SOME PROBLEMS IN POTENTIAL THEORY AND THE NOTION OF HARMONIC ENTROPY

BY BORIS KORENBLUM¹

ABSTRACT. Blaschke regions are studied for certain classes of subharmonic functions in connection with the notion of harmonic entropy. A complete description of Riesz measures for some of these classes is obtained. A new analytic inequality is established.

1. Definitions, notations and two basic problems. k(r) $(0 \le r < 1)$ will always denote a continuous nonnegative function such that k(|z|) is subharmonic in the open unit disc **D** (or, equivalently, such that k(r) and rk'(r) are nondecreasing).

DEFINITION 1. Let $\mathcal{M} \subset \mathbf{D}$ be a given set, and let $\mathcal{H}_{(k)}(\mathcal{M})$ be the set of all nonnegative harmonic functions u(z) in \mathbf{D} such that $u(z) \ge k(|z|)$ on \mathcal{M} . The following quantity will be called the harmonic k-entropy of \mathcal{M} :

(1.1)
$$\mathcal{E}(\mathcal{M};k) = \min\{u(0): u \in \mathcal{H}_{(k)}(\mathcal{M})\}.^2$$

If $\mathcal{H}_{\langle k \rangle}(\mathcal{M})$ is empty, we set $\mathcal{E}(\mathcal{M};k) = +\infty$.

DEFINITION 2. $S\mathcal{H}^{\langle k \rangle}$ will denote the class of subharmonic functions u(z) in **D** such that

(1.2)
$$u(z) \le C_u k(|z|) \quad (z \in \mathbf{D}),$$

where C_u is some constant (depending on u).

DEFINITION 3. $\mathcal{A}^{\langle k \rangle}$ will denote the class of analytic functions f(z) in **D** such that $\log |f(z)| \in S \mathcal{H}^{\langle k \rangle}$.

DEFINITION 4. A region $G \subset \mathbf{D}$ is called a k-Blaschke region if either of two equivalent³ conditions holds:

(a) for every $u \in S \mathcal{H}^{\langle k \rangle}$

(1.3)
$$b(G;d\mu) = \int_G (1-|z|) \, d\mu(z) < \infty,$$

where $d\mu = \Delta u$ is the Riesz measure (i.e. generalized Laplacian) of u; (b) for every $f \in \mathcal{A}^{\langle k \rangle}$

(1.3')
$$\sum_{z_{\nu}\in G} (1-|z_{\nu}|) < \infty,$$

where $\{z_{\nu}\}$ is the zero set of f.

© 1983 American Mathematical Society 0273-0979/83/0000-1427/\$01.75

Received by the editors January 28, 1982 and, in revised form, September 3, 1982. 1980 Mathematics Subject Classification. Primary 31A05, 30C15; Secondary 26D15.

¹Supported by NSF grant MCS80-03413.

²The use of that term, borrowed from Information Theory, is suggested by this interpretation: if u(z) is conceived as a "signal" of strength u(0) and k(|z|) as the "noise", then $\mathcal{E}(\mathcal{M};k)$ is the strength of the weakest signal that overcomes the noise on \mathcal{M} .

³The equivalence of (a) and (b) is easily proved.

DEFINITION 5. (1) S_{ζ} is the open Stolz angle whose closure is the convex hull of the disk $|z| < 1/\sqrt{2}$ and the point $\zeta \in \partial \mathbf{D}$.

(2) For a given closed set $F \subset \partial \mathbf{D}$, G_F is the union of $S_{\zeta}(\zeta \in F)$.

(3) \mathcal{L} is the class of regions $G = \{z = re^{i\theta} : 0 \le r < f(\theta) \le 1\}$, where $f(\theta)$ is a 2π -periodic function satisfying the Lipschitz condition $|f(\theta_1) - f(\theta_2)| \le |\theta_1 - \theta_2|$. It is easily seen that every G_F is an \mathcal{L} -region.

All results announced⁴ below are assoicated with the following two basic problems.

(A) Given k(r), characterize regions of finite k-entropy and find estimates of that quantity.

(B) Given k(r), characterize k-Blaschke regions and find effective estimates of the integral (1.3) and the sum (1.3').

The main motivation for (B) is to ultimately obtain a complete description of zero sets for $\mathcal{A}^{\langle k \rangle}$ -an objective that we are able to realize only for the case of "slowly increasing" k(r). Since the problem of $\mathcal{A}^{\langle k \rangle}$ -zero sets is essentially a potential-theoretic one, there seems to be no good reason for studying only the special Riesz measures $d\mu = \Delta \log |f(z)|$ determined by the zeros of an $f \in \mathcal{A}^{\langle k \rangle}$, rather than the general Riesz measures for $S\mathcal{H}^{\langle k \rangle}$. In emphasizing the potential-theoretic, rather than complex-analytic, aspect, we also aim at similar multidimensional problems; in fact, some interesting results [4] for the unit ball in \mathbb{R}^m have recently been obtained in this circle of ideas (see also §3 below).

