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LECTURES ON MORSE THEORY, OLD AND NEW 

BY RAOUL BOTT1 

Morse Theory is a beautiful and natural extension of the minimum principle 
for a continuous function on a compact space. In these lectures I would like to 
discuss it in the context of two problems in analysis which have self-evident 
geometric interest as well as physical origins. 

The first question is simply this. Let M be a compact connected C00 

manifold endowed with a fixed Riemannian structure. For instance you might 
think of the two-sphere S2 with the Riemann structure inherited from an 
imbedding of S2 in R3. 

Question. Does such an M always carry a nontrivial closed geodesic? 
Recall here first of all that on a compact manifold any two points P and Q 

can be joined by a geodesic which minimizes the length of all piecewise smooth 
curves joining P to Q in M. In one way or another this is then an application of 
the minimum principle, and conceptually you should think of pulling a string 
confined to M and joining P and Q as tight as possible. When the string has 
assumed a position in which it cannot be tightened any more, then it describes 
a geodesic joining P to Q. If it cannot be tightened further even after a 
"jiggling", then it describes the minimal geodesic in question. 

This "pulling tight" principle works also for finding closed geodesies, 
provided only that we have some constraint to pull against. 

Thus if a is a piecewise smooth map of the circle 

a:Sx -* M 
which cannot be deformed to a point in M, then shortening a in its homotopy 
class will indeed produce a closed geodesic. 

Put differently, let AM, denote the space of continuous maps from Sl to M: 

A M = M a p ( 5 1 , M ) , 

in the compact open topology. 
Also let A^Af denote the component of the constant maps of Sl to M. Then 

a classical theorem going back to Hadamard, Cartan, etc., asserts that 

THEOREM. Every component of AM other than A^M contains a bona fide 
closed geodesic. 
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Let me indicate a proof, once you grant me the following fundamental 
existence theorem of Riemannian geometry. 

LEMMA. There exists a constant e(M) — e > 0 such that any two points p9 q on 
M with distance p(p9 q) < e are joined by a unique minimizing geodesic segment 
s(p9 q) of length p(p9 q). Furthermore s2(p9 q) varies smoothly with (p9 q) in 
the region p(p,q) < e of M X M. 

Armed with this fact, which in turn follows directly from the existence 
theorems governing elliptic ordinary differential equations, one may argue as 
follows to establish our theorem. 

Let a: Sl -* M, be some point in AS9 not in the component A^S. From the 
continuity of a it follows that we can subdivide the circle Sl into a finite 
number of intervals A,, i = 1,...,«, such that for/?, q E A,, a(p) and a(q) are 
within e of each other. Now let P09 Pl9...9Pn_l9 P0, denote the endpoints of 
the A,-, cyclicly arranged on S\ and let s(P09...9Pn_l9 P0) be the geodesic 
polygon spanned by the geodesic segments s(Pi9 Pi+i)—whose existence fol
lows from our lemma—parametrized proportionally to arc length, and in 
proportion to the length of A,. Then it should be clear from the picture below 
that we can deform a in A into s(P09... ,P0). 

FIGURE 1 

Here think of / as a deformation parameter which controls a point Pt on A, 
moving from Pi+l to Pt as t goes from 0 to 1. Now let at be the curve which 
follows a until Pt and then replaces the rest of the curve by s(Pt9 Pi+\). 

This is Morse's basic deformation principle and can be used to deform all 
geodesic problems into finite dimensional ones. In any case at this stage we 
have seen that: 

Each component of AM contains a geodesic polygon. 
To proceed further choose 0 < e < e(M) and let 

PnM C M X M X • • • XM (n copies) 

be the subset of «-tuples (P, , . . . 9Pn) with the property that 

(1.1) p(Pl9 P2f + p(P29 P3f + • • • +p(Pn9 Prf < e. 

Then PnM is a compact subset of M(n\ Further (1.1) implies that each term 
on the left is < c, so that every point of PnM determines a closed «-sided 
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geodesic polygon with vertices at the Pt. If we parametrize the polygons 
proportionally to arc length, starting at Px say, we finally obtain a natural 
inclusion 

r.PnM^AM, 

which is clearly continuous. 
At first sight it might seem that Pn contains only "short" polygons. However 

observe that by subdividing a polygon, say by introducing new vertices at the 
midpoints of the edges, the expression on the left of (1.1) is reduced because 
each term p2 = p(Pi9 Pi+})

2 is replaced by (p,/2)2 + (pt/2)2 = p2/2. It follows 
that any geodesic polygon in AM occurs as the image of a point in Pn for n large 
enough. 

