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Abstract. We briefly expose some key aspects of the theory and use of dis-
persion models, for which Bent Jørgensen played a crucial role as a driving
force and an inspiration source. Starting with the general notion of dispersion
models, built using minimalistic mathematical assumptions, we specialize in
two classes of families of distributions with different statistical flavors: expo-
nential dispersion and proper dispersion models. The construction of disper-
sion models involves the solution of integral equations that are, in general,
untractable. These difficulties disappear when more mathematical structure
is assumed: it reduces to the calculation of a moment generating function or
of a Riemann–Stieltjes integral for the exponential dispersion and the proper
dispersion models, respectively. A new technique for constructing dispersion
models based on characteristic functions is introduced turning the integral
equations above into a tractable convolution equation and yielding examples
of dispersion models that are neither proper dispersion nor exponential dis-
persion models. A corollary is that the cardinality of regular and non-regular
dispersion models are both large.

Some selected applications are discussed including exponential families
non-linear models (for which generalized linear models are particular cases)
and several models for clustered and dependent data based on a latent Lévy
process.

1 Introduction

The work of Bent Jørgensen is rich and deep. Working on the foundations of generalized
linear models (GLMs) he gave the main steps in the construction of the theory of exponential
dispersion models (EDMs), a class of parametric families of one-dimensional distributions.
The necessity of expanding the EDMs to include further parametric families of distributions
(e.g., the von Mises and the simplex distributions) led to the construction of the class of
proper dispersion models (PDMs) in a process which culminated with the development of
the general theory of dispersion models. The class of dispersion models encompasses both
the EDMs and the PDMs under the same umbrella. In this article, we will briefly expose some
of the main aspects of the theoretical development referred above for which Bent Jørgensen
played a crucial role being a driving force and an inspiration source.

The path from the construction of EDMs to the development of the general theory of dis-
persion models presents an increasing level of abstraction. While EDMs rely on relatively
strong assumptions (inherited from exponential families of distributions), the general disper-
sion models are based on a minimalistic mathematical structure while keeping the desirable
distributional and statistical properties. This theory-generation process was inductive in the
sense that it represented a movement from several particular cases (disparate collections of
distributions) to a general setup (large classes of families of probability measures with com-
mon properties). In this article, our exposition follows a reversed order, starting from the

Key words and phrases. Dispersion models, exponential dispersion models, exponential family, non-linear
models, proper dispersion models, saddlepoint approximations.

Received September 2019; accepted September 2019.

2

https://imstat.org/journals-and-publications/brazilian-journal-of-probability-and-statistics/
https://doi.org/10.1214/19-BJPS458
http://www.redeabe.org.br/


An introduction to Bent Jørgensen’s ideas 3

general theory of dispersion models (Section 2.1) involving a weak mathematical structure
and specializing in two different statistical scenarios: EDMs and PDMs (Sections 2.2 and 2.3,
respectively).

We anticipate that when working in the general scenario, we meet some difficulties even
for solving basic questions like finding a mathematical procedure to generate the families
of probability involved there. For instance, the generation of dispersion models involves the
solution of Fredholm integral equations that are known to be mathematically hard, and in
many instances, it is difficult even to establish whether the equation has a solution or not.
When introducing more mathematical structure, as expected, those difficulties gradually dis-
appear. Interestingly, arguments of probabilistic and statistical nature (e.g., a coincidence of
an integral with the moment generating function, probabilistic properties of the characteristic
function and exactness of the so-called p� approximation) turn the hard mathematical prob-
lems tractable. The general integral equation becomes a convolution equation (solvable using
standard methods of generalized functions or other methods of deconvolution) or involves a
simple calculation of a Riemman–Stieltjes integral in some of the more specific scenarios.

We stress that the deductive path used in our exposition (starting from the general and
moving to more particular cases) was only feasible because we knew the entire inductive path
referred to above and then we essentially reversed the order of the construction. We believe
that this choice of disposition of arguments is more comfortable to follow and enlighten the
theoretical construction of the theory of dispersion models, but we invite the reader to imagine
the reversed order while reading the text in order to get a feeling of the difficulties that she/he
would face in constructing the general theory of EDMs. In our view, the most significant
contribution that Bent Jørgensen gave to the theory of dispersion models was to envision the
structure that we briefly present here.

Bent Jørgensen’s professional trajectory was circular, starting in Denmark (Aarhus and
Odense), he moved to several countries (England, Brazil and Canada) and eventually returned
to Denmark (Aarhus-Foulum and finally Odense, where he was born). He obtained a master
degree from Aarhus University (1979) with a thesis on the inverse Gaussian distribution, un-
der the supervision of Ole Barndorff–Nielsen. His master thesis was later published in a book
(Jørgensen, 1982). Bent Jørgensen received a Ph.D. title from the University of Southern Den-
mark (1987), also under the supervision of Ole Barndorff–Nielsen and a Doctor of Science
degree from Aalborg University (1997). He also studied at the Imperial College, in London,
from 1981 to 1983. His famous book “The Theory of Dispersion Models” (Jørgensen, 1997)
was primarily derived from the results of his PhD thesis and his doctoral dissertation. A sig-
nificant part of this work was published as lecture notes after teaching a course in the First
School of Regression Models in São Paulo in 1989.

Bent Jørgensen came to the “Instituto de Matematica Pura e Aplicada” (IMPA, in Rio de
Janeiro, Brazil) by the influence of Gauss Cordeiro who met him as a student at the Imperial
College (London) in 1981. During a congress in York, in 1986, a few months before coming
to Brazil, Bent expressed the desire to work in Brazil because of his Brazilian wife, Vera
Botelho. Gauss Cordeiro took the steps to arrange that Bent came to IMPA since there he
would have an environment suitable to do research without an overwhelming teaching and
administrative load. He arrived in IMPA at the middle of the process of dissolution of the sta-
tistical group, but he fought to keep statistics alive there. From 1990 to 1992, Gauss Cordeiro
stayed as a visiting professor at IMPA giving support to Bent. Together, they promoted an
international event in asymptotic theory that attracted a large number of famous international
statisticians.

Bent Jørgensen visited the main statistical groups in Brazil during his stay from 1986 to
1992 in the country. In particular, he worked intensively with the group of statisticians at the
ESALQ-USP through Clarice Demétrio, with whom Bent kept a fruitful collaboration until
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his last days. This collaboration, including some year latter Célestin C. Kokonendji and John
P. Hinde (among others), generated two main research lines: one on models for counts, see
Bonat et al. (2018), and one on the relations between the so called Taylor’s law (according to
which the variances of responses related to some natural phenomena tend to be proportional
to a power of the mean) and the Tweedie models, see Jørgensen et al. (2011).

