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Abstract. One of the most important assumptions in multiple regression
analysis is the independence of the explanatory variables, however, this as-
sumption is violated in several situations. In this work, we investigate regres-
sion equations when this independence does not hold and the explanatory
variables are connected by many of elliptical copulas. We apply the proposed
regression equation to study its heteroscedasticity diagnostic and using simu-
lated data we also assess our regression model. A cross-validation procedure
is carried out to ensure the unbiasedness of the results. Also, a real data anal-
ysis is presented as an application.

1 Introduction and preliminaries

Regression analysis is probably the most popular statistical technique which helps researchers
to make a prediction as far as low errors and the linear regression, which is used mostly, is
based on multivariate normal assumption of variables. In some cases, the regression equation
between explanatory and the output variable is nonlinear. Exponential functions, logarithmic
functions, trigonometric functions, power functions, Gaussian functions, and Lorenz curves
are examples of such nonlinear functions Seber and Wild (2003), Bates and Watts (2007).

In general, a nonlinear statistical model can be described with the following notation:

Y = g(X, θ) + ε (1)

where Y is the outcome variable, g(·) : Rp → R is a nonlinear function, X = (X1,X2, . . . ,

Xp) are the explanatory variables, θ denotes the parameters of the model to be estimated, and
ε is the error term. The special case of g is the linear form α + β1x1 + β2x2 + · · · + βpxp

which is called as multiple (linear) regression. Also, g can be a mix of linear and nonlinear
functions. There are many techniques that have been proposed by authors which are dealing
with nonlinear relations between variables, among them, spline (and B-spline) Marsh and
Cormier (2001), radial basis function Ando, Konishi and Imoto (2008), Xu, Krzyżak and
Yuille (1994), support vector regression Awad and Khanna (2015), etc. We refer to book
of Konishi (2014) for more details about linear and nonlinear models. From another point
of view, marginal normal distributions which are connected by a Gaussian copula allow to
construct a multivariate normal distribution and hence, their regression equation is linear. Pa-
rameter estimations in these regression equations have the same results as the ordinary least
squares (OLS) method. In some situations, however, the connection between variables may
departure from the Gaussian copula. Analyzing of such models was done in the literature.
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Crane and van der Hoek (2008) have used some conditional expectation formulae for copulas
to carry out some regression analysis. Noh et al. (2013) have presented some inferences of
copula-based regressions. Acar, Azimaee and Hoque (2019) have investigated the utility of
copula models for model-based predictions. So, exploring the effect of the dependence be-
tween the explanatory variables as well as their marginal distributions in a regression equation
were our main motivations of this work. For more details in this subject, we refer to Kumar
and Shoukri (2007), Hoang, Khandelwal and Ghosh (2019), Bennafla et al. (2016).

Elliptical copulas which are the copula functions corresponding to multivariate elliptical
distributions, consist of Gaussian and t-copulas Frahm, Junker and Szimayer (2003).

Denoting � the standard normal cumulative distribution and �k(.,R) the k-dimensional
standard multivariate normal distribution function with correlation matrix R, the Gaussian
k-dimensional copula, denoted by k-copula, with correlation matrix R is then given by

CGa(u1, u2, . . . , uk) = �k

(
�−1(u1),�

−1(u2), . . . ,�
−1(uk),R

)
(2)

where �−1(·) is the inverse function of the standard normal distribution function and R ∈
[−1,1]k×k . In a similar manner, the t-copula is defined as

Ct(u1, u2, . . . , uk) = T k,ν

(
T −1

ν (u1), T
−1
ν (u2), . . . , T

−1
ν (uk),R

)
(3)

where T k,ν(.,R) is the CDF of the k-dimensional t-distribution with ν degrees of freedom
and correlation matrix R and T −1

ν is the inverse of the t-distribution with ν degrees of free-
dom.

These two copulas play an important role in regression analysis. Standardly, it has been
considered that the relation between the explanatory variables and the output variable follow
Gaussian copulas as well as the explanatory variables themselves are related via Gaussian
copulas, see, for example, Pitt, Chan and Kohn (2006).