At this stage it is clear that we may confine our search for closed geodesies 
among the geodesic polygons of Pn in each component of AM. For this 
purpose let 

E:PnM->R 

be the energy function 

(1.2) E(PU...,P„) = ïp{Pn,Pi+xf; Pn+x=Px, 

given by the L.H.S. of (1.1). This energy function is clearly smooth in a vicinity 
of Pn C M(w). Hence E must assume a minimum in each component. Further 
by increasing «, if necessary, we can arrange it that E takes on this minimum 
at an interior point, i.e. one with E < e. 

At such a point dE, the differential of E, must therefore vanish. It remains 
to establish the following assertion: A critical point of E on PnM gives rise to a 
polygon without corners and all of whose edges have equal length. In short, to a 
closed geodesic. 

This comes about by virtue of the first variation formula for our function p2 

in the vicinity of the diagonal i n M X M . Indeed in the region p(P, Q)2 < e2, 
one has the following. 

LEMMA, (a) The diagonal M C M X M is a critical submanifold for p2, whose 
Hessian is nondegenerate in the normal direction to M. 

(b) At a point (P> Q) of the diagonal in our region, dp2 is given by the formula 

(1.2) dp2(YP, YQ) = p{{X+ , YQ) - (X- , YP)}. 

Here, X+, X~ denote the tangents of unit length to s(P, Q) at Q and P 
respectively, the Y 's are tangent vectors at P and Q and ( , ) denotes the inner 
product. 

Summing this expression at the vertices (Pl9... ,Pn) of a point in PnM yields 

(1.3) dE(Yl>...,Yn) = 2(Yi,\Sl_l\Xf_l-\Si\X-), 
2 

where the index n + 1 is again to be taken as equal to 1. 
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At a critical point, therefore, we must have 

(1.4) | $ ,_ , !*£ , = | S | AT, « = 2 , . . . , « + l , 

which precisely expresses the no corner, equal length condition. Q.E.D. 
This completely elementary argument therefore establishes the classical 

Theorem I. An analogous argument could be used to prove the existence of a 
minimizing geodesic joining two points on M, or the existence of a geodesic 
joining two submanifolds N{ and N2 in M with minimal length. 

But consider now the case of a compact simply connected manifold M, for 
example S2. Then AM has only one component on which the minimum 
principle only yields the trivial "point paths" of AM. 

Note by the way if e: AM -> M denotes the evaluation map a \-+ a(0) then 
these point paths furnish us with section TJ: M -> AM to e. Technically e is a 
fibration in the sense of Serre, with fiber the space of loops QM, that is, the 
subspace of AM consisting of maps a with a(0) some fixed point/? of M. 

From these two remarks it follows by quite elementary homotopy theory, 
and Serre's form of the Hurewicz theorem, that the homotopy groups of AM 
cannot all be trivial. Indeed, from the homotopy exact sequence of a fibering 
and the existence of a section to e, it follows that 

(1.5) T T / A M ) = 7Tq(M) © irq{QM). 

Next, from the near tautologous isomorphism irq+l(M) - TT^ŒM), q ^ 1, it 
follows that 

(1.6) wq(AM) = trq(M)(Dirq+l(M). 

Finally the irq(M) cannot all be trivial, by Serre's Hurewicz theorem and 
Poincaré duality. Q.E.D. 

At this stage it suggests itself that one should be able to use the fact that 
77^AM) T^ 0 for some q, as a constraint against which one could again 
minimize and so produce a new extremum. This plan can indeed be carried out 
and the guiding principle for it was formulated already by G. B. Birkhoff 
before 1920. It is known as his minimax principle. 

To illustrate its application in our present context, let us first simplify 
matters by once again replacing AM by PnM for n large enough. Indeed the 
same retraction described earlier, but now done with a compact set of 
parameters, easily leads to the following [see [Bl] for details]. 

LEMMA. For any fixed q, there exists annq such that 

(1.7) *k(
PnM) ~ *k(AM) forallk^qandn>nq. 

In short, the Pn approximate AM arbitrarily well in homotopy, and therefore 
in homology as well. 

To prove the existence of a classical geodesic in AM we now argue as 
follows. Let £ G irq{M) be a nontrivial element of lowest dimension. Then 
according to (1.6), | gives rise to a nontrivial element 7£ in mq_ ,(AM). 