He recruited many students to work with him in IMPA (including Rodrigo Labouriau, José
Raúl Martinez, among others). Bent attracted many international researchers in statistics as
guests at IMPA including Ole Barndorff–Nielsen, Preben Blæsild, Michael Sørensen, Jes-
per Møller (from Aarhus University), Ib Skovgaard (University of Copenhagen), Stephen
Laurizen, Søren Lundbye-Christensen (Aalborg University) and Gerard Letac (from Paul
Sabatier University). The departure of Bent Jørgensen from IMPA to the University of British
Columbia (UBC) in 1992 represented a significant loss for the Brazilian Statistics.

A group of statisticians was quickly gathered by Bent Jørgensen at the UBC (e.g., Søren
Lundbye-Christensen, as a recurrent visitor from Denmark, and Peter Song, among others).
They worked in a new research line in which EDMs were used to represent a latent stochas-
tic process governing the temporal development of a phenomena of interest, see Jørgensen,
Labouriau and Lundbye-Christensen (1996a), Jørgensen et al. (1996b, 1996c), Jørgensen and
Song (1997) and Section 3.3.1. In this period (around 1995–1997) Bent Jørgensen worked
also with Rinaldo Artes (currently at Insper—Instituto de Ensino e Pesquisa, São Paulo) de-
veloping part of his thesis entitled “Extensions of generalized estimation equation theory to
circular data and dispersion models”, which was approved in 1997 at University of São Paulo,
see also Artes and Jørgensen (2000).

Bent Jørgensen left UBC and came back to Denmark in a temporary position shared be-
tween the Aarhus University (at the Department for Theoretical Statistics) and the Biometry
Research Unit at the Foulum Research Centre in 1996. In this period, he worked with Ole
Barndorff–Nielsen (on simplex distributions and inferential separation techniques via con-
cepts of sufficiency, ancillarity, and non-formation). The presence of Bent Jørgensen brought
much life to the statistical discussion in the Foulum group of statisticians led at that time by
Rodrigo Labouriau. He attracted Gordon Smyth who was working with dispersion parameter
modeling and composite Poisson distributions, and latter Antonieta Peres (whom met him
in IMPA and worked with him on state space models, but she died a few years later), see
Botter, Jørgensen and Peres (2002), and Renjun Ma, who was working with models of re-
peated measures, see Ma and Jørgensen, Ma, Jørgensen and Willms (2007, 2009). The last
of Bent Jørgensen’s Ph.D. students was Wagner Hugo Bonat, who worked in multivariate ex-
tensions of dispersion models (currently at the Universidade Federal do Paraná) and Tweedie
models, see Bonat and Jørgensen (2016) and Bonat and Kokonendjib (2017). All in all, Bent
Jørgensen worked in many different academic environments, spread over several countries,
and always gathered many collaborators around himself. In the following sections, we review
and discuss some of his main contributions.

2 Dispersion models

2.1 Introduction

The notion of dispersion models can be seen as a generalization of the normal distribution as
we expose below. Consider the density of a univariate normal distribution with expectation
μ ∈ R and variance τ ∈ R+,

p(y;μ,τ) = (2πτ)−1/2 exp
{
− 1

2τ
(y − μ)2

}
for y ∈ C = R.
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Setting d(y;μ) = (y − μ)2 and a(y; τ) = (2πτ)−1/2, we can express the density above in
the form

p(y;μ,τ) = a(y; τ) exp
{
− 1

2τ
d(y;μ)

}
for y ∈ C, (2.1)

where d(y;μ) is the squared Euclidean distance between the observation y and the location
parameter μ. The idea of dispersion models (Jørgensen, 1997, p. 4) is to replace the squared
distance d in (2.1) by another suitable function, called the unit deviance, measuring how far
an observation y is from a central reference point μ of the distribution. This idea turned to be
rather fruitful since it generates a rich class of families of distributions, the dispersion models
(to be defined precisely below), including many classic continuous, discrete and mixed type
distributions. Dispersion models are often used in applications since they are families of dis-
tributions of outstanding statistical models as generalized linear models, exponential family
nonlinear models (see Section 3.1), generalized additive models, generalized linear mixed
models, among others. Moreover, the dispersion models have some common mathematical
properties that allow building an elegant and coherent theory of statistical inference and to
construct models involving observations of well behaved stochastic processes (e.g., processes
with stationary and independent increments, i.e., Lèvy processes, see Section 3.3.1). In this
article, we study the notion of univariate dispersion models and refer the interested reader
to Jørgensen and Lauritzen (2000) and Jørgensen (2013) for the multivariate case; see also
Bonat and Jørgensen (2016).

2.1.1 Basic definitions. A dispersion model is a family of probability distributions parame-
terized by two parameters as follows. The starting point for the construction of the dispersion
models is to define the concept of unit deviance. Let S ⊆ R be the set of the realizable values
of the probability distributions contained in the family that we will construct (assumed to be
the same for each element of the family). Denote the convex support of S (i.e., the smallest
interval containing S) by C and set � = int(C). Here � will be the parameter space of the ref-
erential parameter μ. A unit deviance is a function d : C ×� →R+ such that d(μ;μ) = 0 for
all μ ∈ �, and d(y;μ) > 0 for all (y,μ) ∈ C × � such that y �= μ. A unit deviance d is said
to be regular when d is continuously twice differentiable in C × � and ∂2 d(μ;μ)/∂μ2 > 0
for all μ in �.

A dispersion model generated by a unit deviance d is a parametric family of real prob-
ability measures with support contained in an interval C ⊆ R with density with respect to
a suitable common dominating measure, υ , taking the form (2.1). The dominating mea-
sure υ is typically the Lebesgue measure on R or the counting measure. Here the function
a : C ×R+ → R+ is such that the integral of the density p is 1. The parameters μ and τ are
called the position parameter and the dispersion parameter, respectively.

Classic examples of dispersion models are the normal (d(y;μ) = (y − μ)2), gamma
(d(y;μ) = 2{y/μ− log(y/μ)−1}, for y ∈ R+), von Mises (d(y;μ) = 2{1−cos(y −μ)}, for
y ∈ [0,2π)), simplex (d(y;μ) = (y − μ)2/{y(1 − y)μ2(1 − μ)2}) and Poisson (d(y;μ) =
2{y log(y/μ) − y + μ}) distributions, see (Jørgensen 1997, p. 13–23) for further examples.

