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1. Introduction. This article is one of a pair devoted to an historical study of 
the influence of the theory of elasticity upon the development of mathematical 
analysis. In the accompanying article (which appears in this issue of the 
Bulletin) C. Truesdell describes the contribution made by elasticity to analysis 
through the middle of the nineteenth century. By that time, the three-dimen
sional theories of linear and nonlinear elasticity had been well established. 
From then on, linear elasticity has enjoyed an extensive development, char
acterized by the use of increasingly sophisticated methods of linear analysis. 
Nonlinear elasticity, on the other hand, was not to receive sustained scrutiny 
until after the Second World War. 

In this article I refrain from discussing developments in the century begin
ning in 1855 in order to take up the more fascinating tale of the modern 
interaction of nonlinear elasticity with nonlinear analysis. (St. Venant's memoir 
on torsion, discussed by Truesdell, appeared in 1855. Cauchy died in 1857.) 
Despite this gap, the subject of my account is a fitting complement to that of 
Truesdell, because the modern problems of nonlinear elasticity are much closer 
in spirit to those studied by the Bernoullis and Euler than to the linear 
problems studied by the successors of Cauchy. Below we examine several areas 
of modern analysis to which elasticity has made crucial contributions. 

2. Connectivity questions of global bifurcation theory. An elastica is a 
mathematical model for a thin, flexible beam. Its configuration is described by 
a curve. Bifurcation theory began with Euler's (1744) analysis of the planar 
equilibrium configurations of the elastica subjected solely to end forces. This 
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problem is governed by the following differential equations for the curve 
[0,1] 3 s H» (x(s)9 y(s)) in the (x, >>)-plane: 

(2.1) [B(s)$'(s)]' + Xsm6(s) = 0, 

(2.2) x'(s) = cos 0(s), y'(s) = sin 0(s). 

These equations are to be supplemented with a suitable set of boundary 
conditions, s represents a scaled arc length parameter. The x-axis is taken 
parallel to the line of forces. 6(s) is the angle the tangent to the curve (x, y) at 
s makes with the x-axis. X is the magnitude of the terminal force, taken to be 
positive when compressive. B(s), which is positive, is the stiffness of the beam 
at s. B is not constant when the thickness is not constant. 

For certain boundary conditions, such as those in which the positions and orientations of each 
end of the elastica are prescribed, the terminal force may have one prescribed component and one 
reactive component (Lagrange multiplier) that maintains the kinematical boundary condition. In 
this case the reactive component and hence the terminal force are not known a priori. In particular, 
neither A nor the orientation of the x-axis with respect to any fixed line in the plane is known a 
priori. When this happens the problem for $ cannot be uncoupled from that for x and y. 

For the case in which B = const. Euler gave an exhaustive qualitative 
description of all possible solutions of (2.1), (2.2), but only a partial analysis of 
solutions of actual boundary value problems for these equations. (He for
mulated his problem entirely in terms of x and y. His classification of all 
solutions of (2.1), (2.2) can be carried out more efficiently today by means of a 
phase-plane analysis of (2.1). The Bernoullis and Euler had, however, con
structed the tools necessary to pose the governing equations in the form (2.1).) 
In his treatment of boundary value problems Euler studied the process of 
buckling, in which the trivial solution 0 = 0, characterizing a straight config
uration, loses its stability at a critical value of the parameter A, from which 
there bifurcates a family of nontrivial solutions. He gave a rigorous description 
of the role of the linearization of (2.1), namely 

(2.3) (BV)' + X^ = 0, 

in the analysis of (2.1). Fortunately Euler left some unresolved issues for his 
successors: He did not treat boundary value problems in which X was not 
prescribed and he did not correlate qualitative properties of solutions with the 
bifurcating branches on which they lay. One measure of his contribution is that 
to this day engineers have worked almost exclusively with linearized equations 
equivalent to (2.3). 

It was apparently Saalschiitz (1880) who first obtained closed-form solu
tions of boundary value problems for (2.1) with B = const, in terms of Jacobi 
elliptic functions. (Euler had effectively determined the qualitative properties 
of these functions.) The use of these special functions was a mixed blessing for 
elasticity: Elliptic functions furnished explicit solutions for well-set nonlinear 
problems, but their very availability contributed to the suppression of "nonlin
ear thinking". (It was not until the middle of our century that workers in 
continuum mechanics began to treat nonlinear problems with confidence.) 



THE INFLUENCE OF ELASTICITY ON ANALYSIS 269 

Using these explicit solutions we can efficiently display the properties of 
solutions of a boundary value problem for (2.1), say the problem in which 

(2.4) 0(0) = 0 = 0'(1), 

by means of a bifurcation diagram, Figure 2.5. The ordinate labeled 6 
represents some convenient measure of the amplitude of the solution (e.g., 
0'(0)). Thus the \-axis represents the trivial solution. Any connected family of 
pairs (X, 6) satisfying (2.1), (2.4) is a branch of solution pairs of the problem. 
There are a countable infinity of nontrivial solution branches bifurcating from 
the trivial branch at (\k9 0), k ~ 0,1,2, . . . , where \k = (2k + \)2ir2B/4 is the 
A:th eigenvalue of (2.3) subject to boundary conditions of the form (2.4). Each 
such branch is unbounded in the space R X C2([0,1]) of solution pairs and 
meets the trivial branch at only one point. On the kth branch 0 has exactly k 
zeros on (0,1), each of which is simple. (An account of the detailed properties 
of the explicit solutions of (2.1), (2.4) oriented toward bifurcation theory is 
given by Reiss (1969).) 

FIGURE 2.5. Bifurcation diagram for (2.1 ), (2.4). 

Now we jump over the next seventy-five years, ignoring very important 
contributions to bifurcation theory by Poincaré, Lyapunov, Schmidt, Lyuster-
nik, Shnirel'man, Krasnosel'skiï, and others in order to describe the seminal 
work of Kolodner (1955) on the bifurcated steady states of a rotating heavy 
chain. In this problem the upper end s = 1 of the chain is held fixed and the 
lower end s = 0 is left free. We seek steady states in which the chain lies fixed 
in a plane rotating about the vertical through the upper support of the chain 
with constant angular velocity w. 

This problem is governed by the singular boundary value problem 

(2.6) ii" + Xii(i<2 + j 2 ) ~ 1 / 2 = 0, 

(2.7) i/(0) = 0 = K ' ( I ) 

file:///-axis
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where u is the horizontal component of the tension and X is proportional to co2. 
This problem does not admit closed-form solutions. Nevertheless, by cleverly 
combining the shooting method with Sturmian theory, Kolodner gave a 
detailed global description of all bifurcating branches (in terms of the nodal 
properties of u) and determined the location of the branches. 