Next choose n> nqi so that P — PnM approximates AM to dimension q. 
Then 7£ £ ^q-\(P) is also nontrivial. 
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On P we now again consider our energy function E, whose critical points 
yield closed geodesies. Hence we will be done once we find a critical point of E 
on P other than a point path, i.e. one with E > 0. These point paths of course 
constitute a submanifold M C P , on which the energy function assumes an 
absolute minimum. Assume then—we are out to find a contradiction—that E 
has no other critical points on P. Then the negative gradient of £, that is, the 
vector field A" on P, defined by the formula 

(1.8) -(X,Y) = dE(Y), 

is nonvanishing on P — Af, and always points downwards. Hence following the 
flow generated by X will eventually deform P into a tubular neighborhood of 
M, which in turn can be retracted to M. It follows that under our assumption 
all homotopy elements of P come from M. But this is manifestly not the case for 
7Tg. Indeed, by construction T£ G TT^P) ̂  0 while irq(M) = 0. Q.E.D. 

This argument therefore establishes the beautiful theorem of Lyusternik and 
Fet [L-F]: 

THEOREM. Let M be compact and simply connected. Then M carries at least 
one closed geodesic. 

Let me now explain how this argument is related to the "minimax principle". 
For that purpose consider the set of maps t\\ Sq^> P representing T{, and try 
to push 7} as far down, relative to E, as possible. In short consider the real 
number 

(1.9) ic = infMax(£,ij), [ry] G 7Ç. 

As we just saw K > 0. The minimax principle simply asserts, that this K must 
be a critical value of E. The proof is again a quite elementary consequence of 
pushing down in the direction of steepest descent—i.e. along the negative 
gradient—and I think of it usually as a corollary of what one might call the 
first theorem of Morse Theory. To formulate it and to deduce the minimax 
principle from it, let us abstract the situation though, so that from now on in 
this lecture, P will just denote some arbitrary smooth manifold, and E SL 
smooth function on P9 whose "half-spaces" Pa = {p E P \ E(p) < a} however 
are assumed to be compact. 

This understood let a < b be real numbers and consider the inclusion of 
half-spaces Pa C Ph. 

THEOREM A. If there is no critical point of E in the region a < E < b, then 

(1.10) Pa~Pb 

in the sense that they are diffeomorphic. 

PROOF. Consider a trajectory of our negative gradient as it leaves the set 
E — b at time 0. At time (b — a) it is intersecting E — b transversally. Hence 
by compactness all of them intersect E — a — e for some fixed e > 0. Pictori-
ally each trajectory thus has the three singled out points (see diagram) of 
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intersection with these three level surfaces. Now simply deform the interval 
[0,2] into [1,2] by pushing downwards, but all the time keeping some vicinity 
of 2 pointwise fixed. 

Performing this simultaneously for all of these trajectories, yields the desired 
diffeomorphism. This argument simultaneously shows that 

COROLLARY 1. Under the conditions of Theorem I the inclusion Pa =-> Pb is a 
homotopy equivalence. 

COROLLARY 2. The minimax principle is valid. 

PROOF. Suppose y\n is a sequence of maps with Max E \ t]n tending to K. Then 
if K is not critical, pushing down a fixed e along the trajectories of X produces a 
new sequence t\\ still representing the same element but with Max E \ i\n -> K — 
e. Thus K is not the inf. Q.E.D. 

We have carried through this discussion in terms of the homotopy functor, 
but notice that any homotopy invariant functor would do just as well in both 
these corollaries. Thus singular theory, or in the equivariant situation, equiv-
ariant singular theory, or K theory, etc. could clearly also be used to predict 
critical points of a function. On the other hand Theorem A furnishes us with 
no overall estimate of just how many critical points to expect, and in my 
second lecture I will indicate two quite different steps in this direction, one due 
to Morse and the other due to Lyusternik and Schnirelmann, both these ideas 
therefore stemming from the 20's. 

Finally a word about the course I steered in this lecture. The polygonal 
approximation principle is Morse's and otherwise I have followed the account 
given, say in [K], where the reader will also find a very thorough bibliography. 
My only contribution is the observation that Pn, defined simply as the 
half-space E < e already approximates AM. For the explicit homotopy equiva
lences the reader is referred to [Bl]—where they are carried out for the fixed 
endpoint case. But the argument transparently carries over to our situation. 
Following Palais and Smale, Klingenberg of course carries out everything in 
the infinite dimensional context of Hilbert-manifolds. That is, his AM is 
defined as the space of H !-maps of Sl to M, and the gradient deformations are 
then carried out directly in this context. 