An immediate consequence of the above definition is that the position parameter μ is the
mode of the density (2.1) when the dispersion parameter τ is fixed, since log{p(y;μ,τ)} is
proportional to −d(y;μ) and the function d(y; ·) has by definition a minimum at μ = y.
A unit deviance can also be viewed as a generalization of the Kullback–Leibler information
divergence (Jørgensen and Lauritzen, 2000).

We define for each regular unit deviance d : C × � → R+ the associated unit variance
function V : � → R+ given by V (μ) = 2/{∂2 d(μ;μ)/∂μ2}, for each μ ∈ �. The unit vari-
ance function plays an important rule in the theory of dispersion models since it expresses the
dependency of the variance on the expectation under dispersion models and it characterizes
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uniquely the elements of some important classes of these models. Moreover, the variance
function is useful to characterize certain forms of convergence of dispersion models, c.f.,
Jørgensen (1987a, 1987b, 1997).

Two major classes of dispersion models will be studied in details: the proper dispersion
models (PDMs) and the exponential dispersion models (EDMs). A dispersion model with
density (2.1) is said to be a proper dispersion model generated by a unit deviance d : C×� →
R+ when the function a : C ×R+ →R+ factorizes as follows,

a(y; τ) = a0(τ )b(y) for all y ∈ C and μ ∈ �,

for a suitable choice of the functions a0 and b. A PDM is said to be a regular proper disper-
sion model when C = �, the unit deviance d is regular and b(·) = V −1/2(·), where V is the
unit variance function associated to the regular unit deviance d . There is essentially no loss
of generality in assuming that b(·) = V −1/2(·) as we shall argue in Section 2.1.3.

A dispersion model generated by a unit deviance d is said to be a reproductive exponential
dispersion model when the unit deviance has the form

d(y;μ) = yf (μ) + g(μ) + h(y) for all y ∈ C and μ ∈ �, (2.2)

for suitable functions f,g and h. The special form of the unit deviance in (2.2) will be ab-
sorbed in the density (2.1) to obtain (in Section 2.2, equation (2.6)) an alternative represen-
tation of the probability density of the reproductive EDM which is the standard used in most
of the literature on the subject.

Examples of reproductive EDMs are the normal, gamma, inverse Gaussian and Poisson
distributions. The von Mises, simplex, normal, gamma and inverse Gaussian distributions are
classic examples of PDMs. Dispersion models that are neither a regular PDM nor a repro-
ductive EDM “are still not well understood, mainly for lack of examples of this kind” and
because methods for generating those models are currently non-existent (Jørgensen 1997,
p. 8, last paragraph). However, we give below an example and show a general method for
obtaining this type of dispersion models. There are only three PDMs that are also reproduc-
tive EDMs: the normal, the gamma and the inverse Gaussian distributions (Jørgensen 1997,
Theorem 5.6, p. 188); see also Daniels (1980).

2.1.2 Construction of dispersion models. We turn now to the problem of constructing dis-
persion models. Given a unit deviance d defined on C × �, for a given real interval C and
� = int(C), a dispersion model can be obtained by finding a function a : C × R+ → R+
such that the integral of the right side of (2.1) is 1, that is, the function a is the solution of the
following Fredholm integral equation of first kind∫

C
a(y; τ) exp

{
− 1

2τ
d(y;μ)

}
υ(dy) = 1 for all (μ, τ ) ∈ � ×R+. (2.3)

The generation of a dispersion model involves then the construction of a real function from
C ×� that is a unit deviance and finding a solution of the related integral equation (2.3). Not
all unit deviances generate a dispersion model since this equation might not have a solution.
Typically, solving this equation or even just establishing the existence and unicity for a solu-
tion is a hard problem. However, the integral equation (2.3) takes a simpler form for PDMs
as we shall see in Section 2.3.2.

Regarding the construction of a unit deviance, note that any distance on C × � or any
increasing function of a distance on C × � is a unit deviance. The following construction
based on basic properties of characteristic functions yields unit deviances with a tractable
related integral equation. Let P be a probability measure on R with characteristic function ϕ.
If P is symmetric around zero, then ϕ(t) ∈ R, for all t ∈R. Moreover, ϕ(0) = 1 and |ϕ(t)| ≤ 1
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for all t ∈ R (Lucaks 1970, p. 15). Assuming further that P is not a lattice distribution (i.e.,
P is not concentrated on a set of the form {a + nh,n = 0,±1,±2, . . . } for some a,h ∈ R

and h > 0), then |ϕ(t)| < 1, for every t �= 0 (Ushakov 1999, Theorem 1.1.3, p. 2). Therefore,
defining d : C × � → R+ by d(y;μ) = 1 − ϕ(y − μ) = 1 − ϕ(μ − y), for each (y,μ) ∈
C × � (the last equality follows from the symmetry of any characteristic function taking
real values), yields a unit deviance. If we further require that the first two moments of P

are finite, then d is twice differentiable and ∂2/∂μ2 d(μ;μ) = 1 + m2 > 0 (where m2 is the
second central moment of P ), so d is a regular unit deviance. For instance, the unit deviance
given by d(y;μ) = 1 − exp(−|y − μ|), corresponding to the unit deviance constructed with
the characteristic function of the Cauchy distribution, is not a regular unit deviance.

The integral equations (2.1) related to unit deviances constructed with characteristic func-
tions as above, when C =R, for a fixed τ = τ0, becomes

1 =
∫
R

a(y; τ0) exp
{
−1 − ϕ(μ − y)

2τ0

}
υ(dy) = [aτ0 ∗ Kτ0](μ), (2.4)

for all μ ∈ R. Here the convolution operator,“∗”, refers to the convolution between functions.
We want to solve the equation for aτ0(·) = a(·; τ0) where Kτ0(·) = exp{−1/(2τ0)[1 − ϕ(·)]}
is the kernel of a convolution equation. It is remarkable that the kernel Kτ0 is a characteristic
function of a probability measure as proved in the Corollary 1.3.4 in Ushakov (1999), page 8,
and therefore it has a well defined Fourier transform. The solution of the convolution equation
(2.4) does not depend on μ, which is a consequence of the Lemma 5.2 in Jørgensen (1997).
A calculation involving the formalism of tempered distributions, see Rudin (1973), Chap-
ters 7 and 9, and the delta Dirac distribution (in the sense of generalized functions), yields
the general (formal weak) solution a(y; τ0) = F−1[δ(·)/F{Kτ0}(·)] = 1/{2π

∫
R

Kτ0(z)dz} def=
a0(τ0). Here F and F−1 are the Fourier transform and the inverse of the Fourier transform,
respectively. Note that the function a(·; τ) = a0(τ ) can be factorized as a product of a func-
tion of the observations y (function taking constant values) and a function of the parameter τ ;
therefore, the model generated is a PDM. A calculation involving projections on the orthog-
onal complement of the L2(R) closure of the span{K( · − μ) : μ ∈ R} allows to construct at
least one DM that is neither a PDM nor an EDM, for each PDM generated as above. Let P0
be the class of Borel probability measures in R that are symmetric around zero and are not a
lattice distribution. The discussion above allows us to claim that the cardinality of the regular
dispersion models that are not a PDM and not a reproductive EDM is at least the same as
the cardinality of P0. Moreover, the cardinality of those models that are regular is at least the
cardinality of the set of elements of P0 that have the first two central moments finite. To our
best knowledge, this result has never been exposed in the literature before. Further details and
developments are exposed in Labouriau (2020).