Despite the increasing interest in using Gaussian copula for regression analysis, there have
been only a few attempts to use t-copula as a tool to carry out a prediction analysis Acar,
Azimaee and Hoque (2019), while there exist some cases that these relations can be formu-
lated using a t-copula. In this work, we carry out some regression models when the relation
between the explanatory variables follows an elliptical copula. In particular, we first consider
a Gaussian copula, then by considering a t-copula, we explore some non-linear equation
between the output and input variables. Assuming these two special cases of the elliptical
copulas enable us to compare our results with the traditional regression analysis.

Moreover, it is known that, if OLS is performed on a heteroscedastic data set, yielding
biased standard error estimation, a researcher might fail to reject a null hypothesis at a given
significance level, when that null hypothesis was actually uncharacteristic for the actual popu-
lation. Cysneiros, Paula and Galea (2007) have investigated heteroscedasticity in linear mod-
els and Cysneiros, Cordeiro and Cysneiros (2010) have obtained some ML estimations in
heteroscedastic symmetric nonlinear models. Wang and Neal (2012) have presented a Gaus-
sian process regression with heteroscedastic residuals. See also, Kersting et al. (2007) and
Alqawba, Diawara and Kim (2019) for more information.

As a motivation and a visual schematic example of homoscedastic versus heteroscedastic
regression analysis, we may note to the Figure 1 for n = 2 predictors. Figure 1(a) shows fitting
a wrong homoscedastic regression analysis on an actually heteroscedastic data set, while, as
depicted in Figure 1(b), a heteroscedastic approach will insures the best fitting distribution to
the data. From a copula point of view, Chang and Joe (2019) have compared the performance
of vine copula and linear regression with conditional heteroscedasticity assumptions. One of
our aims in this work is checking the heteroscedasticity in a regression analysis.

The paper is comprised of 4 sections. In next section, we set up the basis of regression
equations by means of a copula-based conditional expectation. Some numerical results are
presented in Section 3 and finally some concluding remarks are suggested in Section 4.
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Figure 1 homoscedastic and heteroscedastic analysis: (a) homoscedastic, (b) heteroscedastic.

2 Copula based conditional expectation

Consider the random vector X = (X1,X2, . . . ,Xn) is associated with n-copula function
CX(u) where u = (u1, u2, . . . , un) and the elements of the random vector (X, Y ) are con-
nected by (n + 1)− copula CX,Y (u, v). The following theorem states a general conditional
expectation based on copulas.

Theorem 2.1. If random variables X1,X2, . . . ,Xn,Y have marginal distribution functions
G1(x1), G2(x2), . . . , Gn(xn), F(y), respectively, and they are associated with the copula
CX,Y (u, v), then if exist,

E
(
g(Y )|X = x

) =
∫

g(y)
∂

∂y

D123...nCX,Y (u, v)

D123...nCX(u)
dy, (4)

where g(·) is a Borel measurable function, ui = Gi(xi), i = 1,2, . . . , n and v = F(y). Also,
D123...nCX,Y (u, v) = ∂CX,Y (u,v)

∂u1∂u2...∂un
and D123...nCX(u) = ∂CX(u)

∂u1∂u2...∂un
if these derivatives exist,

otherwise zero.

Proof. See the Appendix. �

By using the notation E(g(Y )|X = x) = rg(Y )|X1,...,Xn(y|x1, . . . , xn), we may obtain the
conditional expectation and the conditional variance of Y given X = x, respectively, as

E(Y |X = x) = rY |X(y|x), (5)

Var(Y |X = x) = rY 2|X(y|x) − r2
Y |X(y|x). (6)

A special case of the Theorem 2.1 arises when random variables Xi , i = 1,2, . . . , n are pair-
wise independent.

Corollary 2.2. With the assumptions of Theorem 2.1, if random variables X1, X2, . . . , Xn

are pairwise independent, then if exist,

E
(
g(Y )|X = x

) =
∫

g(y)
∂

∂y
D123...nCX,Y (u, v) dy. (7)
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Proof. The proof is simple noting that under the independence assumption of Xis, i =
1,2, . . . , n, we have

D123...nC(u1, u2, . . . , un,1) = D12...nC(u1, u2, . . . , un)

= ∂

∂u1∂u2 . . . ∂un

�
j=n
j=1uj = 1. �

We will use the previous results to carry out some regression analysis when the random
variables are connected via elliptical copulas. We assume the multiple regression

Y = α + β1X1 + β2X2 + β3X3 + · · · + βnXn + ε (8)

between the explanatory variables X1,X2, . . . ,Xn and the response variable Y , where βi ,
i = 1,2, . . . , n are the regression coefficients. An immediate application of Theorem 2.1 in
this model, yields the results of ordinary least square (OLS) regression.