Kolodner's beautiful results inspired others to try his methods for different 
problems, but their success was limited. Pimbley (1962, 1963) was able to treat 
some related equations. On the other hand, I recall that E. L. Reiss noted that 
there was no obvious way that Kolodner's methods could handle boundary 
value problems for (2.1), especially when B is not constant, whence (2.1) does 
not admit closed-form solutions. (The reason why Kolodner's methods handle 
(2.6), (2.7), but not (2.1), (2.4) devolves upon the difference in mathematical 
structure between the nonlinear terms sin0 of (2.1) and u(u2 + s2)~l/2 of 
(2.6).) The failure of Kolodner's global qualitative methods to handle some 
other apparently simple problems stimulated a number of mathematicians 
(most of whom were associated with New York University) to develop more 
effective methods for treating large classes of bifurcation problems. In this 
enterprise another problem from nonlinear elasticity, the axisymmetric buck
ling of a circular plate under a pressure applied to its edge, has played a central 
role. The plate theory employed was that of von Karman. Let X, representing 
the magnitude of the pressure, denote the eigenvalue parameter and u denote 
the unknown function in this theory. Let X0, \l9... denote the eigenvalues of 
the equations linearized about u = 0. 

Friedrichs and Stoker (1941) used variational methods to show that every
where on the bifurcating branch emanating from (X0,0), the function u has no 
nodes. They showed that for any fixed value of X lying between X0 and Xx there 
are exactly three solutions, one of which is the trivial solution. They also used 
the method of (Lyapunov and) Schmidt to justify a perturbation expansion for 
the nontrivial branch of solutions emanating from the lowest eigenvalue of the 
linearized problem. 

Keller, Keller and Reiss (1962) used the Poincaré shooting method to study 
the same problem. They showed that a nontrivial branch of solutions bifur
cates from each point (X0,0), (X,, 0) , . . . , that near each bifurcation point the 
branch Hes to the right of the bifurcation point (as in Figure 2.5), and that on 
the intersection of the branch emanating from (X^ 0) with a neighborhood of 
(X^ 0) , the function u has exactly k interior nodes. Reiss (1965) used similar 
methods to study the buckling of a spherical cap. 

Detailed global results for this problem were finally obtained by Wol-
kowisky (1967). He proved that for each \>\k there are at least k pairs of 
nontrivial solution pairs (X, ± WyXy = 0,...,k, with Uj having exactly j internal 
nodes. To do this he used Sturmian theory to set up a solution operator for 
each j < k and for each fixed X. He was then able to use the Schauder Fixed 
Point Theorem to show that each operator has a fixed point with the requisite 
nodal properties. Wolkowisky (1969) extended his methods to handle a family 
of nonlinear Sturm-Liouville Problems. Wolkowisky's work is beautiful and 
clever. In retrospect, we may, however, observe that it does not say anything 
about the connectivity of the solution pairs he found. 
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At the same time Berger (1967a) and Berger and Fife (1968) studied the 
semilinear system of partial differential equations governing the buckling of a 
von Karman plate of any shape under a planar system of loads of magnitude 
X. This problem has a natural energy functional (p. (I do not discuss these 
papers separately because their structure makes it inconvenient to do so.) 
Using the variational method of Lyusternik and Shnirel'man, Berger and Fife 
showed that on each energy surface {u: <p(w) = R}, R e (0, oo), there is a 
countable family of distinct solution pairs. Moreover, they proved that exactly 
one nontrivial branch can bifurcate from a simple eigenvalue and they ob
tained partial results on the number of branches that can bifurcate from an 
eigenvalue of multiplicity 2. (The delicate problem of correlating the number of 
nontrivial solution branches emanating from an eigenvalue of the linearized 
problem with the multiplicity of the eigenvalue is fundamental in bifurcation 
theory. For variational problems Krasnosel'skiï (1953) obtained the first results 
(cf. Krasnoserskiï (1956), Chapter 4), Berger (1967b, 1969) announced gener
alizations, and Böhme (1971), (1972) gave complete proofs along with some 
fascinating counterexamples.) 

In the period from 1955 to 1970 and beyond, Vorovich had been indepen
dently developing a complete mathematical theory of boundary value problems 
for plates and shells of the von Karman type. His results relied on functional-
analytic and topological techniques. Brief accounts of his contributions are 
given by Trenogin and Yudovich (1974, pp. 36, 127). It appears that a number 
of the results described above, obtained by American mathematicians, were 
found earlier by him. E.g., many of the results of Berger and Fife were 
announced by Vorovich (1958). According to Trenogin and Yudovich, Voro
vich (1955) studied the local theory of the axisymmetric buckling of annular 
disks by the method of Lyapunov and Schmidt. (I have not been able to see a 
copy of this paper.) It thus appears that this work would have a clear-cut 
priority over that of Keller, Keller and Reiss (1962), were it not for the fact 
that the latter work treats the troublesome singularity at the center of the plate. 
The work of Vorovich (partially surveyed in his papers (1969, 1970)) forms an 
important chapter in the application of functional-analytic and topological 
methods to nonlinear problems of physics. Unfortunately, western scientists 
with the sophistication to appreciate it seemed largely unaware of it. Conse
quently it had no influence on the next and crucial step of the development of 
global continuation methods of bifurcation theory. 

Motivated primarily by the work of Kolodner and of Wolkowisky and to a 
lesser extent by that of Berger and Fife, Crandall and Rabinowitz (1970) 
studied global behavior of nonlinear Sturm-Liouville problems of a sort that 
includes (2.1), (2.4) and (2.6), (2.7). They developed effective methods to 
describe the nodal properties of solutions. In place of the Schauder Fixed Point 
Theorem used by Wolkowisky, they employed the Leray-Schauder degree. By 
exploiting its invariance under homotopy, Rabinowitz (1970) was able to show 
that branches of solution pairs of nonlinear Sturm-Liouville problems enjoy 
global connectivity and nodal properties (to be described shortly). At the same 
time Turner (1970) was able to show that branches of solution pairs of 
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nonlinear integral equations with oscillation kernels have connected projec
tions on the plane of parameter and norm. (These equations have nodal 
properties generalizing those of Sturm-Liouville problems.) 

The basic parameter used by Wolkowisky is the eigenvalue parameter and 
that used by Berger and Fife is the prescribed value of a norm-like energy 
functional. If the bifurcating branches are know to be curves, then it is natural 
to give them an intrinsic parametrization. In general, however, bifurcating 
branches are merely connected. The approach of Crandall and Rabinowitz and 
of Rabinowitz may roughly be likened to one that relies on what would be a 
natural parametrization for branches that are curves. 