2.1.3 Some general properties of dispersion models. Even though PDMs and reproductive
EDMs have somewhat different distributional features, these two classes share some funda-
mental statistical properties, which are common to all regular dispersion models. We sum-
marize these common properties below. First, we note that for any regular unit deviance d it
holds that

∂2 d(μ;μ)

∂y2 = ∂2 d(μ;μ)

∂μ2 = −∂2 d(μ;μ)

∂μ∂y
for all μ ∈ �, (2.5)

Jørgensen (1997), Lemma 1.1, p. 24. This general result has two immediate consequences:
it gives alternative ways to calculate the unit variance function and it implies that the unit
deviance behaves similarly to the unit deviance of the normal family near its minimum, μ0,
since it follows from (2.5) that

d(μ0 + xδ;μ0 + mδ) = δ2

V (μ0)
(x − m)2 + o

(
δ2)

.
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This approximation sends us back to the initial idea of viewing dispersion models as a form
of generalization of the normal distribution.

A useful characteristic of dispersion models is a duality property for (well behaved)
transformations, as we explain below. Given a unit deviance d on C × � and a one-to-
one function f : C → Cf (Cf ⊆ R), the function df : Cf × int(Cf ) → R+ given by
df = d(f −1(z);f −1(ξ)) for each (z, ξ) ∈ Cf × int(Cf ) is also a unit deviance. Moreover,
if a random variable Y follows a dispersion model with unit dispersion d and the function
f is monotone and differentiable, then the distribution of a transformed random variable
Z = f (Y ) is in a dispersion model with density (in the continuous case)

pZ(z; ξ, τ ) = a{f −1(z), τ }
|f ′{f −1(z)}| exp

{
−1

τ
df (z; ξ)

}
for all z ∈ Cf .

In the discrete case, we eliminate the Jacobian 1/|f ′{f −1(z)}| of the above expression. The
new dispersion model generated as above is called in the literature a re-parametrization
by a transformation, in an abuse of nomenclature since the new dispersion model is ac-
tually not a re-parametrization of the original dispersion model. If the unit deviance d is
regular and the transformation f is twice continuously differentiable with |f ′(y)| > 0 for
all y ∈ �, then the unit deviance df is also regular and has the associated unit variance
Vf (ξ) = V {f −1(ξ)}[f ′{f −1(ξ)}]2, where V is the unit variance associated to the unit de-
viance d . The transformation f (y) = ∫ y

y∗ V −1/2(v) dv (for a fixed y∗) has a constant variance
function V∗(ξ) = 1 for all ξ ∈ int(Cf ). This transformation, called the variance stabilizing
transformation, plays an important rule in the asymptotic theory of dispersion models.

The probability density of a regular dispersion model, p given in (2.1), can be well ap-
proximated by

q(y;μ,τ) = {
2πτV (y)

}−1/2 exp
{
− 1

2τ
d(y;μ)

}
,

in the sense that p(y;μ,τ)/q(y;μ,τ) → 1 when τ → 0 for each y ∈ C and μ ∈ �.
This approximation is called the saddlepoint approximation. Clearly, this convergence is
equivalent to a(y, τ )/{2πτV (y)}−1/2 → 1 when τ → 0. The saddlepoint approximation
is often very accurate and it is useful because the function a(·, ·) in (2.1) is difficult to
be calculated or numerically evaluated. Note that the integral of the functions q(·;μ,τ)

are not necessarily 1, therefore we define the renormalized saddlepoint approximation by
q0(·;μ,τ) = q(·;μ,τ)a0(μ, τ ), where a0(μ, τ ) = 1/

∫
C q(y;μ,τ)ν(dy). The approxima-

tion p(y;μ,τ) ∼ q0(y;μ,τ) (as τ → 0) is often more accurate than the original saddlepoint
approximation.

2.2 Exponential dispersion models

An EDM is defined as a class of real distributions having a density with respect to a suitable
dominating measure taking the form

p(y; θ, τ ) = exp
{

1

τ

[
yθ − b(θ)

] + c(y; τ)

}
. (2.6)

Here b :  → R, and c : C × R+ → R are known appropriate functions,  is an open set
in R, θ ∈  and τ > 0 are called the canonical parameter and the dispersion parameter,
respectively. Typically, the dominating measure is the Lebesgue measure in R, yielding con-
tinuous distributions, or the counting measure, generating discrete distributions. A natural
exponential family is obtained when the dispersion parameter τ is kept fixed. The notion of
EDMs was pioneered by Tweedie (1947), who studied several special cases and pointed out
important structural properties. The theory of EDMs was systematically exposed in Jørgensen
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(1987a, 1997) where several mathematical properties of EDMs were presented for the first
time. The terminology “exponential dispersion model” reflects the exponential form of the
density of those distributions and the important role played by the dispersion parameter τ .

The cumulant generating function (cgf) of a distribution with density given by (2.6) is

K(t; θ, τ ) = 1

τ

[
b(θ + τ t) − b(θ)

]
, (2.7)

which depends only on the function b, termed the cumulant generator. Setting b(θ) = θ2/2,
b(θ) = − log(−θ) and b(θ) = −(−2θ)1/2 yield the normal, gamma and inverse Gaussian
distributions, respectively. The discussion above implies that we can construct one EDM for
any specified non-degenerate function b since this function uniquely determines the class of
cgf of an EDM via (2.7) and the cgf uniquely determines the distribution (an instance of
the Fourier inversion theorem for the characteristic functions). Therefore, there exist many
EDMs.