Corollary 2.3. If random variables X1,X2, . . . ,Xn,Y follow standard normal distribution
and for i = 1,2, . . . , n, Xi and Y are connected using Gaussian copula with parameter ρiy ,
i.e., CXi,Y (u, v) = GA(u, v,ρiy) and X1,X2, . . . ,Xn are pairwise independent, then

rY |X1,...,Xn(y|x1, . . . , xn) = ρ1yx1 + ρ2yx2 + · · · + ρnyxn. (9)

Proof. Since X′
j s for j = 1, . . . , n are pairwise independent, we consider the correlation

matrix of X and Y as R =
[ 1 ryx

rT
yx Rxx

]
where ryx = [ρ1y ρ2y . . . ρny] the correlation vector

between Y and X = (X1,X2, . . . ,Xn) and Rxx = ρ diag(1,1, . . . ,1). By inverse calculation
of the correlation matrix, and substituting in the n + 1-variable Gaussian-copula, we have:

CGa(u1, u2, . . . , un, v)

=
∫ �−1(v)

−∞

∮ �−1(uj )

−∞
1√

(2π)n+1(|R|)

× exp
( −1

2|R|
((

s − (ρ1yt1 + · · · + ρnytn)
)2 + |R|t2

1 + · · · + |R|t2
n

))
dtj ds,

where
∮

is an n-integral on tj , j = 1, . . . , n. Then, denoting �−1(u1) = b1,. . . ,�−1(un) = bn

and �−1(v) = b0, and g(s, t1, . . . , tn) = 1√
(2π)n+1(|R|) exp( −1

2|R|((s − (ρ1yt1 +· · ·+ρnytn))
2 +

|R|t2
1 + · · · + |R|t2

n)), by derivation with respect to u1,u2,. . . ,un, we obtain

D123...nC
Ga(u1, u2, . . . , un, v)

= ∂

∂u1 . . . ∂un−1

∂bn

∂un

∂

∂bn

∫ b0

−∞

∫ b1

−∞
. . .

∫ bn

−∞
g(s, t1, . . . , tn) dtn . . . dt1 ds

= ∂

∂u1 . . . ∂un−1

1

φ(bn)

∫ b0

−∞

∫ b1

−∞
. . .

[
∂

∂bn

∫ bn

−∞
g(s, t1, . . . , tn) dtn

]
dtn−1 . . . dt1 ds

= ∂

∂u1 . . . ∂un−1

∫ b0

−∞

∫ b1

−∞
. . .

∫ bn−1

−∞
g(s, t1, . . . , bn) dtn−1 . . . dt1 ds

= ∂

∂u1 . . . ∂un−2

∂bn−1

∂un−1

∂

∂bn−1

∫ b0

−∞

∫ b1

−∞
. . .

∫ bn−1

−∞
g(s, t1, . . . , bn) dtn−1 . . . dt1 ds

= ∂

∂u1 . . . ∂un−2

1

φ(bn−1)

∫ b0

−∞

∫ b1

−∞
. . .

[
∂

∂bn−1

∫ bn−1

−∞
g(s, t1, . . . , bn) dtn−1

]
. . . dt1 ds
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= ∂

∂u1 . . . ∂un−2

∫ b0

−∞

∫ b1

−∞
. . .

∫ bn−2

−∞
g(s, t1, . . . bn−1, bn) dtn−2 . . . dt1 ds.

After some algebraic computations, we have

D123...nC
Ga(u1, u2, . . . , un, v) = �

(
b0 − (ρ1yb1 + · · · + ρnybn)√|R|

)
,

and substituting values b0,b1,. . . ,bn, it yields

D123...nC
Ga(u1, . . . , un, v) = �

(
y − (ρ1yx1 + · · · + ρnyxn)√|R|

)
.

