper bound for 21 is given by the formula 

W <-(- + -) 
where a = l + (b2 + 2b + 2)l>2,b=[2(3)1'2--3]li2.Hencen<0.658. 

PROOF. We shall map on a region constructed as follows. 
Start with a circle of radius 2p about the origin, with three cuts 
half way to the center (the dotted circle in Fig. 3). I t contains 
four circles of radius p, as in Fig. 1. The three cuts are extended 
outward, and three more cuts are drawn outward from the cir-
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cumference. Six circles of radius p are then pushed as far as pos­
sible toward the center in the six sections. Consider, for example, 
the circle in the upper left section. We may slide it along the real 
axis toward the origin until it strikes the point — p + (3)1/2pi, the 
end of one of the cuts. Its center then reaches the position 

F I G . 3. 

- ( 6 + l ) p + p i , at a distance p(b2 + 2b + 2)112 from the origin. A 
circle of radius ap will then include the six circles. We choose 
p = l/a, so that the latter circle is the unit circle. We thus are 
to map on a unit circle with three cuts extending to within a 
distance I/a and three extending to within a distance 2/a from 
the origin. This is accomplished by taking the F(x) of Lemma 3 
with ri = l/az, r2 = 8/a3 and then putting y~f{x) = [F(xz)]llz. 
Now 

1 1 / 1 1 \ 9 / 1 az\ 

Since |/'(O) | 3 = | F'(0) | and the map contains no circle of radius 
greater than p = 1/a, we have 

a | / ( o ) | ^ l , a » | F ' ( o ) | ^ , 

which gives the theorem. 
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