Differentiating (2.7) yields the expectation of the distribution with density (2.6) given by

μ
def= M(θ)

def= ∂b(θ)/∂θ . The function M , associating each value of θ to the expectation
of the corresponding distribution, is called the mean value mapping. By inverting the mean
value mapping (we show below that M is indeed invertible) we obtain that θ = M−1(μ) =
b′−1(μ)

def= q(μ). The variance of the distributions given by (2.6) are then τV (μ), where the
variance function V (·) has the following alternative forms, for each value of μ,

V (μ) = ∂2b(θ)

∂θ2 = ∂b′{q(μ)}
∂θ

= ∂M{q(μ)}
∂θ

= m′{q(μ)
}
> 0.

Consequently, the mean value mapping μ is a strictly increasing function and the parameter
θ = q(μ) = ∫

V (μ)−1 dμ is a known one-to-one function of μ. For a given variance function
V (·), we can easily obtain the inverse of the mean value mapping q(·) and then calculate
b(θ) = ∫

q−1(θ) dθ (for each θ ) and the cgf given by (2.7). The elements of the EDMs are
then uniquely determined by their variance functions V (·). Moreover, the variance functions
play a key role for studying several of the structural properties of EDMs.

The EDMs with quadratic variance function given by V (μ) = aμ2 + bμ + c form an
important and well studied class of EDMs. Morris (1982) studied those EDMs in details and
proved that this subclass is composed of only six distributions: the normal (a = b = 0, c = 1),
the gamma (a = 1, b = c = 0), the Poisson (a = c = 0, b = 1), the binomial (a = −1, b =
1, c = 0), the negative binomial (a = b = 1, c = 0) and the generalized secant hyperbolic
(a = c = 1, b = 0) distributions. Jørgensen (1997) discussed further the generalized secant
hyperbolic by taking b(θ) = − log{cos(θ)} and

c(y; τ) = log
[

2(1−2τ)/τ

τ�(τ−1)

]
−

∞∑
j=1

log
[
1 + y2

(1 + 2jτ)2

]
,

where �(·) is the gamma function.
The r th cumulant of a distribution contained in an EDM with density given by (2.6) is

κr = κr(θ, τ ) = ∂rK(t; θ, τ )/∂r t |t=0. Therefore, the function b(θ) generates all cumulants
of the distribution κr = τ r−1∂rb(θ)/∂θr for r ≥ 1. A direct implication of that is that any
distribution contained in an EDM has finite cumulants of all orders, which rules out the use
of EDM for modeling situations where it is required that the distribution has very heavy tails.

Tweedie (1947) proved the normal convergence of the random variable Z = (Y − μ)/
√

τ ,
where the distribution of the random variable Y is contained in an EDM, using an expansion
for its cgf. The cgf of Z follows from (2.7) as

KZ(t; θ, τ ) = −μ
t√
τ

+ 1

τ

[
b(θ + √

τ t) − b(θ)
]
.
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By expanding b(θ + √
τ t) in a Taylor series around zero with the cumulants of Y as coeffi-

cients and collecting like terms, we obtain

KZ(t; θ, τ ) = V (μ)t2/2 +
∞∑

k=3

∂kb(θ)

∂kθ

τ k/2−1tk

k! .

Based on this expansion, we conclude that

Z = (Y − μ)/
√

τ
D→ N

(
0,V (μ)

)
when τ → 0, (2.8)

where
D→ denotes convergence in distribution. Clearly, equation (2.8) is exact for the normal

distribution since the derivatives of b(θ) of order greater than two vanish.
Equation (2.8) generalizes a number of known results on convergence to normality such as

those for the gamma and inverse Gaussian distributions. In fact, under some regularity condi-
tions, distributions contained in EDMs are approximate normally distributed for small values
of τ . In this way, the standard asymptotic theory applies for small values of the dispersion
parameter as well as for large sample sizes. The mathematical conditions for this result called
small dispersion asymptotics were fully discussed in Jørgensen (1987b).

Let Y1, . . . , Yn be independent and identically distributed (iid) random variables with dis-
tribution contained in an EDM with mean μ and dispersion parameter τ . The form of the cgf
in (2.7) implies that the distribution of the sample mean Ȳ = ∑n

i=1 Yi/n belongs to the same
EDM as the distribution of the elements of the sample with mean μ and dispersion parameter
τ/n. This result includes well-known convolution properties of the normal, gamma and in-
verse Gaussian distributions and implies that the distributions contained in EDMs are infinite
divisible provided the dispersion parameter is allowed to take values arbitrarily close to zero.

2.2.1 Tweedie models. A important sub-class of the models defined by (2.6), called Tweedie
models is obtained when V (μ) = μp , for p ∈ (−∞,0] ∪ [1,+∞). A full discussion of these
distributions with varying p was first addressesed by Tweedie (1947, 1984) and further dis-
cussed by Jørgensen (1987a). The support of the Tweedie models depends on the value of p.
The normal, Poisson, gamma and inverse Gaussian distributions can be obtained from (2.6)
for V (μ) = μp and p = 0,1,2 and 3, respectively. Distributions generated by extreme stable
distributions are determined when p < 0 with support on R. Jørgensen (1987a) demonstrated
that there exist no EDM with power variance functions for 0 < p < 1. When 1 < p < 2, we
obtain the Gamma compound Poisson distributions which are interesting because they are
continuous for y > 0 but have positive probability mass at zero. For p > 2 (p �= 3), we obtain
continuous distributions generated by positive stable distributions. When p increases to +∞
the Tweedie models converge to extreme stable distributions.

We define the cumulant generator bp(θ) for Tweedie models (p �= 1,2) by

bp(θ) = (2 − p)−1[
(1 − p)θ

]p−2
p−1 .

Further, b1(θ) = exp(θ) and b2(θ) = − log(−θ).
The unit deviance dp(·; ·) of a Tweedie model follows by the following straightfoward

calculation

dp(y;μ) = 2
∫ y

μ

(y − t)

V (t)
dt = 2

{ [max(y,0)]2−p

(1 − p)(2 − p)
− yμ1−p

1 − p
+ μ2−p

2 − p

}
.