The global ideas of Rabinowitz (1970) were simplified and generalized by 
Rabinowitz (1971). Crandall and Rabinowitz (1971) systematized and refined 
the local theory of bifurcation. (Perhaps the most accessible source of these 
results is the paper of Rabinowitz (1973).) The fundamental theorem of 
Rabinowitz (1971) is this: 

2.8. THEOREM. Let % be a Banach space with norm || • ||. Let L: % -> % be 
compact and linear. Let F: R X <$ -» ® be compact and continuous with F(X,u) 
— o(\\u\\) as u -» 0, uniformly for X in bounded intervals. Let S be the closure of 
nontrivial solution pairs of 

(2.9) u = XLu + F(X,u) 

in R X %. If JU, is an eigenvalue of odd algebraic multiplicity of the linearization 

(2.10) v = tiLv 

of {2.9), then § contains a maximal, closed, connected subset 6(/x) that contains 
(/A, 0). S(/x) has at least one of the following two properties: (i)Q(fx) is unbounded 
in R X 8 ; (ii) G (/A) contains a point (v,0) where v is another eigenvalue of 
(2.10). 

Using this theorem together with some results of Crandall and Rabinowitz 
(1971) we can readily obtain a detailed global description of all bifurcating 
branches of (2.1), (2.4). We sketch the details. We integrate (2.1) twice, 
accounting for (2.4), to obtain 

(2.11) 0(s) = X fSB(t)~l Ç sin 0(r) drdt. 

We take the Banach space of Theorem 2.8 to be C*([0,1]). By writing 
sin0 = 6 + (sin0 - 0) in (2.11) we readily convert (2.11) to the form (2.9). A 
simple application of the Arzelà-Ascoli Theorem shows that the L and F 
thereby induced have the requisite compactness. Moreover, the linear integral 
equation corresponding to (2.10) is equivalent to (2.3) subject to boundary 
conditions of the form (2.4). The Sturmian Theory says that the eigenvalues 
X0, \l9... of the linearized problem are simple, positive, and unbounded and 
that they can be ordered thus: 0 < \ 0 < XY < • • • with the eigenfunction \pk 

corresponding to Xk having exactly k zeros on (0,1), each of which is simple. 
Now let %k be the set of all functions S in C!([0,1]) satisfying (2.4) and having 
exactly k + 1 zeros s0,sl9...9sk on [0,1], with 0 = s0< s{ < • • • < sk < 1 and 
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with O'(sj) ¥= 0 for y = 0 , 1 , . . . X %k is open in C!([0,1]) (but not in C°([0,1])). 
A theorem of Crandall and Rabinowitz (1971) says that if (X, 0) is a solution 
of (2.11) lying close enough to (\k, 0), then 0 is approximated in C*([0,1]) by a 
multiple of ^ , whence 0 e_â*. We now assert that S(A^)\[R X {0}] C §k. If 
not, there would be a (X, 0) e S(Xfc)\[R X {0}] with 6 G d§k. But members 
of d@k have double zeros. Thus 6 would satisfy an //z/rta/ value problem for 
(2.1) subject to initial conditions of the form 0(a) = 0 = O'(o). The unique 
solution of this problem is 6 = 0, a contradiction. Since \pj G C(A •), j = 
0,1,2, . . . , the branch 6(Xk) cannot contain (Xz, 0) with I ¥" k, for if so, there 
would be a pair (A, 6) in 6(X^) n 6(X,)\[R X {0}] C§kn§l = 0 . Thus 
Theorem 2.8 implies that each branch Q(Xk) is unbounded in R X C\[091]) 
and that the nodal properties of 6 are preserved along each branch. Suitable 
estimates (cf. Crandall and Rabinowitz (1970)) show that the branches are 
disposed as in Figure 2.5. 

While other global methods of bifurcation theory, such as the theory of 
Lyusternik and Shnirerman, can be applied to this problem, the methods of 
Crandall and Rabinowitz yield the most detailed information about the 
bifurcating branches. These same methods can handle Kolodner's problem (cf. 
Stuart (1975)). 

There have been numerous refinements of Theorem 2.8. Rabinowitz (1970) 
observed that the XL in (2.9) could be replaced with L(X). Ize (1976) and 
Magnus (1976) developed the treatment of such operators. Dancer (1973) 
treated problems in which the F in (2.9) is real analytic. Nussbaum (1975) and 
McLeod and Turner (1976) developed methods to handle bifurcation problems 
in which (2.9) is replaced by an equation involving nondifferentiable operators. 
Problems in which the hypotheses on the compactness of L and F in (2.9) are 
replaced by weaker assumptions were analyzed by Stuart (1973), Toland 
(1976), and Alexander and Fitzpatrick (1979). An extensive bibliography is 
given by Alexander (1981). These theories have been applied by Antman and 
Rosenfeld (1978) and Antman (1978) to other problems of nonlinear elasticity 
(including theories for plates that do not suffer the manifold defects of von 
Karman's theory, not the least of which is that his equations are not valid for 
the large deformations studied in global analyses). 

A generalization of the planar buckling problem for a rod under terminal 
thrust, described by (2.1) and (2.4), is that of the spatial buckling of a rod 
under terminal thrust and twist. Greenhill (1883) analyzed his ineptly for
mulated eigenvalue problem for the linearized equations for this problem. 
Properly formulated linear boundary value problems for the rod have nontriv-
ial solutions when the pair (X, jn) of parameters He on any of a countable 
family of eigencurves. One might expect that nontrivial solution pairs of 
nonlinear versions of Greenhill's problem he on "two-dimensional sheets". It 
is clear that the methods of Rabinowitz can be applied to this problem by 
freezing one of the parameters. But it is also clear that the resulting informa
tion would be unsatisfactorily incomplete: E.g., one could show that the 
nontrivial solution pairs lie on unions of one-dimensional connected sets, but 
could not assert how these one-dimensional connected sets are attached. To 
circumvent this difficulty Alexander and Antman (1981) used the theory of 
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Cech cohomology to obtain easily verifiable conditions ensuring that bifurcat
ing from a given point on an eigensurface of an «-parameter problem is a 
connected set of solution pairs each point of which has Lebesgue dimension 
> n. (Related results have been obtained by Fitzpatrick, Massabö and 
Pejsachowicz (1983).) This theory, a natural generalization of that of Rabino-
witz, was then applied to treat general nonlinear analogs of GreenhnTs 
problem, for which it was expressly designed, by Antman and Kenney (1981). 

Euler (1780) formulated the problem for the buckling of a column under its 
own weight and computed the lowest buckling load for a uniform column. 
Oblivious of this work, Greenhill (1881) used available results on Bessel 
functions to compute the same buckling load. Despite his advantage of one 
century of scientific progress, GreenhnTs formulation was inferior to that of 
Euler in precision, method, and insight. Moreover, Greenhill must suffer the 
posthumous embarrassment of having computed a buckling load less accurate 
than Euler's. (Cf. Truesdell (1960, p. 363).) 

If the column is not uniform, then the mass density per unit length may be 
regarded as an eigenvalue parameter, which is infinite-dimensional. Alexander 
and Antman (1983) extended their results of 1981 for a finite number of 
parameters to handle this case, and then used the resulting theory to obtain a 
detailed global analysis of this buckling problem. 