Hence, equation (7) yields the regression equation as

rY |X1,...,Xn(y|x1, . . . , xn) =
∫

y
∂

∂y
D123...nC(u1, u2, . . . , un, v) dy

=
∫

y
∂

∂y
D123...nC

Ga(u1, u2, . . . , un, v) dy

=
∫

y
1√|R|φ

(
y − (ρ1yx1 + · · · + ρnyxn)√|R|

)
dy

= ρ1yx1 + ρ2yx2 + · · · + ρnyxn

which is (9). �

As another result of equation (7), we can determine whether the regression equation (9) is
heteroscedastic or not. For this, we note that Y |X ∼ N(ryxX,1−ryxR−1

xx rT
yx) So its variance

is

var(Y |X) = 1 − ρ2
1y − ρ2

2y − ρ2
3y − · · · − ρ2

ny,

which shows its homoscedastic property. When the independence assumption of explanatory
variables is violated, their dependence may be expressed by a copula function. In the sequel,
we consider elliptical copulas as a connection function between X1, X2 and Y . The detailed
solutions of the following examples are presented in the Appendix.

Example 2.4. Assume that the variables Y , X1, X2 have marginal standard normal distribu-
tions, and they are related by a Gaussian copula, then the regression equation of Y given X1
and X2 is

rY |X1,X2(y|x1, x2) = ρ1y − ρ2yρ12

1 − ρ2
12

x1 + ρ2y − ρ1yρ12

1 − ρ2
12

x2. (10)

here ρ1y , ρ2y and ρ12 is the correlation coefficient of the variable Y with X1, the correlation
coefficient of the variables Y with X2 and the correlation coefficient of the variable X1 with
X2, respectively. Also,

var(Y |X) = 1 − ρ2
1y − ρ2

12 − ρ2
2y + 2ρ1yρ2yρ12

1 − ρ2
12

.

We simply deduce from Corollary 2.3 and above example that in a bivariate regression equa-
tion, if two variables X1 and X2 are independent and they are connected with Y based on the
Gaussian copula, then ρ12 = 0 and the regression equation of Y given X1, X2 will be

rY |X1,X2(y|x1, x2) = ρ1yx1 + ρ2yx2.

Another special case of Theorem 2.1 arises when the relation between the explanatory vari-
ables is modeled by a t-copula.
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Example 2.5. Assume that the random variables Y , X1, X2 have marginally standard normal
distribution and are associated with t-copula. Then

rY |X1,X2(y|x1, x2) =
∫

y
∂

∂y

D12C
t(u1, u2, v)

D12Ct(u1, u2)
dy

=
∫

y
∂

∂y

l

h
dy,

where h = 1

tν (m(x1))tν(m(x2))2π
√

1−ρ2
12

(1 + m2(x1)−2ρ12m(x1)m(x2)+m2(x2)

ν(1−ρ2
12)

)
−(ν+2)

2 and

l = �(ν+3
2 )|R|−1

2

�(ν
2 )(νπ)

3
2 tν(m(x1))tν(m(x2))

∫ m(y)

−∞

(
1 + 1 − ρ2

12

ν|R|
(
s −

(
ρ1y − ρ2yρ12

1 − ρ2
12

m(x1)

+ ρ2y − ρ1yρ12

1 − ρ2
12

m(x2)

))2
+ m2(x1) + m2(x2) − 2ρ12m(x1)m(x2)

ν(1 − ρ2
12)

)−(ν+3)
2

ds,

with m(u) = T −1
ν (�(u)) and T −1

ν (·) is the inverse of distribution function of t-distribution
with ν degrees of freedom.

3 Numerical study

3.1 Simulation study

In this section, we examine our results using a Monte Carlo simulation study.1 Using R pack-
age Vinecopula Schepsmeier et al. (2015), we start our simulation with sample size n = 35
from a trivariate standard normals (X1,X2, Y ) in which they are connected via the t-copula
with correlation ρX1X2 = 0.5 and ρY,Xi

= 0.6, i = 1,2. Since we aim to use a 5- fold cross
validation, in fact in the kth fold, k = 1,2, . . . ,5 we have only 28 observations in the train
set. We repeated this procedure 1000 times. The mean and standard deviation of Root Mean
Square Error (RMSE) in these 5-fold cross-validation was our criterion to compare the accu-
racy of the copula-based regression against the traditional linear regression. It is well known
that RMSE can be obtained as

RMSE =
√√√√1

n

n∑
i=1

(ŷi − yj )2.