The remaining quantities in equations (2.6) can be evaluated numerically for the cases
1 < p < 2 and p > 2 in power series following Jørgensen (1987a). See, also Bonat and
Kokonendjib (2017).
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2.2.2 Saddlepoint approximations. We adopt the notation K
(j)
Y (t; θ, τ ) = ∂jKY (t; θ, τ )/

∂tj for j ≥ 1. The saddlepoint approximation for the density of Y takes the form

πY (y; θ, τ ) �
[

1

2πK
(2)
Y (λ̂; θ, τ )

]1/2
exp

[
KY (λ̂; θ, τ ) − λ̂y

]
, (2.9)

where the saddlepoint KY (λ; θ, τ ) − y is found by solving the (usual nonlinear) equation
K ′

Y (λ̂; θ, τ ) = y.
This equation was derived by Daniels (1954) as an approximation for any density given its

cgf, although it can be applied here to approximate the density of an EDM when τ is small.
In fact, the r th cumulant of Y is of order O(τ r−1) (for r ≥ 1) and then the density of Y with
large precision parameter 1/τ can be considered as the density of the sample average in large
samples. By differentiating (2.7), we find b′(θ + τ λ̂) = y and then λ̂ = [q(y) − θ ]/τ . By
definition of the variance function, we have K

(2)
Y (λ̂; θ, τ ) = τV (y). Inserting these quantities

in the last density approximation, the saddlepoint approximation for the ED density can be
expressed in a simple form

πY (y; θ, τ ) �
[

1

2πτV (y)

]1/2
exp

[
− 1

2τ
d(y;μ)

]
, (2.10)

which holds when τ → 0. This approximation is exact independent of τ for the normal dis-
tribution since the third and fourth cumulants of Y vanish. Equation (2.10) is equivalent to
the asymptotic result from (2.1):

√
τa(y; τ) → [2πV (y)]1/2 when τ → 0.

The cumulative distribution function of Y follows approximately from (2.10) as

�Y (y; θ, τ ) = P(Y ≤ y) �
∫ y

−∞

[
1

2πτV (x)

]1/2
exp

[
− 1

2τ
d(x;μ)

]
dx.

By integrating the last equation, Lugannani and Rice (1980) proved that

�Y (y; θ, τ ) �
[
�

(
r√
τ

)
+ √

τφ

(
r√
τ

)(
1

r
− 1

u

)]
,

where �(·) and φ(·) are the cumulative distribution and the density functions of a standard
normal distribution, respectively. The quantity r = sgn(y−μ)

√
d(y;μ) is called the deviance

residual and u = V (y)1/2

2
∂d(y;μ)

∂y
is the dual score residual. This equation is very easy to be

applied to compute probabilities for any EDM since it involves only the variance and the
deviance functions.

We now move to the density of the sample average Y = ∑n
i=1 Yi/n of iid random variables

Y1, . . . , Yn having density (2.6) and cgf (2.7). The density function of Y follows from the
Fourier inversion integral as

πY (y; θ, τ ) = 1

2π
exp

[−ity + nKY (it/n; θ, τ )
]
,

where i = √−1. This equation is suitable for Daniels’ saddlepoint approximation. Setting z =
it/n, the saddlepoint of KY (z; θ, τ )−zy is K ′

Y (ẑ; θ, τ ) = y. Then, the density approximation
of Y can be expressed as

πY (y; θ, τ ) =
[

n

2πK
(2)
Y (ẑ; θ, τ )

]1/2
exp

{
n
[
KY (ẑ; θ, τ ) − ẑy

]}
,

which can provide good results in practice.
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It is much more frequent in statistical applications to compute distribution functions than
density functions. By integrating the last equation, the cumulative distribution function (cdf)
of Y has the form

�Y (y; θ, τ ) �
∫ y

−∞

[
n

2πK
(2)
Y (t; θ, τ )

]1/2
exp

{
n
[
KY (t; θ, τ ) − tx

]}
dx,

where t = t (x) is determined by K ′
Y (t; θ, τ ) = x. By transformation of variables and integra-

tion with respect to the saddlepoint variable t instead of x, we obtain K
(2)
Y (t; θ, τ ) dt = dx

and then

�Y (y; θ, τ ) �
∫ t (y)

−∞

[
nK

(2)
Y (t; θ, τ )

2π

]1/2
exp

{
n
[
KY (t; θ, τ ) − tKY ′(t; θ, τ )

]}
dt,

where t (y) is found by solving K ′
Y (t (y); θ, τ ) = y. This integral for �Y (y; θ, τ ) is much

easier to compute than the previous one because it includes explicitly the saddlepoint function
in the integrand. The saddlepoint approximation for the cdf of Y follows from Lugannani and
Rice (1980) as

�Y (y; θ, τ ) � �
[
r(y)

] + φ
[
r(y)

][ 1

r(y)
− 1

u(y)

]
, (2.11)

where

r(y) = sgn
[
t (y)

]{
2n

[
yt (y) − KY

(
t (y); θ, τ

)]}1/2

and

u(y) = t (y)
[
nK

(2)
Y

(
t (y); θ, τ

)]1/2
.

Equation (2.11) provides highly accurate results for the probabilities associated with Y .

2.3 Proper dispersion models

We consider now the notions of general dispersion models and general PDMs that will allow
us to understand some statistical inferential aspects of the notion of PDMs introduced in
Section 2.1. A general dispersion model is a family of real distributions parameterized by two
parameters, θ ∈  ⊆ R and λ ∈ � ⊆ R+, where , � are intervals, � is unbounded to the
right and the density (or Radon–Nikodym derivative) with respect to a common dominating
real measure v is of the form

p(y; θ, λ) = a(y;λ) exp
{
λt (y; θ)

}
, for all y ∈ S, θ ∈  and λ ∈ �. (2.12)

Here S is the support of the dominating measure v, and a : S ×� →R+, and t : S × →R+
are suitable functions. When the function a factorizes as a(y;λ) = a0(λ)b(y), for all y ∈ S

and λ ∈ �, the family of distributions above is said to be a general proper dispersion model
(general PDM). Note that when the function −d , used in (2.1), is a unit dispersion, λ = 1/τ

and μ = θ , then the general dispersion model and the general PDM coincide with the dis-
persion models and the PDMs defined in Section 2.1. Moreover, (2.12) coincides with (2.1)
defined with the unit deviance t instead of d . Apparently, the setup above is much more gen-
eral than the situation considered in Section 2.1 since here we are not requiring the function t

to be a unit deviance. However, we will argue that in order to obtain families of distributions
with some desirable statistical inferential properties we will need to introduce some restric-
tions in the general definition given above that will render the present definition essentially
equivalent to the setup discussed in Section 2.1. In this way, we are using an embedding of
classes of families of distributions to obtain a better understanding of inferential properties
of the statistical models based on PDMs.
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2.3.1 Some key properties. The notion of yoke and yokable function defined below will
allow us to connect the notions of PDMs (as defined in Section 2.1) and general dispersion
models (defined above). Moreover, these notions will allow us to characterize the existence
of maximum likelihood estimates (MLEs) for PDMs. Given an interval � ⊆R, a function t :
� × � →R is said to be a yoke if supθ∈� t(y; θ) = t (y;y) for all y ∈ �. When additionally,
t (y;y) = 0, for all y ∈ �, then the function t is called a normed yoke. If d : �×� →R+ is a
unit deviance, then −d is a normed yoke. On the other hand, if the function t : �×� →R is
a yoke and we denote for each y ∈ � the supremum supθ∈� t(y; θ) by t̂ (y), then the function
given by t̃ (y; θ) = t̂ (y) − t (y; θ) is a normed yoke.