I know of no aspect of the geodesic question where this approach is 
essential; however it clearly has some aesthetic advantages, and points the way 
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for situations where finite dimensional approximations are not possible—for 
instance in the Yang-Mills situation, to be discussed in my third lecture. 

Lecture 2. In the last lecture we saw how any change in homotopy type of 
half-spaces Wa C Wb of a smooth function ƒ on a compact manifold W 
predicts a critical point in the range a <f< b, and how pushing a nontrivial 
homotopy and homology class of Ph—which is not in Pa—down, will lead one 
to a critical value of the function ƒ. This procedure however lacks any 
quantitative information, for it is quite possible that two, say, nonhomologous 
classes "get stuck" at the same critical point. 

In Morse Theory this lack is redressed in the following manner: First of all 
one studies what happens for the "generic function" on M and then refers all 
other cases to the generic one, by some limiting procedure. 

Let me now describe this development in some detail. 
Consider then a critical point p of ƒ on W, and let xx • • • xn be local 

coordinates on W centered at p. The fact that p is a critical point expresses 
itself in the vanishing of df — S^Z/Bx,) dxt dXp. That is 

(2.0 # 1 - 0 . 

Consider next the Hessian matrix 

<") "I, = 
dxidxJ ]p 

This Hessian of course depends on the local coordinates, but the rank of Hf 
and the number of negative eigenvalues of Hf is seen to be invariant under 
coordinate changes. Morse introduces the terms 

(2.3) nullity of p (rel ƒ ) = dim W - rank H f \p, 

index oïp (rel ƒ ) = number of negative eigenvalues of Hf | 

and calls a function ƒ nondegenerate if all its critical points have nullity 0. 
These are the generic functions in the sense that in the vicinity of every 

function one may find a generic one. In any case, for a generic ƒ Morse 
introduces the quantity 

(2.4) 9M/) = 2<X('\ ptC(f), 
P 

where the sum is extended over the critical points C( ƒ ) of/, and X(p) = index 
of jp relative to / . 

This sum turns out to be finite because nondegeneracy easily implies the 
discreteness of the critical points and W was assumed compact. This poly
nomial, which I will call the Morse polynomial (or series) of ƒ is then Morse's 
quantitative measure of the critical behavior of ƒ, and he shows that the 
homology of W sets a definite lower bound on it. Precisely let 

(2.5) Pt(W) = 2tkdim Hk(W\K) 
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be the Poincaré series of W with homology taken relative to some fixed 
coefficient field K. Then the following inequalities hold. 

Morse inequalities. For every nondegenerate ƒ there exists a polynomial 
Qt( f ) = % + 4\t + ' " with nonnegative coefficients such that 

(2.6) 9 1 t , ( / ) - P , ( ^ ) = ( l + 0 Ö , ( / ) . 

We often write 91t,( ƒ ) > i 3 ^ ) for (2.6). Clearly this inequality implies that 
9IL,( ƒ ) majorizes ^(W) coefficient by coefficient. Thus (2.6) predicts at /easf 
P,(M) critical points for any nondegenerate ƒ on M. However (2.6) is much 
stronger than this estimate, namely the (1 + t) factor on the right implies a 
feedback relationship between critical points of various indices. The power of 
this feedback is maybe best illustrated by the following corollary of the Morse 
inequalities. 

MORSE'S LACUNARY PRINCIPLE. Suppose that no consecutive powers oft occur 
in 91t,(ƒ). Then Qt(f) = 0so that 

(2.7) % ( / ) = *,(»0 
for every coefficient field K. In particular, W is then free of torsion. 

PROOF. The first nonvanishing power of / on the left of (2.6) clearly implies 
that the next power also occurs on the right and hence by (2.6) must also occur 
on the left in 9tt,( ƒ ). Q.E.D. 

The power of this principle is that it sometimes allows one to compute the 
complete additive homology structure of W9 from purely local computations 
near the critical points off. 

A favorite example of mine is the following. Consider the unit sphere S2n+1 

n 

2 l * / l 2 = i» i = o , . . . , « , 
0 

in Cw+1, and on it the function <p(z) = 2g X, | zt |
2 where \0<Xl< • • < Xn 

are a sequence of distinct real numbers. It is clear that <p is invariant under the 
action 

e»:(z0,...,zm)-(e*z0,...,e»zm) 

of S] on S2n+\ and hence descends to CPn the projective space. Now, by the 
principle of Lagrange multipliers, if you wish, the extrema of q> correspond to 
the coordinate axes, and the eigenvalues of the Hessian of <p along the z'th-axis 
are easily seen to be the set 

^o — \ > ^i — A.f-, — ,XW — X7 

with A, excluded. Over the reals their multiplicity is 2, and so the index of the 
i th critical point is 2i. Thus 

(2.1) 9 M v ) = 1 +^2 + ••• +t2n. 