Also, the AIC for a regression model can be calculated as follows Bentler (1985)

AIC = n ∗ LL + 2 ∗ k,

where n is the number of data, LL is the log-likelihood for the model using the natural log-
arithm (e.g. the log of the MSE), and k is the number of parameters in the model. Moreover,
the BIC can be calculated as

BIC = n ∗ LL + k ∗ log(n),

where log(·) is the natural logarithm. Table 1 reveals the means and standard deviations in
both training and test sets as well as the AIC and the BIC of test set. As seen from this ta-
ble, a copula-based regression has two merits. First, the means of RMSEs in the training sets
are close, but in test sets, the mean of RMSE of copula regression is less than the classic

1We use the R software and all codes are available upon request.
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Table 1 mean and SD of RMSE-train and RMSE-test of t-Copula regression and Linear Regression in simulated
dataset

Estimation t-Copula regression Linear Regression

Mean of RMSE-Test 0.70 0.73
SD of RMSE-Test 0.34 0.34
AIC-Test −101.81 −99.23
BIC-Test −95.59 −93.01

Figure 2 Performance of ordinary linear regression, t-copula regression and Gaussian copula regression.

regression which shows the overfitting of the classic regression when the independence of
explanatory variables has not met. This is because of the heteroscedasticity of such models,
which cannot be captured by a linear regression (see Figure 1(b)). Second, from the standard
deviations, we observe that the copula regression gives a robust estimator in favor of the clas-
sical regression. Moreover, taking in mind that the t-student distribution (t-copula) converges
to the normal distribution (Gaussian copula) as the sample size increases Kole, Koedijk and
Verbeek (2007), Figure 2 shows the performance of these three regression analysis: ordinary
linear regression, t-copula regression and Gaussian copula regression. Again, we assume that
the two random variables X1, X2 and Y are connected via a t-copula with correlations coifi-
cients ρX1X2 = 0.5 and ρY,Xi

= 0.6, i = 1,2. We started with n = 25 sample size which was
divided into 20 observations for training set and 5 observations for testing set. Then, we have
increased the sample size to n = 30, i.e, 24 sample for training set and 6 samples for testing
set. We continued this addition of the sample size until n = 150 (120 sample for training set
and 30 samples for testing set). As reflected in Figure 2, where the explanatory random vari-
ables are connected using a t-copula, the t-copula model is superior to the Gaussian copula
model, although both of them significantly perform better than the classical linear regression.
Also, as the sample size increases, the RMSEs of the t and Gaussian copula coincide.

3.2 Real data

We used our copula regression to make a prediction in the Parkinson data which was created
by Max Little of the University of Oxford, in collaboration with the National Centre for Voice
and Speech, Denver, Colorado Little et al. (2007). The study includes 195 voice recordings
from 31 individuals with different numbers of replications of each individual. We were going
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Table 2 Mean and SD of RMSE-test and AIC-Test and BIC-Test of G-Copula regression and Linear Regression
in Parkinson dataset

Estimation G-Copula regression Linear Regression

Mean of RMSE-Test 0.01 0.03
SD of RMSE-Test 0.04 0.04
AIC-Test −373.06 −364.54
BIC-Test −364.55 −356.04

to predict second nonlinear measures of fundamental frequency variation,“PPE”, using first
nonlinear measures of fundamental frequency variation,“DFA”, and a nonlinear dynamical
complexity measure,“spread1”. We selected the first two replications of each individuals of
these three variables. We first standardized these variables and each indivdual normality was
confirmed by the Shapiro-Wilks test of normality. Denoting the standardized values of DFA,
spread1 and PPE, respectively, as x1, x2, y, we found that the two variables x1 and x2 are
related with correlation coefficient ρ12 = 0.23. Also, we observed that y is connected with
x1 with correlation coefficient ρ1y = 0.24. Moreover, the connection of y and x2 is with
correlation coefficient ρ2y = 0.99. Also, x1 and x2 are related with Gaussian copula and y

with x1 and x2 are connected via Gaussian copula. The effect of x1 and x2 on the y using two
approaches linear regression and copula regression was carried out applying a 5-fold cross
validation. Using a linear regression we obtained regression equation

y = 0.005 + 0.01x1 + 0.98x2,

while using the Gaussian copula regression, we obtained

y = 0.01x1 + 0.99x2.