A function t : C × C → R, where C is a real interval, is said to be yokable when the
following three conditions are satisfied: (i) supθ∈� t(y; θ) < ∞ for all y ∈ C; (ii) There exists
an open interval � ⊆ C such that, for each y ∈ � the supremum θ̂y = supθ∈� t(y; θ) is
unique; and (iii) The function θ̂ : � → int() given by θ̂ (y) = θ̂y (for each y ∈ �) is a
bijection.

If the function t used in (2.12) to define general PDMs is yokable, then we might define
a PDM using the unit deviance d : C × � → R given by d(y;μ) = 2[t̂ (y) − t{y; θ̂ (μ)}], for
all y ∈ C and μ ∈ �. In this case, the density of a general PDM takes the form

p(y; θ, λ) = a0(λ)b(y) exp
{
λ̂t (y) − λ

2
d(y;μ)

}
, (2.13)

for all y ∈ S, μ ∈  and λ ∈ �. Here a(y;λ) = a0(λ) exp{λt̂(y)}. If we further assume that
� = S = C, that the function d is regular unit deviance, and that for all y ∈ �, b(y) =
V −1/2(y), then the family of distributions defined by (2.13) is a regular PDM as defined in
Section 2.1.1. We argue below that it is natural from the statistical point of view to assume the
function t in (2.12) to be yokable. First, the conditions (i) and (ii) of the definition of yokable
function ensure the existence of at least a local maximum of the likelihood function for μ,
obtained when fixing the index parameter λ. Note that this is a minimal necessary requirement
for the existence and uniqueness of the maximum likelihood estimates. The condition (iii)
implies that θ is a re-parametrization of the position parameter of the related proper dispersion
model.

In order to elucidate some basic statistical properties of general dispersion models, let us
consider the so called Barndorff–Nielsen’s p∗ formula (Barndorff-Nielsen 1983, 1988) for
approximating the conditional distribution of the MLE (for a given statistical model) given
an ancillary statistic (i.e., a statistic carrying no information on the parameter of interest,
see Jørgensen and Labouriau (2012), Chapter 2 for details). Here we consider the maximum
likelihood estimation of the parameter μ in a statistical model defined by (2.13) when the
parameter λ is kept fixed and the estimation is based on a single observation, y ∈ S. Taking a
degenerate ancillary statistics (e.g., a constant statistic) the p∗ formula yields an approxima-
tion to the marginal distribution of the MLE. Since in these circumstances the MLE of μ is
μ̂(y) = y and the p∗ approximation is defined by

p
(
y; θ(μ),λ

) ∼ p0(y;μ,λ), (2.14)

where p0 is the renormalized saddlepoint approximation corresponding to the unit deviance
d , with p0(y;μ,λ) = a0(μ,λ)V −1/2(y) exp{−λ

2 d(y;μ)}, for all y ∈ S, μ ∈  and λ ∈ �.
The Barndorff–Nielsen’s formula is said to be exact if the two sides of (2.14) coincide for all
y in S and all (μ,λ) in � × �.

A consequence of the saddlepoint approximation above is that standard dispersion models
are asymptotically normal distributed for λ large. In this way, the Barndorff–Nielsen’s for-
mula may be viewed as a refinement of the normal approximation to the distribution of the
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MLE. Furthermore, there is a strong result for regular PDMs stating that (assuming b con-
tinuous at y = μ) the following three statements are equivalent: i) The Barndorff–Nielsen’s
formula is exact for all λ ∈ �; ii) the Barndorff–Nielsen’s formula is asymptotically exact in
the sense that the ratio p0/p tends to 1 as λ → ∞ for all y and μ in �; iii) The function t̂ (y)

is constant on �, and b(y) ∝ V −1/2(y) (see Jørgensen (1997), Theorem 5.4 and Corollary
5.5). When these statements hold, the normalizing constant a0(μ,λ) does not depend on μ,

and satisfies a0(μ,λ) ∝ a(λ) exp{λt̂(μ)}, and a(λ) ∼
√

λ
2π

exp{−λt̂(μ)} as λ → ∞. In con-
clusion, the density in (2.13) defines a regular PDM when the Barndorff–Nielsen’s formula
is exact.

We discuss below some other properties of PDMs which will show some of the peculiar-
ities of those families of distributions. For any fixed value of the position parameter μ, say
μ = μ0, the family given by (2.1) is an exponential family with canonical statistic d(·;μ0)

and canonical parameter τ . This is enough to recognize that the general form of the density
of a distribution belonging to the exponential family is obtained when setting the position
parameter μ fixed.

Another property of PDMs is that when the dispersion parameter is fixed, say τ =
τ0, the unit deviance is a pivotal statistic for μ. That is, if Y is a random variable
having density (2.13) with respect to υ , then the distribution of the random variable
d(Y,μ) does not depend on μ. This property follows by observing that the integral∫
C b(y) exp{−d(y,μ)/(2τ0)}υ(dy) = 1/a0(τ0) does not depend on the value of μ; it is

easy then to prove that the moment generating functions of the random variables T = Tμ =
d(Y,μ), for μ ∈ �, are all equal and depend only on τ0. This key result is the Lemma 5.2 in
Jørgensen (1997).

2.3.2 Construction of proper dispersion models. As discussed in Section 2.1.2, given a unit
deviance an associated dispersion model can in principle be constructed by solving the in-
tegral equation (2.3), but this is in general a hard problem. However, that integral equation
takes the following simpler form for PDMs

a0(τ )

∫
C

b(y) exp
{
− 1

2τ
d(y;μ)

}
υ(dy) = 1 for all (μ, τ ) ∈ � ×R+, (2.15)

which has a solution a0(τ ) = 1/
∫
C b(y) exp{−d(y;μ)/2τ }υ(dy), provided that the integral

involved exists. The integral
∫
C b(y) exp{−d(y;μ)/2τ }υ(dy) does not vanish (since the in-

tegrand is positive apart from a υ-null set) and does not depend on the parameter μ because
of the second key property of PDMs discussed before.

