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SOME PROBLEMS IN POTENTIAL THEORY 
AND THE NOTION OF HARMONIC ENTROPY 

BY BORIS KORENBLUM1 

ABSTRACT. Blaschke regions are studied for certain classes of subhar-
monic functions in connection with the notion of harmonic entropy. 
A complete description of Riesz measures for some of these classes is 
obtained. A new analytic inequality is established. 

1. Definitions, notations and two basic problems. k(r) (0 < r < 1) will 
always denote a continuous nonnegative function such that k(\z\) is subhar-
monic in the open unit disc D (or, equivalently, such that k(r) and fk'(r) are 
nondecreasing). 

D E F I N I T I O N 1. Let M C D be a given set, and let M(k)(M) be the set of all 
nonnegative harmonic functions u(z) in D such that u{z) > k(\z\) on At. The 
following quantity will be called the harmonic k-entropy of M: 

(1.1) £{M;k) = mm{u{0): ueX{k){M)}.2 

If #(fc)(M) is empty, we set £(M; k) = +oo. 
DEFINITION 2. SK^ will denote the class of subharmonic functions u(z) 

in D such that 
(1.2) u{z)<Cuk{\z\) {zeV), 

where Cu is some constant (depending on u). 
D E F I N I T I O N 3. A^ will denote the class of analytic functions f(z) in D 

such that log |/(s)| €$#<*>. 
DEFINITION 4. A region G C D is called a /c-Blaschke region if either of 

two equivalent3 conditions holds: 
(a) for every ue SM^ 

(1.3) b{G;dv) = [ (1 - \z\)d^i{z) < oo, 

where d[i — Au is the Riesz measure (i.e. generalized Laplacian) of u; 
(b) for every ƒ G A^k) 

(1.3') E(1-M<00' 
zueG 

where {zu} is the zero set of ƒ. 
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2 The use of that term, borrowed from Information Theory, is suggested by this inter

pretation: if u(z) is conceived as a "signal" of strength u(0) and A;(|̂ |) as the "noise", then 
£(M;k) is the strength of the weakest signal that overcomes the noise on M. 

3 The equivalence of (a) and (b) is easily proved. 
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D E F I N I T I O N 5. (1) 5C is the open Stolz angle whose closure is the convex 
hull of the disk \z\ < l/>/2 and the point ç € 3D. 

(2) For a given closed set F c dD, GF is the union of S^ G F). 
(3) L is the class of regions G = {z = re**: 0 < r < ƒ(#) < 1}, where ƒ(#) 

is a 27r-periodic function satisfying the Lipschitz condition | f{0\) — /(öa)| < 
|#i — #21. It is easily seen that every Gp is an L-region. 

All results announced4 below are assoicated with the following two basic 
problems. 

(A) Given k(r), characterize regions of finite /c-entropy and find estimates 
of that quantity. 

(B) Given k(r), characterize /c-Blaschke regions and find effective estimates 
of the integral (1.3) and the sum (1.3'). 

The main motivation for (B) is to ultimately obtain a complete description 
of zero sets for ^ fc)-an objective that we are able to realize only for the case 
of "slowly increasing" k(r). Since the problem of A^-zero sets is essentially 
a potential-theoretic one, there seems to be no good reason for studying only 
the special Riesz measures dy, — A log | ƒ (2) | determined by the zeros of an 
ƒ G A^k\ rather than the general Riesz measures for SM^. In emphasizing 
the potential-theoretic, rather than complex-analytic, aspect, we also aim at 
similar multidimensional problems; in fact, some interesting results [4] for the 
unit ball in R m have recently been obtained in this circle of ideas (see also §3 
below). 

Understanding the structure of A^-zero sets is also an essential first step 
towards a satisfactory factorization theory for A^] see [1], where the case 
k(r) = I log(l — r)\ is treated. 

As to (A), this problem is instrumental in solving (B). For slowly increasing 
k(r) the /c-entropy of an L-region G can be estimated in terms of the following 
integral 

/»27T 

(1.4) I(G;k)= k[f(9)}de, 
JO 

where A;(l) = A;(l~) (= 00, except for the trivial case of a bounded k(r)). 
In the particular case k(r) = (1 — r)~a ( 0 < a < l ) our problems lead to a 

new elementary inequality (3.3). 

2. Slowly increasing k(r). In this section an additional condition is imposed 
on k(r) (C is some constant): 

(2.1) fc(l - x2) < Ck{l -x) (0 < x < £). 

THEOREM 1. (i) A G E L is a k-Blaschke region if and only ifI(G; k)<oo. 
(ii) There is a constant X > 1 depending only on k(r) with the property that 

for every Get there is aG' e L, G' D G, such that I(G', k) < X/(G; k) and 

(2.2) X"1/(G; k) < £{G', k) < X/(G; k). 

4Detailed proofs will be published elsewhere. 
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THEOREM 2. The necessary and sufficient condition for a nonnegative 
Borel measure d/j, in D to be the Riesz measure of a function u G S'H^ is 

(2.3) b{GF]dfi)<CI{GF]k) 

for all finite sets F c 3D (C is some constant). In this case (2.3) holds also for 
all G G L, but perhaps with a greater constant C. 

3. Some other results. (1) A Stolz angle is a Blaschke region for SM^ if 
and only if 

(3.1) f [ik(r)(l - r ) " 1 ] 1 7 2 dr < oo. 
J o 

(See [2].) A similar result for the unit ball in R m (with 1/ra substituted 
for 1/2 in (3.1)) has recently been obtained by Krzysztof Samotij (written 
communication). 

(2) Consider the region G = {z G D: M(l - |*|2)|1 - z\~2 > k(\z\)}, where 
M is large enough to ensure that G D Si. Then (3.1) implies I(G;K) < 
oo and £(G;k) < oo. 

(3) A recent result by C. N. Linden [3] shows that, under some extra 
conditions on the regularity of growth of k, (3.1) implies that the above region 
G is a Blaschke region for S # ^ . Similar results describing some "tangential" 
Blaschke regions for the ball in R m are given in [4]. 

(4) In attempting to extend the results of §2 to wider classes of subharmonic 
functions, it is natural to consider the particular case k(r) = (1 — r)~a, where 
a is fixed, 0 < a < 1. In this case the assertion (i) of Theorem 1 still holds, 
provided the function r = f (6), which describes the boundary of G, has a 
finite number of maxima and minima. The proof of this depends on 

T H E O R E M 3. There is a constant Ca such that for arbitrary real XQ < x\ < 
• • • < xn satisfying 

(3.2) xx - XQ < x2 - xi < • • • < xn - xn_i, 

and for arbitrary nonnegative {m^, the following inequality holds: 

dx 

(3.3) 
/

xn ( n "I 

<J2mi(x-Xi)~2\ 

< Ca(£m<) t t/( t t+1)|ê(x i- f l; i_1)1-0 | 
l/(a+l) 

Because of the restriction (3.2), which cannot be dropped altogether, our 
results for this case fall short of a complete description of Riesz measures. 
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