Understanding the structure of $\mathcal{A}^{\langle k \rangle}$ -zero sets is also an essential first step towards a satisfactory factorization theory for $\mathcal{A}^{\langle k \rangle}$; see [1], where the case $k(r) = |\log(1-r)|$ is treated.

As to (A), this problem is instrumental in solving (B). For slowly increasing k(r) the k-entropy of an \mathcal{L} -region G can be estimated in terms of the following integral

(1.4)
$$I(G;k) = \int_0^{2\pi} k[f(\theta)] d\theta,$$

where $k(1) = k(1^{-})$ (= ∞ , except for the trivial case of a bounded k(r)).

In the particular case $k(r) = (1-r)^{-\alpha}$ ($0 < \alpha < 1$) our problems lead to a new elementary inequality (3.3).

2. Slowly increasing k(r). In this section an additional condition is imposed on k(r) (C is some constant):

(2.1)
$$k(1-x^2) \le Ck(1-x) \quad (0 < x < \frac{1}{2}).$$

THEOREM 1. (i) $A \ G \in \mathcal{L}$ is a k-Blaschke region if and only if $I(G; k) < \infty$. (ii) There is a constant $\lambda > 1$ depending only on k(r) with the property that for every $G \in \mathcal{L}$ there is a $G' \in \mathcal{L}$, $G' \supset G$, such that $I(G', k) < \lambda I(G; k)$ and

(2.2)
$$\lambda^{-1}I(G;k) \le \mathcal{E}(G',k) < \lambda I(G;k).$$

⁴Detailed proofs will be published elsewhere.

THEOREM 2. The necessary and sufficient condition for a nonnegative Borel measure $d\mu$ in **D** to be the Riesz measure of a function $u \in S \mathcal{H}^{\langle k \rangle}$ is

$$(2.3) b(G_F; d\mu) \le CI(G_F; k)$$

for all finite sets $F \subset \partial \mathbf{D}$ (C is some constant). In this case (2.3) holds also for all $G \in \mathcal{L}$, but perhaps with a greater constant C.

3. Some other results. (1) A Stolz angle is a Blaschke region for $S\mathcal{H}^{\langle k \rangle}$ if and only if

(3.1)
$$\int_0^1 [k(r)(1-r)^{-1}]^{1/2} dr < \infty.$$

(See [2].) A similar result for the unit ball in \mathbb{R}^m (with 1/m substituted for 1/2 in (3.1)) has recently been obtained by Krzysztof Samotij (written communication).

(2) Consider the region $G = \{z \in \mathbf{D} \colon M(1-|z|^2)|1-z|^{-2} > k(|z|)\}$, where M is large enough to ensure that $G \supset S_1$. Then (3.1) implies $I(G;K) < \infty$ and $\mathcal{E}(G;k) < \infty$.

(3) A recent result by C. N. Linden [3] shows that, under some extra conditions on the regularity of growth of k, (3.1) implies that the above region G is a Blaschke region for $S\mathcal{H}^{\langle k \rangle}$. Similar results describing some "tangential" Blaschke regions for the ball in \mathbb{R}^m are given in [4].

(4) In attempting to extend the results of §2 to wider classes of subharmonic functions, it is natural to consider the particular case $k(r) = (1-r)^{-\alpha}$, where α is fixed, $0 < \alpha < 1$. In this case the assertion (i) of Theorem 1 still holds, provided the function $r = f(\theta)$, which describes the boundary of G, has a finite number of maxima and minima. The proof of this depends on

THEOREM 3. There is a constant C_{α} such that for arbitrary real $x_0 < x_1 < \cdots < x_n$ satisfying

$$(3.2) x_1 - x_0 \le x_2 - x_1 \le \cdots \le x_n - x_{n-1},$$

and for arbitrary nonnegative $\{m_i\}_{0}^{n}$, the following inequality holds:

(3.3)
$$\int_{x_0}^{x_n} \left\{ \sum_{0}^{n} m_i (x - x_i)^{-2} \right\}^{\alpha/(\alpha+1)} dx \\ \leq C_{\alpha} (\sum_{0}^{n} m_i)^{\alpha/(\alpha+1)} \left\{ \sum_{1}^{n} (x_i - x_{i-1})^{1-\alpha} \right\}^{1/(\alpha+1)}.$$

Because of the restriction (3.2), which cannot be dropped altogether, our results for this case fall short of a complete description of Riesz measures.

References

- 1. B. Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187-219.
- W. K. Hayman and B. Korenblum, A critical growth rate for functions regular in a disk, Michigan Math. J. 27 (1980), 21–30.

BORIS KORENBLUM

- 3. C. N. Linden, Regular functions of restricted growth and their zeros in tangential regions, preprint.
- 4. P. J. Rippon, The boundary behaviour of certain delta-subharmonic functions, preprint.

Department of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222