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ON A GENERALIZATION OF THE
WILSON-GLAISHER THEOREM

BY GIOVANNI RICCI

1. Introduction. J. W. L. Glaisher* has shown that, if #» be any
number, p any odd prime not exceeding %, k the integral part of
the quotient #/p, and if 4, denote the sum of the products of the
first »—1 consecutive integers taken 7 together, then

Ap1+ k=0 (mod p).

This theorem contains Wilson’s theorem as the special case
n =2, and it has been extended by R. E. Moritzt in the follow-
ing form. If n=%kp+gq, p an odd prime, 0=g<p, and if 4,
denote the sum of the products of any #—1 consecutive num-
bers,m+1, m+2, - - -, m+n—1 taken 7 together; if 0 <g<p,
then "4 ,_;+k=0, (mod p). If ¢=0, then "4 ,_;+k=0, or =1,
(mod ), according as m is, or is not, a multiple of p.

It is the purpose of the present paper to show that the Wil-
son-Glaisher theorem, the Moritz theorem, and other theorems
are special cases of a still more general theorem relating to the
symmetric functions of special systems of numbers, these sys-
tems being composed of the residues of powers, eventually re-
peated, for different moduli.

2. The Generalized Theorem. We shall prove the following
general theorem.

Letm=p2gf - - - v, (p,q, - -+, roddprimes, p<g< - -<7;
a=1,8=1, - - . ,v=1), be an odd number and let p, o, - - -, x
be any divisors respectively of ¢(p2), ¢(¢?), - - -, #(»7), where

¢(n) denotes Euler’s Indicator; we shall write p =p*A (\ divisor

* J. W. L. Glaisher, Congruences relating to the sums of products of the first
n numbers and to other sums of products, Quarterly Journal of Mathematics,
vol. 31 (1900), pp. 1-35; see p. 23. See also L. E. Dickson, History of the Theory
of Numbers, vol. I, p. 99.

1t R. E. Moritz, On an extension of Glaisher's gemeralization of Wilson's
theorem, T6hoku Mathematical Journal, vol. 28 (1927), p. 198-201.
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of p—1), e=¢"u (u divisor of g—1), - - -, x =rv (v divisor of
7’—1>.Let (uﬁ’uli tt ,up—1>,(v0,7)1, v yvp—l)y t y(wﬁywly Y
w,—1) be the complete root systems respectively of the congru-
ences

w =1 (mod p%); =1 (modgf); ---; w*=1 (modr).
Consider the r=po - - - x numbers
by by v vy b

two by two incongruent (mod m), represented by the form

Aug+ Bo, + - - - + Cuy,

0=d=p—1,0fes0—1,---,0=f=sx—1),
in which 4, B, - - -, C denote auxiliary integers satisfying the
congruences
A =1 (mod p%); B =1(mod ¢¢); ---; C =1 (mod r7);
m m m
AE()(mOd——); BE()(mOd—); e CEO<mod—>.
p* q° rv
Consider the k7 integers ¢; 4, (j=1,2, - - ,7;2=1,2, - - - , k),

k by k congruent (mod m), precisely,

(1) =t (modm), @G=1,2,---,%k), j=1,2,---,7
and % other arbitrary integers

(2) 21, 82, * ¢, Bhy (hZ0).

If R.(m; p, o, + - -, x”k, k) denotes the sum of the products of
integers (1) and (2) taken st together, (Ro=1), then from any one
of the inequalities

A< NELZpy - <y

there follows the corresponding congruence
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= (__ 1)31()\—1)/)\ (mOd Pa),

= (— 1)s7w—D/u mod ¢f),
(A) Ra(m;p, 0, -+, X”k: k) ( ) ST ( &

kT

= (— 1)s7e-D/ y (mod 7).
sT
V)

In the special case s=k, h <\, h<u, - - -, h <y, if the integers

kr kt kr
_()\ - 1)7 _(:u - 1), oty —<V - 1)
A " v

are all even or all odd, we have the congruence
Ry.(m;p, 0, - -, x”k, h) = + 1 (mod m).