The lacunary principle applies and we conclude that Pt(CPn) = 1 + t2 

+ •+/ 2 w . Q.E.D. 
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There are two rather different approaches to proving the Morse inequalities, 
and as both are very instructive, I will say a few words about each of them. 

The level surface method 1. Consider a nondegenerate critical point p of our 
nondegenerate ƒ on W, and assume that it is the only critical point at its level. 
The "Morse Lemma" now asserts that there is a coordinate system xu...,xn 

aboutp such that near/? 

f = f(p) -x\-x\ x\ + xl+l + • • • +x2 

with X = Xp the index of p rel ƒ. 
Using this explicit description of ƒ near p one proves what I call Theorem B 

of the Morse theory. 

THEOREM B. Let a <f(p) < b be such that f has no critical points in the range 
a < ƒ < b other than p. 

Then the diffeomorphism type of Mb differs from that of Ma by the attachment 
of a thickened X-cell 

(2-2) M„ - Mb U ex X e„_x, 
a 

and the homotopy type of Mh is therefore that of Ma with X-cell attached 

(2.3) M A ~ M a U e A . 

PROOF BY PICTURE. Consider the case of a critical point p of index 1 on a 
surface so that near /?, ƒ can be taken to be ƒ = -x2 + y2. Then near/? the level 
surfaces of ƒ take the form: 

FIGURE 2 
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Hence if one deletes the cross-hatched region Y from We, then following the 
gradient lines will deform We — Y to W_e. But Y is simply a "thickened 
1-celP'. The thickening direction is here the j-direction, and the homotopically 
essential part of Y is already the 1-cell given by its intersection with the A'-axis: 
Thus the homotopy type of Wt is also described by (We — Y) U ex as indicated 
below. 

FIGURE 3 

So much for a pictorial explanation of Theorem B. Finally a short explana
tion of how the Morse inequalities follow from Theorems A and B. Consider 
then the step from W_e to Wt with/? the only critical point of ƒ in the range 
-e < f < e. Assume also that p is nondegenerate of index X. Let 91L,a( ƒ ) = 
2pt

xp, with p E Wa, p G C( ƒ ), be the Morse polynomial of a half-space Wa9 

and let Pt be the corresponding Poincaré Polynomial of Wa 

Pt{Wa) = ^tkAimHk(Wa). 

We will actually refine our earlier formulation of the inequalities to the 
statement that 9Hr

a( ƒ ) > Pt(W
a) for each regular value a, and then proceed 

from W_e to W+e by induction. Now the change in 911, from -e to e is clearly 
t\ 

On the other hand the change from AP, from Pt(W~e) to Pt(W
+e) can be 

two fold. Either, 
(l)AP, = /*ar, 
(2)kPt = -tx-\ 
Once this is granted the inequalities at e follow from these at -e. Indeed, 

A ( % - / > , ) = ( ) or ^ ( l + O 

depending on the two cases. In either case the Q term of the inequality is 
augmented by a polynomial with nonnegative coefficients. Q.E.D. 

The crucial step is therefore the alternative for AP, above, and this is a 
standard result in homology theory. It is also a very intuitive one. Consider the 
boundary dex of the attaching cell. It is a X — 1 sphere S^"1 in W_e. The cycle 
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carried by this sphere either bounds a chain in W_£ or not. In the first case we 
cap the chain bounded by Sp~

l with ex to create a new nontnvial homology 
class in We. This corresponds to the alternative: AP, = tx. In the second case ex 

manifestly has as boundary the nontrivial cycle Sx~] in W_s. Hence in this 
situation Pt decreases by a tx~l. Q.E.D. 

Note that to ascertain which alternative is valid involves a global analysis of 
W_e. Note also that if for all critical points the first alternative holds, i.e. 
AP, = f\ then 91L,( ƒ ) = Pt(W\ that is ƒ has precisely the minimal number of 
critical points which the topology permits. We often refer to a critical point 
with AP, = tx as completable, and to a function for which 91L,( ƒ ) = Pt{W) as 
a perfect Morse function on W. 