3. The peculiarities of nonlinear elasticity. To describe other influences of 
nonlinear elasticity on analysis, it is first necessary to describe the mathemati
cal structure of nonlinear elasticity. 

A material point of a body may be identified with the position x it occupies 
in a reference configuration of the body; the body itself may then be identified 
with the region £2 it occupies in this reference configuration. The position of 
material point x at time t is denoted p{x, t). It is taken to be an element of the 
Euclidean 3-space E3. The theory of continuum mechanics yields a set of 
differential equations for p that reflect the mechanical properties of Ü and the 
environment in which it is placed. 

It is clear to anyone who has observed the effect of spiked shoes on a 
wooden floor that force intensity per unit area is a more useful variable for 
describing deformations than force itself. If x is a material point in the interior 
of a body Q undergoing a motion p and if « is a unit vector, then the intensity 
of contact force at x per unit reference area of the plane {y E:ü\ (y — x) - n 
- 0} exerted by the material of {y E £2: (y - x) • n > 0} on that of {y G Œ: 
(y — x) - n < 0} at time t has the form T(x, t)n, where T{x, t) is a tensor, i.e., 
a linear transformation from E3 to itself (called the first Piola-Kirchhoff stress 
tensor at (x, t)). (This representation for the contact force was discovered by 
Cauchy.) The inner-product space of these tensors is denoted £. Under 
favorable conditions of regularity, the requirement that the resultant force on 
each part of a body equal the time rate of change of linear momentum of that 
part yields the equation of motion 

(3.1) V-P+/=P0. 
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Here V • denotes the divergence operator (with respect to x), the asterisk 
denotes transpose, f{x,t) represents the given force per unit reference volume 
at (*, /), and p(x) is the given mass density at x in the reference configuration. 
Mechanical properties of materials are characterized by relations between 
T(x, t) and the history of/? up to time t in a neighborhood of x. E.g., we can 
characterize the mechanical response of a rubber band by giving an expression 
for the force per unit area needed to effect a given change of length. The 
material at x is elastic if there is a function S such that 

(3.2) T(x,t) = si[^(x,t),x]j. 

Here dp/dx represents the derivative of /?. (It is the linear transformation 
whose matrix consists of the derivatives of the components of/? with respect to 
the components of x.) Equation (3.2) specifically prevents the material from 
exhibiting viscous (frictional) effects, which could be accounted for by allowing 
S to depend on the velocity gradient d2p/dxdt as well. Since S depends only 
on the present value of dp/dx, no account is taken of the influence of the past 
history of the deformation on the present value of the stress. The actual form 
of (3.2) must be specialized somewhat to ensure that material properties are 
unaffected by rigid motions. The requirement that the resultant torque on each 
part of a body equal the time rate of change of angular momentum of that part 
yields a relation that the use of (3.1) reduces to 

We account for this condition by requiring the function S to satisfy 

(3.4) S(G,x)G* = GS(G,x)* 

identically for all tensors G with a positive determinant. 
If we now substitute (3.2) into (3.1), we obtain a quasilinear system of partial 

differential equations for/?, which we can supplement with initial and boundary 
conditions. What distinguishes this system from such systems in general, such 
as those describing electromagnetic effects in rigid media? The most obvious 
answer is that the unknown p has direct geometric significance: It describes a 
class of mappings of regions of E3 into E3. Consequently, continuum mecha
nics has within it the richness and complexity of the geometry of E3. This 
geometry is a fundamental source of difficulty for mechanics. E.g., since/?(•, /) 
describes the deformation of a material body, we require that it be one-to-one 
so that two distinct material points cannot simultaneously occupy the same 
point in space. But this requirement of injectivity is a global restriction on the 
function /?, which is otherwise described locally by (3.1), (3.2), and side 
conditions. Techniques capable of handling the injectivity of/? would doubtless 
yield solutions of major unsolved problems of geometry. Moreover, the serious 
consideration of the physical aspects of this question would require the 
prescription of a strategy for stating boundary conditions that are to hold if 
two distinct parts of the boundary come into contact. 

These difficulties force us to contemplate the more modest requirement that 
/?(•, t) preserve orientation, which is equivalent to the requirement that the 
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local ratio of volume in the configuration at time t to that of the reference 
volume be everywhere positive, If /?(•, f) is continuously differentiable, then 
this condition is expressed by 

(3.5) det(8/?/8jc) > 0 . 

This of course is a purely local restriction. We can incorporate it into 
initial-boundary value problems in a natural way by restricting S( •, x) to 

(3.6) e + = ( G e e : d e t G > 0 } , 

and by requiring that 

(3.7) | S ( G , J C ) | - > O O a s d e t G ^ O . 

Thus the violation of (3.5) would be signaled by the failure of/? to be a regular 
solution of (3.1), (3.2). 

The modern theory of differential equations tells us that it is foolhardy to 
seek classical solutions of problems for (3.1), (3.2) because (i) there may not be 
any, and (ii) even if they exist, it is easier to find them by seeking solutions in a 
larger class of functions and then proving that such solutions are necessarily 
smoother than other members of the class. In particular, the available theory 
suggests that to solve a boundary value problem for the static version of (3.1), 
(3.2) (in which p is independent of t), one should first pose the problem in a 
weak form and then seek solutions in a function space like the Sobolev space 
Wx^(Q). (The actual space chosen is dictated by the form of S(G, x) for large 
| G |.) If x h*p(x) belongs to such a space, then (3.5) should be relaxed to hold 
almost everywhere. But in this case we might have difficulty in defining 
det(8/?/8jc) because this is the sum of products of derivatives of p. 

A more serious problem is that the set of all p9s satisfying (3.5) is not 
convex. (If Q is not simply-connected, this set may even consist of a countable 
disjoint union of nonconvex sets.) Thus the large body of results of nonlinear 
analysis concerned with convex sets is not readily available to handle problems 
of nonlinear elasticity. 

It is clear that both the mechanical response of an elastic material and the 
mathematical classification of the system (3.1), (3.2) devolve exclusively on the 
form of S. As a primitive requirement on S we might demand that pulling a 
specimen of material in one direction results in a lengthening rather than a 
shortening of the material in that direction. It is not obvious how to translate 
this requirement into a precise and physically valid mathematical statement 
because there are different kinds of stresses that can measure the amount of 
pull, there are different kinds of strains to measure the elongation, and the 
pulling produces not only an elongation in the direction of pull, but also 
contractions in the transverse directions. One might be led by mathematical 
optimism to propose that S( •, x) be strictly monotone in the sense that 

(3.8) [S(G + H, x) - S(G,x)]:H>0 V G 

and 

(3.9) V/f =£0. 
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Here ":" represents the inner product on the space of tensors. If S(-9x) is 
differentiable, then a slightly stronger restriction is that 

(3.10) H: | | ( G , x ) : # > 0 V G 

subject to (3.9). If S(-, x) is everywhere defined (i.e., if (3.5) is ignored) and if 
S(-, x) satisfies (3.8), (3.9) and suitable growth conditions, then the analysis of 
boundary value problems for the static version of (3.1), (3.2) is in a relatively 
good state: Weak solutions exist, are unique, and possess certain regularity 
properties (cf. Giaquinta (1983) and Giusti (1983)). The apparent virtue of 
yielding uniqueness is actually fatal for (3.8) and (3.9) because it means that 
however thin a rod is and however large the thrust applied to it is, it can never 
buckle. One of the main motivations for suffering the difficulties of nonlinear 
elasticity is to be able to describe such buckling phenomena. 