Table 2 reveals the means and standard deviation of the RMSEs of these two models in
the test sets as well as their AIC and BIC. These indices were almost the same for the train
sets, except a minor difference in favor of G-Copula regression, but again, their significance
differences in the test set claim the superiority of the copula-based regression models.

4 Conclusion

The present study was designed to determine the effect of structural dependences on the re-
gression analysis. We studied some copula-based relations between variables, especially, the
Gaussian and t-copulas. The results of this study indicate that considering structural depen-
dences will improve the performance of the regression analysis. In addition, these findings
may help us to understand that we are really encountered with a heteroscedastic problem
when the explanatory variables are connected using a t-copula. Future studies on the current
topic are therefore recommended. Considering some Archimedean copulas instead of these
elliptical copulas would be of interest. Also, it might be possible to extend these results with
more explanatory random variables and set up a copula-based path analysis. Moreover, al-
though we did a diagnostic research to identify the homoscedasticity/heteroscedasticity of a
regression analysis, one may to investigate an idea to handle a heteroscedastic regression anal-
ysis using their copula relations. Our next ongoing aim is developing another heteroscedastic
analysis, in which, the explanatory random variables are observed with some measurement
errors and random noises, see Kim, Li and Spiegelman (2016), Mesiar, Sheikhi and Ko-
morníková (2019), Sheikhi and Mesiar (2020), for instance.
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Appendix

Proof of Theorem 2.1

According to the characteristics of the copulas, we have

E
(
g(Y )|X = x

) =
∫

g(y)
∂

∂y
FY |X(y|x) dy

=
∫

g(y)
∂

∂y

∂CX,Y (u,v)

∂u1∂u2...∂un

∂CX,Y (u,1)

∂u1∂u2...∂un

dy

=
∫

g(y)
∂

∂y

D123...nCX,Y (u, v)

D123...nCX(u)
dy,

which is (4).
Detailed computation of Example 2.4. We have the 3-Gaussian-copula function as

CGa(u1, u2, v) =
∫ �−1(v)

−∞

∫ �−1(u2)

−∞

∫ �−1(u1)

−∞
1√

(2π)3|R|

× exp
(−1

2
(s, t1, t2)R

−1(s, t1, t2)
T

)
dt1 dt2 ds,

where v = F(y), u1 = G1(x1) and u2 = G2(x2). Consider the correlation matrix and its
partitions are

R =
[

1 ryx

rT
yx Rxx

]
, ryx = [

ρ1y ρ2y

]
, Rxx =

[
1 ρ12

ρ21 1

]
.

So, its inverse is equal to

R−1 = 1

|R|

⎡
⎢⎣

1 − ρ2
12 ρ12ρ2y − ρ1y ρ1yρ12 − ρ2y

ρ2yρ12 − ρ1y 1 − ρ2
2y ρ1yρ2y − ρ12

ρ1yρ12 − ρ2y ρ2yρ1y − ρ12 1 − ρ2
1y

⎤
⎥⎦ ,

where |R| = 1 − ρ2
1y − ρ2

12 − ρ2
2y + 2ρ1yρ2yρ12. By derivation with respect to u1, u2 from

the three-variable Gaussian-copula we obtain

D12C
Ga(u1, u2, v) =

exp( −1
2(1−ρ2

12)
(x2

1 + x2
2 − 2ρ12x2x1))

φ(x1)φ(x2)2π(1 − ρ2
12)

1
2

× �

(y − (ρ1y−ρ2yρ12)x1+(ρ2y−ρ1yρ12)x2

1−ρ2
12√

|R|
1−ρ2

12

)

Also, since X1, X2 are related by the Gaussian-copula as

CGa(u1, u2) =
∫ �−1(u2)

−∞

∫ �−1(u1)

−∞
1√

(2π)2|Rxx |
exp

(−1

2
(t1, t2)R

−1
xx (t1, t2)