Note also that a given ƒ can be perfect for one coefficient field and not 
perfect for another. 

Let me conclude this line of proof with the statement of the Morse 
inequalities in relative form. The proof is the same. 

The relative inequalities. Let ƒ be nondegenerate and let a < b be two regular 
values off. Then if 

9M/)2 = 2'X'. p<=c(f)n(wa-wb), 
and 

Pt(W\ Wa) = 2 dim Hk{W\ Wa)tk 

the Morse inequalities still hold, that is, 91t,( f)*> Pt( W
b, Wa ). _^ 

The dynamical systems method. Here we pass from ƒ to its gradient X = df 
relative to some Riemann structure on W9 and the action of R1 on W induced 
by flowing down, that is along -X. 

Consider a point/? E W — C( ƒ ). Its orbit under this action imbeds R1 in M, 
and the closure of the orbit is a segment joining some critical point/? to a lower 
one g. Now, again using the Morse lemma, say, one sees that the trajectories of 
R1 which "start" at a fixed critical point/?, constitute a cell, Wp, of dimension 
Aj, while those which end at p constitute a cell W*9 of codimension Xp. 
Furthermore these two cells intersect transversally at /?. Indeed their tangent 
planes at p are precisely the directories of steepest descent and ascent respec
tively. In this way, then, one obtains two "stratifications" of W into the 
"stable" and "unstable" cells; 

W= U Wp, dim Wp = \p,p£ C( ƒ ), 

W=]lWp*> d i m ^ ^ d i m ^ - X ^ , 

each indexed by the critical points C( ƒ ) off. 
Although the closures of these cells can be badly behaved, this decomposi

tion still has sufficient properties to enable one to deduce the Morse inequali
ties, and I indicate Smale's argument in this direction. By deforming the 
gradient, X9 of ƒ a trifle, if necessary, in the class of vector fields for which 

Xf > 0 and Xf > 0 if/? is not critical, 
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he shows that these two cell decompositions induced by X will be brought into 
normal form, in the sense that any two cells Wt and Wf will intersect normally 
at any/? E Wt n Wf. That is, at such a/? 

dimWt + dimWf - dimWt n Wf = n. 

It follows immediately that if a trajectory starts at p and ends at q then 
dim Wp > dim Wq. Indeed, the interior of this trajectory must be in Wp n W* 
and dim Wp n W* > 1. Hence the above formula reads 

dim*^ + (n - dimWq) > n + 1 =* dimWp> dimWq + 1. Q.E.D. 

It follows that if Kp is the union of all the cells of dim < p9 then the 
• • • Kp C Kp+ ! C • • • defines a finite filtration of Why closed sets, and 

K"-K*-l=]lWp9 dimWp=p, 

is the union of disjoint open sets. 
Since for Cech theory 

H*(Kp, KP~X) = "ZH£{KP - Kp~x)9 

where C denotes compact carriers, this implies that, 

dim HHKp
9 Kp~x) = ( n u m b e r o f P c e l l s i n 23 i f 4 = />> 

\ 0 otherwise. 

Now the inequalities follow by quite standard arguments. 
This method is less elementary than the one outlined before, but has several 

advantages. First of all it points the way to extending the Morse inequalities to 
arbitrary flows, i.e. vector fields X, satisfying certain generic conditions. This 
led Smale to the so-called Morse-Smale flows and diffeomorphisms (see [SS]). 

Secondly a slight modification of our discussion leads us naturally to the 
Lyusternik-Schnirelmann estimate on the number of critical points of a func
tion/on W. Indeed suppose now that/? is an arbitrary isolated critical point of 
ƒ. We still have the set Wp of trajectories of Cleaving/?, and the corresponding 
partition (2.3). What we do not know any more is whether Wp is a cell or not. 
However Wp will still be contractible to /?, and we can furthermore " thicken" Wp 

a little so as to preserve this property. It follows that under our assumption on 
ƒ, W admits a cover {Wp} indexed by C( ƒ ), by open contractible sets. By the 
very definition of the concept of category, of a space, this implies that 

Cat( W) < number of critical points off. 

From this in turn we have the cohomological criterion: Suppose <ol9... ,com 

are cohomology classes on W with 

(o, A • • • Acow 7* 0; dimw, > 0. 

Then any function with isolated critical points on W must have at least (m + 1) 
critical points. 

PROOF. If it had fewer, we say only m of them, we could cover W by open 
sets {Wt}, i— l , . . . ,m. From the contractability of these and dimc^X) it 