If S(-, x) is defined only on £ + , then another objection to (3.8) and (3.9) 
arises: If S simultaneously satisfies (3.7)-(3.9), then the nonconvexity of £+ 

would require S to have very special, indeed pathological forms. In fact, 
S(-9x) could not be the gradient of a scalar <!>(•, x) on £+ with 0(1% x) -> oo 
as det F -* 0. (Other serious objections to (3.8) and (3.9) are discussed by Ball 
(1977b).) 

The easiest way to allow boundary value problems for static versions to 
admit multiple solutions is to let S depend on p as well as dp/dx, while (3.8) 
and (3.9) still hold. The resulting equations can be handled by the theory of 
pseudo- or semi-monotone operators. But this adjustment would imply that the 
material properties of the body would depend upon its position, and would 
thus be physically unacceptable. 

A condition weaker than (3.8), (3.9) is (the strict form of) the strong ellipticity 
condition'. (3.8) holds 

(3.11) Vt fo f rank l . 

(If S is differentiable, a slightly stronger version of this condition is that (3.10) 
holds for (3.11).) This condition does ensure that an elongation accompanies a 
pull and that (3.1), (3.2) is hyperbolic. This means that (3.1), (3.2) can have 
solutions with a full range of wave-like behavior. Moreover, the requirements 
that (3.8), (3.11) hold, that det G > 0, and that | S(G, x) |-> oo as det G -> 0 are 
compatible, because the restriction (3.8) to hold just for tensors of rank 1 
perfectly matches the fact that det G is an affine function of each of its entries 
when the other entries are held fixed. (Despite these virtues of the strong 
ellipticity condition, Ericksen (1983) has made a persuasive case that it does 
not capture effects observed in certain real crystalline solids. Thus the strong 
ellipticity condition should not be regarded as universally valid.) 

The theory of strongly elliptic, quasilinear systems of partial differential 
equations is unfortunately in a primitive state. By embracing the strong 
ellipticity condition as a reasonable restriction for elastic materials, we might 
seem to retard the rate of progress in elasticity to that of such systems. In fact, 
as we observe in the next section, the joining of these two disciplines has led to 
new progress both in the theory of quasilinear elliptic systems and in other 
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fields of analysis. Despite its peculiarities, nonlinear elasticity merits the 
attention of analysts because it is the most accessible physical theory described 
by quasilinear systems. 

A detailed discussion of the questions sketched in this section is given by 
Ball (1977b) and Antman (1983). 

4. Calculus of variations. Weak convergence. If there is a function <I>: £+ -* R 
such that 

(4.1) S(G,x)=^(G,x), 

then the material of Ü is said to be hyper elastic. If (4.1) holds, if ƒ = 0 (for 
simplicity), and if/? is independent of t, then (3.1), (3.2) is equivalent to the 
Euler-Lagrange equations for the functional 

(4.2) p^f^(^(x),x)dv(x) 

where dv is the differential volume. We may then contemplate studying 
boundary value problems for (3.1), (3.2) by the direct methods of the calculus 
of variations. In this case a sufficiently smooth minimizer of (4.2) satisfying 
appropriate side conditions would be a solution of a boundary value problem 
for (3.1), (3.2). 

Ball (1977a, b) showed the existence of a minimizer of (4.2) in spaces like the 
Sobolev space W^q{ü) by adapting the deep, direct methods of Morrey (1952, 
1966) to handle the difficulties associated with (3.5)—(3.7). In this process, Ball 
introduced important new ideas into the calculus of variations. These ideas in 
turn inspired further developments in other areas of analysis. 

Recall that $( •, x) defined on £ is convex if 

(4.3) ${XG + (1 - X)H, x) < À<Ï>(G, JC) + (1 - A)<I>(#, JC) 

V \ E [0,1], VG 

and 

(4.4) V/f. 

If the inequality of (4.3) is replaced by a strict inequality, if X is restricted to 
(0,1), and if (4.1) holds, then this modified version of (4.3), (4.4) is equivalent 
to (3.8), (3.9). If $(• , x) is defined only on £+ , then we may say that 0(• , x) is 
convex on £+ if the restriction of $ to each closed line segment of £+ is convex. 
$(• , x) is said to satisfy the (generalized) Legendre-Hadamard condition on £+ 

if (4.3) holds 

(4.5) V H of rank 1 for which the line segment joining G and H lies in £+ . 

(If the inequality of (4.3) is replaced by a strict inequality, if X is restricted to 
(0,1), and if (4.1) holds, then this modified version of (4.3), (4.5) is equivalent 
to (3.8), (3.11).) Let 9H be an open subset of £. In the terminology of Morrey 
(1952, 1966), $(• , x) is said to be strongly quasiconvex on 911 if 

(4.6) ƒ * ( G + ^(y), *) dv{y) > *(<?> x)v(D) 
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V G 6 9 1 , V bounded, open D G E3, and V « G Cf(D) for which G + 
9u(y)/dy G 9H when y G D. Here t> is the volume. (Carefully note the 
arguments in the integrand of (4.6).) Using this condition, Morrey established 
the existence of minimizers for functionals of the form (4.2) on Sobolev spaces 
when 0( •, x) is strongly quasiconvex on £. This remarkable result was the first 
to give promise of treating quasilinear elliptic systems of the sort that arise in 
the theory of elasticity. Morrey's theory is incapable of handling (3.5) and 
(3.7), however. 

To construct a theory without these defects, Ball introduced the concept of 
polyconvexity. Let Gx denote the tensor of cofactors of G. (If G is invertible, 
then Cramer's rule says that Gx — (det G)(G -1)* where the star denotes the 
transpose.) 0(- , x) is said to be polyconvex on £+ if there is a convex function 
• ( • , - , - , x) on £ X £ X (0, oo) such that 

(4.7) 0(G, x) = * (G, Gx , det G, x). 

Note that the domain of ^ ( • , - , - , x) is a half-space, whereas that of 4>(•, x) is 
not even convex. The following chain of implications holds: 

{$( •, x) is convex on £+ } 

=> {<!>(•, x) is polyconvex on £+ } 

=> {<!>(•, x) is strongly quasiconvex on £+ } 

=>{$(-, JC) satisfies the Legendre-Hadamard condition on £+ }. 

