SOME PROBLEMS IN POTENTIAL THEORY AND THE NOTION OF HARMONIC ENTROPY

BY BORIS KORENBLUM ${ }^{1}$

Abstract

Blaschke regions are studied for certain classes of subharmonic functions in connection with the notion of harmonic entropy. A complete description of Riesz measures for some of these classes is obtained. A new analytic inequality is established.

1. Definitions, notations and two basic problems. $k(r)(0 \leq r<1)$ will always denote a continuous nonnegative function such that $k(|z|)$ is subharmonic in the open unit disc \mathbf{D} (or, equivalently, such that $k(r)$ and $r k^{\prime}(r)$ are nondecreasing).

Definition 1. Let $\mathcal{M} \subset \mathbf{D}$ be a given set, and let $\mathcal{H}_{\langle k\rangle}(\mathcal{M})$ be the set of all nonnegative harmonic functions $u(z)$ in \mathbf{D} such that $u(z) \geq k(|z|)$ on \mathcal{M}. The following quantity will be called the harmonic k-entropy of \mathcal{M} :

$$
\begin{equation*}
\mathcal{E}(\mathcal{M} ; k)=\min \left\{u(0): u \in \mathscr{H}_{\langle k\rangle}(\mathcal{M})\right\} .^{2} \tag{1.1}
\end{equation*}
$$

If $\mathscr{H}_{\langle k\rangle}(\mathcal{M})$ is empty, we set $\mathcal{E}(\mathcal{M} ; k)=+\infty$.
DEFINITION 2. $S \mathcal{H}^{\langle k\rangle}$ will denote the class of subharmonic functions $u(z)$ in \mathbf{D} such that

$$
\begin{equation*}
u(z) \leq C_{u} k(|z|) \quad(z \in \mathbf{D}) \tag{1.2}
\end{equation*}
$$

where C_{u} is some constant (depending on u).
DEFINITION 3. $A^{\langle k\rangle}$ will denote the class of analytic functions $f(z)$ in \mathbf{D} such that $\log |f(z)| \in S H^{\langle k\rangle}$.

DEFINITION 4. A region $G \subset \mathbf{D}$ is called a k-Blaschke region if either of two equivalent ${ }^{3}$ conditions holds:
(a) for every $u \in S \mathcal{H}^{\langle k\rangle}$

$$
\begin{equation*}
b(G ; d \mu)=\int_{G}(1-|z|) d \mu(z)<\infty \tag{1.3}
\end{equation*}
$$

where $d \mu=\Delta u$ is the Riesz measure (i.e. generalized Laplacian) of u;
(b) for every $f \in \mathfrak{A}^{\langle k\rangle}$

$$
\sum_{z_{\nu} \in G}\left(1-\left|z_{\nu}\right|\right)<\infty
$$

where $\left\{z_{\nu}\right\}$ is the zero set of f.

[^0]DEFINITION 5. (1) S_{ζ} is the open Stolz angle whose closure is the convex hull of the disk $|z|<1 / \sqrt{2}$ and the point $\zeta \in \partial \mathbf{D}$.
(2) For a given closed set $F \subset \partial \mathbf{D}, G_{F}$ is the union of $S_{\varsigma}(\zeta \in F)$.
(3) \mathcal{L} is the class of regions $G=\left\{z=r e^{i \theta}: 0 \leq r<f(\theta) \leq 1\right\}$, where $f(\theta)$ is a 2π-periodic function satisfying the Lipschitz condition $\left|f\left(\theta_{1}\right)-f\left(\theta_{2}\right)\right| \leq$ $\left|\theta_{1}-\theta_{2}\right|$. It is easily seen that every G_{F} is an \mathcal{L}-region.

All results announced ${ }^{4}$ below are assoicated with the following two basic problems.
(A) Given $k(r)$, characterize regions of finite k-entropy and find estimates of that quantity.
(B) Given $k(r)$, characterize k-Blaschke regions and find effective estimates of the integral (1.3) and the sum (1.3').

The main motivation for (B) is to ultimately obtain a complete description of zero sets for $A^{\langle k\rangle}$-an objective that we are able to realize only for the case of "slowly increasing" $k(r)$. Since the problem of $\AA^{\langle k\rangle}$-zero sets is essentially a potential-theoretic one, there seems to be no good reason for studying only the special Riesz measures $d \mu=\Delta \log |f(z)|$ determined by the zeros of an $f \in \mathcal{A}^{\langle k\rangle}$, rather than the general Riesz measures for $S \mathcal{H}^{\langle k\rangle}$. In emphasizing the potential-theoretic, rather than complex-analytic, aspect, we also aim at similar multidimensional problems; in fact, some interesting results [4] for the unit ball in \mathbf{R}^{m} have recently been obtained in this circle of ideas (see also $\S 3$ below).

Understanding the structure of $\mathscr{A}^{\langle k\rangle}$-zero sets is also an essential first step towards a satisfactory factorization theory for $\AA^{\langle k\rangle}$; see [1], where the case $k(r)=|\log (1-r)|$ is treated.