T

)
dt1 dt2,

again its derivation W.R.T u2 and u1 yields

D12C
Ga(u1, u2) = 1

φ(x1)φ(x2)2π(1 − ρ2
12)

1
2

exp
( −1

2(1 − ρ2
12)

(
x2

1 + x2
2 − 2ρ12x2x1

))
.
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Now using the Theorem 2.1, we have

E(Y |X1 = x1,X2 = x2) =
∫

y
∂

∂y

D12C(u1, u2, v)

D12(u1, u2)
dy

=
∫

y
∂

∂y

D12C
Ga(u1, u2, v)

D12CGa(u1, u2)
dy

=
∫

y
1√
|R|

1−ρ2
12

φ

(y − (ρ1y−ρ2yρ12)x1+(ρ2y−ρ1yρ12)x2

1−ρ2
12√

|R|
1−ρ2

12

)
dy

= ρ1y − ρ2yρ12

1 − ρ2
12

x1 + ρ2y − ρ1yρ12

1 − ρ2
12

x2.

Detailed computation of Example 2.5. We have the 3-t-copula function as follows:

Ct(u1, u2, v) =
∫ T −1

ν (v)

−∞

∫ T −1
ν (u2)

−∞

∫ T −1
ν (u1)

−∞
�(ν+3

2 )|R|−1
2

�(ν
2 )(νπ)

−3
2

×
(

1 + (s, t1, t2)R
−1(s, t1, t2)

T

ν

)− ν+3
2

dt1 dt2 ds,

where v = F(y), u1 = G1(x1) and u2 = G2(x2). Consider the correlation matrix and its
partitions are

R =
[

1 ryx

rT
yx Rxx

]
, ryx = [

ρ1y ρ2y

]
, Rxx =

[
1 ρ12

ρ21 1

]
.

So, its inverse is equal to

R−1 = 1

|R|

⎡
⎢⎣

1 − ρ2
12 ρ12ρ2y − ρ1y ρ1yρ12 − ρ2y

ρ2yρ12 − ρ1y 1 − ρ2
2y ρ1yρ2y − ρ12

ρ1yρ12 − ρ2y ρ2yρ1y − ρ12 1 − ρ2
1y

⎤
⎥⎦ ,

where |R| = 1 − ρ2
1y − ρ2

12 − ρ2
2y + 2ρ1yρ2yρ12. By derivation with respect to u1, u2 from

the three-variable t-copula we obtain

D12C
t(u1, u2, v)

= �(ν+3
2 )|R|−1

2

�(ν
2 )(νπ)

3
2 tν(m(x1))tν(m(x2))

∫ m(y)

−∞

(
1 + 1 − ρ2

12

ν|R|
(
s −

(
ρ1y − ρ2yρ12

1 − ρ2
12

m(x1)

+ ρ2y − ρ1yρ12

1 − ρ2
12

m(x2)

))2
+ m2(x1) + m2(x2) − 2ρ12m(x1)m(x2)

ν(1 − ρ2
12)

)−(ν+3)
2

ds,

Now considering that X1 and X2 they are connected by t-copula as

Ct(u1, u2) =
∫ T −1

ν (u2)

−∞

∫ T −1
ν (u1)

−∞
1

2π
√

1 − ρ2
12

(
1 + k2

1 − 2ρ12k1k2 + k2
2

ν(1 − ρ2
12)

)− ν+2
2

dk1dk2,
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where T −1
ν is the inverse of distribution function of t-distribution with ν degrees of freedom.

By derivation relative to u1, u2 we readily have

D12C
t(u1, u2) = 1

tν(m(x1))tν(m(x2))2π
√

1 − ρ2
12

×
(

1 + m2(x1) − 2ρ12m(x1)m(x2) + m2(x2)

ν(1 − ρ2
12)

)−(ν+2)
2

.

Again, Theorem 2.1 leads us to

E(Y |X1 = x1,X2 = x2) =
∫

y
∂

∂y

D12C(u1, u2, v)

D12C(u1, u2)
dy

=
∫

y
∂

∂y

D12C
t(u1, u2, v)

D12Ct(u1, u2)
dy

=
∫

y
∂

∂y

l

h
dy

which is (11).
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