The first two impHcations, found by Ball, are not equivalences. It is not known 
whether the last implication, found by Morrey, is an equivalence. Ball showed 
that the assumption of polyconvexity is not so severe as to preclude multiple 
solutions of the equilibrium equations. Moreover, he showed that a variety of 
accepted models of elastic response can be characterized by polyconvex $ 's. 

To appreciate the mathematical importance of the notion of polyconvexity 
and the supporting ideas of weak convergence let us recall the basic theorem of 
the calculus of variations, which can be traced back to Weierstrass. 

4.9. THEOREM. A sequentially weakly lower semicontinuous functional on a 
bounded, weakly closed, nonempty subset of a reflexive Banach space attains its 
minimum there. 

(A proof is given by Vainberg (1956), e.g.) A functional <p is sequentially 
weakly lower semicontinuous if 

(4.10) <p(w) < liminf <p(uk) a s w ^ w . 

Here the half arrow denotes weak convergence on the Banach space to which 
the domain of <p belongs. Available theorems ensuring that functionals (p 
satisfy (4.10) rely on certain convexity properties of <p. 

To study the sequential weak lower semicontinuity of (4.2) on a subset of 
Wx,q{Q) with q > 1 when <!>(•, x) is polyconvex on £+ , we need to know the 
behavior of the sequences (dpk/dx)x and det(9/?fc/3x) aspk-^p in Wx,q{Qi). 
That this behavior can be easily characterized and that ¥(• , -, -, x) is convex 
are the underlying mathematical justifications of polyconvexity. Among the 
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basic results on weak convergence that Ball obtained are the following: 

4.11. THEOREM. Let <j>: £ -» R be continuous. If'<j> is a null Lagrangian, i.e., if 

for all p G Cl(ü) and f or all u G Q°(S2), then <I>(G) must be an affine function 
of(G,Gx,detG). 

4.13. THEOREM. Let q > 1 and O 0. Let <j>: t-^Rbe continuous and satisfy 
|<KG)|< C(l +\Gf). If the function Wl>q(Q) 3p h* <f>(dp(-)/dx) G L\Q) is 
continuous from the weak topology of Wx'q(Q) to the weak topology of Ll(ti), i.e., 
if 

(4.14a) 4 > ( ^ ( - ) ) - * ( ! f ( - ) ) inL\Q)aspk^pinW^{Q), 

then </> is a null Lagrangian. 

F. Murat pointed out to me that there is a more convenient variant of this 
theorem in which the weak topology of L1 is replaced with the pseudo-topology 
of distributions, or equivalently, with the vague topology of measures, in which 
case (4.14a) is replaced with 

(4.14b) / o # ( ^ ( * ) ) * ( * ) < ^ 

V xp G <3)(Q) ™Pk -*p in Wx>q{ti). 

These results show that those <J>'s satisfying the hypotheses of Theorem 4.13 
are exactly the functions of G that appear in the arguments of SF in (4.7). To 
show that these functions <j> actually satisfy the hypotheses of Theorem 4.13 for 
suitable q, Ball exploited the fact that both (dp/dx)x and det(dp/dx) can be 
written as divergences and can thereby be given meaning in the sense of 
distributions. These results and the convexity of ¥ ( • , - , - , x) enabled Ball to 
invoke a general lower semicontinuity theorem of Ekeland and Temam (1972) 
to show that (4.2) is minimized when ¥ satisfies suitable growth conditions. 
Since an incompressible material is characterized by the constraint det(dp/dx) 
= 1, Ball was able to use his apparatus to minimize a corresponding energy for 
such materials. Technical difficulties with (3.5) and (3.7) have so far prevented 
the appearance of a proof asserting that these minimizers are weak solutions of 
the Euler-Lagrange equations. Ball (1980, 1982) has nevertheless obtained a 
variety of regularity results that illuminate the hypotheses we have discussed. 

In summary, Ball was the first and only one to make progress toward an 
effective global existence theory for the partial differential equations of elasto-
statics under physically reasonable assumptions on the material response. 
(There are detailed global results for ordinary differential equations of elastic
ity, detailed local results for three-dimensional static and dynamic problems, 
and global results for static problems in which the models used do not account 
for the characteristic difficulties discussed in §3.) Ball's work on these prob
lems contributed significantly to the methods of the calculus of variations and 
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of quasilinear systems. His treatment of problems of weak convergence of 
composite functions inspired important and useful developments, which we 
now discuss. 

A basic method for demonstrating the existence of solutions of nonlinear 
partial differential equations is to construct solutions to a sequence of ap
proximating problems and then to use theorems on weak compactness in ways 
that exploit the structure of the nonlinear operators in order to show that a 
subsequence of the approximating solutions converges to a solution of the 
actual problem. Such methods were intensively cultivated in the 1960's and 
1970's. (Cf. Lions (1969).) An important role in this development was played 
by the theory of operators of monotone type. Although these methods enjoyed 
great success, there were many problems that proved to be resistant to them. 
One difficulty hinged on the lack of effective characterizations of weak limits 
of composite functions. In the mid 1970's Murat and Tartar began to study 
weak convergence with the intent of developing methods capable of handling 
otherwise intractable problems. 

To appreciate their task, let us first consider a classical result. Let Q be an 
open subset of R^. Let un = (w",... ,t/^) and vn = (v",... 9v%) be vector-valued 
distributions over Œ: un

9 v
n G (^'(Œ))^- Suppose that {un} is confined to a 

bounded set of (Wh2(ti))N, that {vn} is confined to a bounded set of 
(L2(S2))Ar, and that un - u and vn - v in (L2(ti))N. Then the compact embed
ding theorem of Rellich and Kondrashov implies that 

TV N 

(4.15) 2 " X ^ 2 « y * > y in<>D'(0). 
j=\ j=\ 

The most primitive generalization of this theorem, inspired by problems of 
homogenization, is 

4.16. DIV-CURL THEOREM (MURAT (1978)). Let un, vn G (^'(O))", let 

be confined to bounded sets of L2(£2), and let un -*u and vn ̂ v in (L2(Ü))N. 
Then (4.15) holds (even though u"v", say, need not converge weakly to uxvx in 
<3)'(Û)). 

A comparison of the hypotheses of Theorem 4.16 with those of the preceding 
paragraph shows why J.-L. Lions termed the new theory "Compensated 
Compactness". 

The first set of results, containing Theorem 4.16, were obtained by Murat 
and Tartar in 1974. In 1975, Ball showed Tartar his results on variational 
problems from elasticity. Murat and Tartar then realized that compensated 
compactness could be expanded into a far richer theory capable of subsuming 
Ball's results. Included in this theory are major extensions of Theorem 4.16 to 
account for far more general complementary conditions on un and vn and to 
account for other nonlinear functions of u and v besides their scalar product. 
(Cf. Murat (1981), Tartar (1979).) 
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A powerful tool in the construction of a unified theory was the following 
result of Tartar (1979), based on ideas of L. C. Young and McShane. 