As to (A), this problem is instrumental in solving (B). For slowly increasing $k(r)$ the k-entropy of an \mathcal{L}-region G can be estimated in terms of the following integral

$$
\begin{equation*}
I(G ; k)=\int_{0}^{2 \pi} k[f(\theta)] d \theta \tag{1.4}
\end{equation*}
$$

where $k(1)=k\left(1^{-}\right)(=\infty$, except for the trivial case of a bounded $k(r))$.
In the particular case $k(r)=(1-r)^{-\alpha}(0<\alpha<1)$ our problems lead to a new elementary inequality (3.3).
2. Slowly increasing $k(r)$. In this section an additional condition is imposed on $k(r)(C$ is some constant $)$:

$$
\begin{equation*}
k\left(1-x^{2}\right) \leq C k(1-x) \quad\left(0<x<\frac{1}{2}\right) \tag{2.1}
\end{equation*}
$$

Theorem 1. (i) $A G \in \mathcal{L}$ is a k-Blaschke region if and only if $I(G ; k)<\infty$.
(ii) There is a constant $\lambda>1$ depending only on $k(r)$ with the property that for every $G \in \mathcal{L}$ there is a $G^{\prime} \in \mathcal{L}, G^{\prime} \supset G$, such that $I\left(G^{\prime}, k\right)<\lambda I(G ; k)$ and

$$
\begin{equation*}
\lambda^{-1} I(G ; k) \leq \mathcal{E}\left(G^{\prime}, k\right)<\lambda I(G ; k) \tag{2.2}
\end{equation*}
$$

[^1]THEOREM 2. The necessary and sufficient condition for a nonnegative Borel measure $d \mu$ in \mathbf{D} to be the Riesz measure of a function $u \in S \nVdash^{\langle k\rangle}$ is

$$
\begin{equation*}
b\left(G_{F} ; d \mu\right) \leq C I\left(G_{F} ; k\right) \tag{2.3}
\end{equation*}
$$

for all finite sets $F \subset \partial \mathbf{D}$ (C is some constant). In this case (2.3) holds also for all $G \in \mathcal{L}$, but perhaps with a greater constant C.
3. Some other results. (1) A Stolz angle is a Blaschke region for $S H^{\langle k\rangle}$ if and only if

$$
\begin{equation*}
\int_{0}^{1}\left[k(r)(1-r)^{-1}\right]^{1 / 2} d r<\infty \tag{3.1}
\end{equation*}
$$

(See [2].) A similar result for the unit ball in \mathbf{R}^{m} (with $1 / m$ substituted for $1 / 2$ in (3.1)) has recently been obtained by Krzysztof Samotij (written communication).
(2) Consider the region $G=\left\{z \in \mathbf{D}: M\left(1-|z|^{2}\right)|1-z|^{-2}>k(|z|)\right\}$, where M is large enough to ensure that $G \supset S_{1}$. Then (3.1) implies $I(G ; K)<$ ∞ and $\mathcal{E}(G ; k)<\infty$.
(3) A recent result by C. N. Linden [3] shows that, under some extra conditions on the regularity of growth of k, (3.1) implies that the above region G is a Blaschke region for $S \not H^{\langle k\rangle}$. Similar results describing some "tangential" Blaschke regions for the ball in \mathbf{R}^{m} are given in [4].
(4) In attempting to extend the results of $\S 2$ to wider classes of subharmonic functions, it is natural to consider the particular case $k(r)=(1-r)^{-\alpha}$, where α is fixed, $0<\alpha<1$. In this case the assertion (i) of Theorem 1 still holds, provided the function $r=f(\theta)$, which describes the boundary of G, has a finite number of maxima and minima. The proof of this depends on

THEOREM 3. There is a constant C_{α} such that for arbitrary real $x_{0}<x_{1}<$ $\cdots<x_{n}$ satisfying

$$
\begin{equation*}
x_{1}-x_{0} \leq x_{2}-x_{1} \leq \cdots \leq x_{n}-x_{n-1} \tag{3.2}
\end{equation*}
$$

and for arbitrary nonnegative $\left\{m_{i}\right\}_{0}^{n}$, the following inequality holds:

$$
\begin{align*}
& \int_{x_{0}}^{x_{n}}\left\{\sum_{0}^{n} m_{i}\left(x-x_{i}\right)^{-2}\right\}^{\alpha /(\alpha+1)} d x \tag{3.3}\\
& \quad \leq C_{\alpha}\left(\sum_{0}^{n} m_{i}\right)^{\alpha /(\alpha+1)}\left\{\sum_{1}^{n}\left(x_{i}-x_{i-1}\right)^{1-\alpha}\right\}^{1 /(\alpha+1)}
\end{align*}
$$

Because of the restriction (3.2), which cannot be dropped altogether, our results for this case fall short of a complete description of Riesz measures.

References

1. B. Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187-219.
2. W. K. Hayman and B. Korenblum, A critical growth rate for functions regular in a disk, Michigan Math. J. 27 (1980), 21-30.
3. C. N. Linden, Regular functions of restricted growth and their zeros in tangential regions, preprint.
4. P. J. Rippon, The boundary behaviour of certain delta-subharmonic functions, preprint.

Department of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222

[^0]: Received by the editors January 28, 1982 and, in revised form, September 3, 1982.
 1980 Mathematics Subject Classification. Primary 31A05, 30C15; Secondary 26D15.
 ${ }^{1}$ Supported by NSF grant MCS80-03413.
 ${ }^{2}$ The use of that term, borrowed from Information Theory, is suggested by this interpretation: if $u(z)$ is conceived as a "signal" of strength $u(0)$ and $k(|z|)$ as the "noise", then $\mathcal{E}(\mathcal{M} ; k)$ is the strength of the weakest signal that overcomes the noise on \mathcal{M}.
 ${ }^{3}$ The equivalence of (a) and (b) is easily proved.

[^1]: ${ }^{4}$ Detailed proofs will be published elsewhere.