3. Special Cases. We observe that the ¢ (m) integers (mod m),
prime to m, are characterized by their satisfying the congruences

$#® =1 (mod p?); #@ = 1(modg¢f); ---; #0" =1 (modr).

Therefore we may express Wilson’s classic theorem and its
generalizations by means of the forms

Rpa(p;p — 1]|1,0) = — 1 (modp) (WiLsoN)*

R¢(pa>(1’°‘5¢@°’)”1’0) =~ 1(mod p“)} (Gauss)t
Ry (m;8(5%), 6(¢), - - -, 6(r")||1,0) =1 (mod m) G ’
Rps(p; p — 1|k, B) = —E(modp) Niowiest

* See L. E. Dickson, op. cit., p. 62.
t See L. E. Dickson, op. cit., p. 65.
{ See L. E. Dickson, op. cit., p. 99; and R. E. Moritz, loc. cit.
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kr
=
E(_l)sr/(p—l) ST (mOd Pa)’

kr
Rs‘r(m; ¢(Pa)7 ¢(qﬂ)’ ) ¢(7’7)”k, 0) E('— 1)”/((1_1)(Q;1\ (mOd qﬂ):
(r = ¢(m) = 6(p%) - - - (r)) 7 ),
(M. BAUER)*

.............

r
=(—1)sr/-D . (mod r7).

r—1
For the w-ic residues (mod p°),

o (%)

Ry oll1, 0) = (= Dt (mod )5 p = o=t

And also

T

(3) Ra(m;p,a,- -+, XHI: 0) = (— 1)50‘_1)<~;‘~>’ (mod p%), (Riccr).t

N

4. PrOOF. Let R, (m; p, 0, - - -, x”l, 0) denote the sum of the
products of the 7 numbers #,;, (j=1, 2, - - -, 1), of the system
(1) taken n; together, and let R,/ be the sum of the products of
the 2 numbers 2y, 22, - - -, 23 taken # together (R, =1, if hn=0).
Obviously we have the equality

(4) Ru(m;p, o, , x|k k)

k
= Z{ HR";(m; Py Tyttt X“]-: 0)}R7{)
=1

* See L. E. Dickson, op. cit., p. 88. (Bauer 18,)

t See P. Bachmann, Niedere Zahlentheorie, Teil 1, Leipzig, 1902, p. 347.

1 See G. Ricci, Sulle funzioni simmetriche delle radici dell'unitd secondo un
modulo composto, Annali di Matematica, (4), vol. 9 (1931), p. 190, formula
(By).
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in which the sum is extended to the solutions in integers =0 of

the equation
m+ny+ -+ + 0= s7,

O=m<ri=12-,k0<n<h.
If 7,50 (mod \), then it is known™ that
-Rni(m; Py Tyt "y X”l) 0) =0 (mOd Pa):

and if #;=s\, then the congruence (3) stands. Therefore if one at
least of the integers ni, #q, - - -, 5 is #0 (mod \), then the
corresponding term on the right of (4) is divisible by p¢; hence,
for the relation 0 <% </ <\, we obtain

Rs‘r(m; p, 0, " ;XHk: h)

k
= Z HRSi)‘(m; Py Oyt " "y XHI) 0) (mOd Pa)y
=1

T T
<S1+32+'"+Sk=8';\-;0§5i§7)-

Then, by (3), we may write
-

o[
Re(m;p, 0, - - ,x“k, B) = (— 1)0-DN E H <)\ (mod ),
=1

Si
ST
(81+S2+"'+Sk=7>;

and, by a well known formula on binomial coefficients, from this
congruence we deduce the first formula of (A). We may deduce
the other formulas in a similar manner.

R. ScuorLA NORMALE SUPERIORE
Pisa, ITaLy

* See G. Ricci, loc. cit., formula (By).