4.17. THEOREM. Let K C RM, ti C R* be bounded and open. Letf: RM -» R be 
continuous. Let un\ £2 -» RM be such that un(x) G K for almost all x in Ü. Then 
there exists a subsequence {un} of {un} (independent of f) and a family of 
probability measures {vx,x G Ü} with supp vx C Ksuch that 

(4.18) f(u„(-))^F() inL^(ü)WithF(x)=f vx(y)f(y)dy. 

Conversely, if v has these properties, then there is a sequence un: S2 -> RM with 
un(x) G K for almost all x in S2 such that (4.18) holds for all continuous f: 
K->R. 

A corollary of this result, suggesting the range of its usefulness, is 

4.19. COROLLARY. Let un^u in L°°(ti). Then un-+ u strongly in LP(Q) for 

p G (1, oo) if and only if vx is the Dirac delta ôw(jc) supported at u(x). 

Tartar (1979) applied compensated compactness to treat first-order nonlin
ear hyperbolic conservation laws by using entropy conditions. Tartar was well 
aware that the results he obtained were by then classical: The importance of 
his work lie in the novelty of his method, a method with promise for treating 
more recalcitrant problems. This promise was recently realized in the work of 
DiPerna (1983, 1984), who obtained new existence results for Cauchy problems 
for second-order systems of conservation laws for large data. DiPerna also 
obtained the first convergence theorem for finite difference approximations of 
the solutions of such systems. We note that such systems describe not only gas 
dynamics, but also one-dimensional models of nonlinear elasticity. Thus a 
theory developed under the stimulus of one class of problems from nonlinear 
elasticity has illuminated another class. 

A practical virtue of the theory of compensated compactness is that it 
reduces the number of a priori estimates needed in a given proof. It thereby 
yields proofs for problems where the estimates, formerly deemed crucial, are 
not available. Besides in the references listed above, systematic presentations of 
the theory and its applications, together with new developments have been 
given by Dacorogna (1982) and Tartar (1983). It is of course too early to see 
whether compensated compactness will turn out to have far reaching implica
tions or to be a tool of limited utility. Even if the latter happens, its successes 
to date are nevertheless of considerable importance. 

5-1. Variational inequalities. Signorini (1959) posed the problem, now bear
ing his name, that in simplest terms is to determine the displacements in a 
heavy, linearly elastic body resting on a rigid, frictionless horizontal plane. The 
essential difficulty of this problem is that the region of contact between the 
body and the plane is not known a priori. It is conceivable that the contact set 
could be especially complicated. 

Fichera (1964) was the first to study the existence and uniqueness of 
solutions to this problem, which is nonlinear because position fields satisfying 
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the governing equations are subjected to a unilateral constraint that restricts 
their values to He in a half space. Now the position field for Signorini's 
problem (for a nonlinearly elastic material) may be characterized as the 
minimizer/? of the potential energy functional (cf. (4.2)) 

< 5 i > /0*(!M *-ƒƒ**•'* 
on the convex set 

(5.2) %= {p:p(x) • k>0,x<Ed2). 

Here k is the unit vector pointing in the upward direction and g is the 
acceleration of gravity. 

To see the issues involved in this variational problem, we study its simplest 
analog, namely to minimize the function 

(5.3) % = [0, oo] 3 u K> xp(u) G R. 

If \p is continuously differentiable and has a minimum at v in %, then 

(5.4) 4>'(v) = 0 i f ü > 0 , xp'(v)>0 ift; = 0. 

These restrictions can be unified into a single statement 

(5.5) xp'(v) • (w - v) > 0 VwE^C, 

which in turn can be readily generalized to a Banach space setting: we let % be 
a closed convex set in a real Banach space & and let T: % -> S*. T need not be 
the gradient of a scalar. Let ( , > be the pairing of S* and S. (S* is the dual 
space of &.) Corresponding to (5.5) we seek a v G % that satisfies the 
variational inequality 

(5.6) (T(v),w-v)>0 V w G l 

Even when T is the gradient of a functional <p defined on 9C, there may be 
analytical advantages to seeking a v satisfying (5.6) rather than minimizing <p. 

Fichera (1964) analyzed Signorini's problem for linear elasticity by the direct 
methods of the calculus of variations, for which he refined some available 
lower semicontinuity theorems. He initiated the delicate regularity theory 
associated with determining the contact region and the reactions (Lagrange 
multipliers) supported there. Some of the abstract formalism for variational 
problems on convex sets had been developed earlier in optimal control theory, 
but this formalism did not deal with the regularity questions for partial 
differential equations of the sort that arise in Signorini's problem. 

G. Duvaut reported to me that he had heard Fichera present his analysis of 
Signorini's problem at a conference in Bressanone, Italy in 1965 and that on 
his return to Paris, he had graduate students in solid mechanics study and 
expound Fichera's work. Thus Fichera's methods were pubUcized among 
mechanicians in the universities of Paris and throughout France. This dissemi
nation of work on unilateral problems probably helped to establish the strong 
French activity in treating other unilateral problems (an activity in which 
Duvaut played a leading role. See the comments on applications below). 
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At about the same time, Stampacchia (1964, 1965) confronted variational 
inequalities like (5.6) in his study of regularity of solutions of elliptic equations. 
(The characterization of a weak form of a sub-solution leads to an inequality of 
the form (5.6).) Over the next couple of years there was an intensive develop
ment of the theory of variational inequalities by Browder (1965, 1966), 
Hartman and Stampacchia (1966), Lions and Stampacchia (1967), Lewy (1968), 
Brezis (1968), Brezis and Stampacchia (1968), Lewy and Stampacchia (1969) 
and others. The abstract theory culminated in the marriage of variational 
inequalities with pseudomonotone operators in the hands of Brezis (1968). Cf. 
Lions (1969). Significant progress on the regularity of solutions was made in 
the works just listed. But many aspects of this question still remain to be 
resolved. 

It is not clear to what extent Fichera's work influenced that of these authors, 
many of whom cited Fichera. (Cf. Fichera (1972, §11).) At the least, the 
solution of Signorini's problem stood for several years as the main concrete 
application of the theory to classical physics. As such, it gave promise that the 
theory had significance beyond the confines of pure analysis. 

This promise was soon realized. Numerous applications were made to a host 
of free surface problems in such diverse fields as plasticity, fluid dynamics, 
plasma physics, filtration, melting, etc. These are described, along with exten
sive bibliographies, in the texts of Duvaut and Lions (1972), Baiocchi and 
Capelo (1978), Kinderlehrer and Stampacchia (1980), and Friedman (1983). 
Indeed, the subject of variational inequalities now seems dominated by particu
lar applications. The analysis of regularity of solutions, still the main source of 
difficulty, is forced to accommodate the peculiarities of each special class of 
problems. 

An account of the many refinements in the treatment of Signorini's problem 
is given by Kinderlehrer (1981). Antman (1979, 1983) has used variational 
inequalities to handle (3.5) for ordinary differential equations of nonlinear 
elasticity by replacing it with a sequence of inequalities like det(dp/dx) > \/n 
and then obtaining sharp enough estimates to show that the resulting sequence 
of solutions converges to a solution whose Jacobian is positive. (Here again we 
find that a theory developed under the stimulus of one class of problems from 
elasticity has illuminated another class.) 

6. Other contributions. John (1961) studied the rotation and strain in a 
deformable body with an eye toward justifying the validity of various plate 
theories by means of suitable estimates. For this purpose he used major new 
results on the Banach space BMO of functions of bounded mean oscillation 
developed by John and Nirenberg (1961) expressly for his problem and for the 
work of Moser (1961) on Harnack's inequality. (John and Nirenberg named 
BMO, which had appeared earlier in the study of conformai mappings.) BMO 
filled a gap in a natural scaling of function spaces (cf. Fefferman (1971) and 
Fefferman and Stein (1972)) and has since played a critical role in modern 
analysis. 

Galerkin (1915) in studying elastic rods and plates introduced his projection 
method, generalizing that of Rayleigh and Ritz, which approximates solutions 
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of differential equations by sequences of solutions of finite-dimensional prob
lems. The convergence of the method was demonstrated by Keldysh (1942) (cf. 
Kantorovich and Krylov (1958) and Mikhlin (1966)). The method stimulated 
advances in numerical and functional analysis. Indeed, many developments in 
the theory of operators of monotone type (mentioned in §4) and in the theory 
of variational inequalities rest on it. 

The finite element method (cf. Oden (1972) and Ciarlet (1978)), introduced 
by Courant (1943), is a version of Galerkin's method, which is particularly 
effective for the numerical treatment of boundary value problems. Its useful
ness was not appreciated at that time. The method in a different guise was 
rediscovered by Argyris (1954-1955) and by Turner, Clough, Martin and Topp 
(1956). It was thereafter intensively cultivated by engineers interested in 
structural mechanical problems of elasticity. (See Zienkiewicz (1973) for an 
historical account of this development.) That the finite element in the form 
used by engineers is but a specialization of Galerkin's method was soon 
recognized. In the 1960's mathematicians began a rigorous analysis of numeri
cal errors for the method. According to Ciarlet (1976, pp. 106-107), on whose 
assessments I am relying in this paragraph, Zlarnal (1968) gave the first general 
mathematical analysis of error in the finite element method. The continuing 
study of the method has spawned new developments in functional analysis, 
especially with respect to function spaces. 

In his local analysis of buckling of elastic structures, Koiter (1945) gave a 
systematic treatment of imperfection methods. To appreciate what these are, 
we can write (2.9) in the even more compact form 

(6.1) f(\9u) = o with/(A,0) = 0. 

In imperfection studies, the function ƒ is embedded in a one-parameter family 
of functions with values /(A, e, u) with /(A, 0, u) = /(A, u) and /(A, e, 0) ^ 0 
for e ¥* 0. In place of (6.1) we study the behavior of solutions of 

(6.2) / (X ,e ,« ) = 0. 

(An imperfection e can be introduced into (2.1), (2.4) by assuming that the 
initial shape of the rod is not straight, e could be taken as an amplitude of the 
initial curvature.) The dependence of (A, u) on e can give important insights 
into the stability of physical systems described by (6.2). 

The local analysis of the generalization of (6.2) obtained by allowing e to be 
an «-tuple of real numbers has been carried out by Thorn and Mather (cf. 
Golubitsky and Guillemin (1973), e.g.) by using methods of real algebraic 
geometry and resulted in catastrophe theory, or more generally, singularity 
theory. To the detriment of catastrophe theory, many of its first applications 
were directed to sociology rather than to the elaboration of the well-established 
path cut by Koiter. The methods of singularity theory have recently, however, 
succeeded in illuminating problems of elasticity. Moreover, the peculiarities of 
well-posed problems of elasticity have begun to influence the development of 
singularity theory. (Cf. Golubitsky and Schaeffer (1979), e.g.) 

There are of course other areas in which the influence of elasticity has been 
felt. The theory of quasilinear hyperbolic systems has received much of its 
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inspiration from gas dynamics. The nonlinear constitutive functions entering 
such systems for elastic media may have quite a form quite different from that 
for gases. An awareness of this fact is stimulating some new research directions 
in the basic theory. But it is premature to attempt an evaluation of the effect of 
elasticity. 

7. Conclusion. The equations of nonlinear elasticity are parametrized by the 
tensor-valued function that gives the Piola-Kirchhoff stress as a function of the 
position gradient. This function differs from material to material. Thus in 
nonlinear elasticity one studies a whole class of materials, generating a whole 
class of nonlinear operators. This approach is in perfect accord with the 
philosophy of nonlinear operator theory. 

Nevertheless, the abstract theories for nonlinear operators that have sprung 
up over the last twenty years have been largely incapable of treating nonlinear 
elasticity. Much of their generality was attained in directions irrelevant for 
elasticity. Those seeking to analyze the full equations of nonlinear elasticity 
had to develop their own operator theories, with inspiration from the modern 
abstract theories. As we have seen, this process has led to important develop
ments in pure analysis. 

The challenges offered by specific problems stimulated major advances. 
There was no technical obstacle that would have prevented Rabinowitz's 
Theorem from being proved, say in 1934, by Leray and Schauder. But 
Rabinowitz had the perspicacity to recognize the need for his theorem and the 
skill to surround it with a beautiful and useful theory. 

A few years ago I was astounded to discover that some very eminent 
analysts were not aware that one could easily write down the exact equations 
for the large vibrations of an elastic string. This state of affairs was no doubt 
due to failure of virtually every elementary book on partial differential 
equations to produce an honest derivation of the wave equation. (The sole 
exception known to me is the text of Weinberger (1965).) By some mathemati
cal version of Gresham's Law, the simple and convincing derivation of Euler 
(1771) was driven out of circulation and replaced by baser derivations, which 
are incompatible with the standards of precision demanded of modern analy
sis.1 

As the material of §3 was meant to suggest, it is possible to present the 
theory of nonlinear elasticity (and indeed the theory of continuum mechanics) 
in a perfectly straightforward way, which proceeds inexorably from elementary 
geometry and from basic physical principles to well-set initial-boundary value 
problems. Nothing in the derivation need be incompatible with modern 
advanced calculus; the reader need not sacrifice his right to the clarity he 
would demand of mathematics. The role of nonlinear elasticity as an examplar 
of such a comprehensible mathematical science is not the least of its contribu
tions to analysis. 

1 There is unfortunately a voluminous and growing literature devoted to doing poorly what Euler 
did well. Compared to the crimes of contemporary authors of such works, those of Greenhill were 
petty. It would help if this literature were confined to some newly founded journal, perhaps to be 
called Regressions in Applied Mathematics. 
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