Another useful technique for constructing PDMs involves the use of a transformation
group, say G, acting freely and transitively on � = C = R; see Section 3.3 of Jørgensen and
Labouriau (2012) for the basic definitions and a short account on transformation groups in
statistical inference. Here we denote the action of G by (g, y) �→ gy for (g, y) ∈ G × �.
Let t, b : � → R+ where the function b is invariant by the action of G (i.e., b(gy) =
b(y) for all g ∈ G and y ∈ �) and t is an arbitrary function. Assume, moreover, that∫
� b(y) exp{λt(g−1y)}dy < ∞, for λ in an interval � ⊆ R+ that is unbounded from the

right. Since G acts freely and transitively on �, there is a one-to-one correspondence between
� and G. Assume further that the supremum t̂ = supg∈G t(g−1y) is finite. Then, it is easy to
see that t (g−1y) is yokable and we might define the unit deviance d(y;μ) = 2{t̂ − t (ĝ−1

μ y)},
where g−1

μ is the MLE of g when the observation is μ. The type of dispersion model con-
structed with this kind of unit deviance is called a transformation dispersion model.

Examples of the construction techniques based on transformation groups described above
are the special PDMs called location-dispersion model for which the density function with
respect to the dominating measure υ has the form p(y;μ,τ) = c(τ ) exp{−d(y − μ)/(2τ)},
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where C = � = R and d is a unit deviance; here the transformation group is the group
of translations with action y �→ (g + y). Another example is the von Mises distribution
defined using the transformation group of rotations of the unit circle with action y �→
module{2π; (g + y)}.

3 Applying dispersion and exponential dispersion regression

We review the Exponential Dispersion (ED) regression to extend the well-known GLMs,
discuss some improved hypotheses tests and some models for clustered and dependent data
based on latent Lévy processes.

3.1 Exponential family non-linear models

We consider models where the random variables Y1, . . . , Yn are assumed independent and
each Yi has a density or probability function of the form (2.1) with mean μi = E(Yi) on a
convenient support.

We define the ED regression by the random component (2.1) and the systematic component

g(μi) = ηi = f (xi;β), (3.1)

where g(·) is a known one-to-one twice continuously differentiable link function, ηi and xi =
(xi1, . . . , xip)T denote the linear predictor and the p×1 vector of non-stochastic independent
variables associated with the ith observation, respectively, β = (β1, . . . , βp)T is a p-vector of
unknown parameters, and f (·; ·) is a (possibly nonlinear) twice continuously differentiable
function with respect to β . Here a standard GLM is obtained when the function f (·; ·) is
bi-linear, that is, when f (xi;β) = xT

i β .
The systematic component relates the explanatory variables xi to the mean parameter μi

of interest. The n × p matrix of derivatives of η with respect to β , specified by X̃ = X̃(β) =
∂η/∂β , is assumed to have rank p for all β . We have p + 1 parameters to be estimated: the
vector β and τ . The ED regression model has two important components: the ED class for
the response variable and a possible nonlinear regression on a vector β by means of the link
function. We assume that the standard regularity conditions for likelihood theory hold. The
ED regression model was called exponential family nonlinear (EFNL) model by Cordeiro
and Paula (1989), thus extending the well-known idea of the GLMs by allowing a nonlinear
regression structure for the explanatory variables. Wei (1998) wrote an excellent book for the
EFNL models.

Let y = (y1, . . . , yn)
T be a vector of observations and � = �(β, φ) be the total log-

likelihood function for a given ED regression model expressed in terms of β and τ . A simple
calculation shows that E(∂2�/∂τ∂β) = 0, that is, the parameters β and τ are globally orthog-
onal. Let β̂ and τ̂ be the MLEs of β and τ , respectively. Let μi = g−1(ηi) be the inverse link
function evaluated at the linear predictor. Given a data vector y, the total deviance for the ED
regression is defined as

D(y;μ) =
n∑

i=1

d(yi;μi).

The vector β̂ can be calculated by minimizing the total deviance D(y;μ) with respect to
this parameter vector. The MLE of β does not depend on the dispersion parameter τ . Let
β̂, η̂ and μ̂ = g−1(̂η) = (g−1(η̂1), . . . , g

−1(η̂n))
T be the MLEs of the vector of regression

coefficients β , the vector of linear predictors η = (η1, . . . , ηn)
T and the vector of means

μ = (μ1, . . . ,μn)
T , respectively. The Fisher information matrix for β is K(β) = τ X̃T WX̃,

where W = diag{w1, . . . ,wn} is a diagonal matrix with weights wi = V (μi)
−1(∂μi/∂ηi)

2.
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The algorithm to estimate β can be carried out by using iteratively re-weighted least
squares (IRLLS)

β̂ = (̂̃XT
Ŵ̂̃X)−1̂̃XT

Ŵẑ,

where ̂̃X and Ŵ are the quantities X̃ and W evaluated at β̂ , ẑ = (ẑ1, . . . , ẑn)
T is the working

vector with components zi = ηi + (yi −μi)∂ηi/∂μi at β̂ . These nonlinear equations have the
same form as the estimating equations for GLMs with a local model matrix X̃ instead of a
known design matrix and can be solved by iterative methods. The IRLLS algorithm is easily
implemented using some standard statistical software such as SAS or the GAMLSS script in
R (R Development Core Team, 2007).

Some asymptotic results for the ED regression were obtained by Cordeiro and Paula
(1989), Cordeiro and McCullagh (1991) and Simas and Cordeiro (2009), among others,
which produce wider results than those for GLMs.

Estimation of the parameter τ is a more difficult problem than the estimation of β and the
complexity depends entirely on the functional form of c(y; τ). The MLE τ̂ is a function of
the deviance of the model, namely τ̂ is the solution of the following equation

τ̂ 2
n∑

i=1

∂c(yi; τ)

∂τ

∣∣∣∣
τ=τ̂

=
[

n∑
i=1

l(yi;yi) − D(y;μ)

2

]
. (3.2)

Equation (3.2) requires in general the use of a nonlinear algorithm to compute numerically
τ̂ except for normal and inverse Gaussian models. However, for some ED regressions, the
form of c(y; τ) is complicated, and τ̂ could be difficult to compute from (3.2). In these
cases, we can use a moment estimate of τ directly from μ̂ given by τ̃ = 1

n−p

∑n
i=1(yi −

μ̂i)
2V (μ̂i)

−1 on the grounds that the expected value of D(y;μ)/τ is approximately n − p

for a well fitted model.
If (2.6) is a two-parameter full exponential family with canonical parameters 1/τ and θ/τ ,

the following decomposition holds

c(y; τ) = 1

τ
a(y) + d(τ) + e(y) (3.3)

and then explicit expressions for τ̂ are possible. Clearly, equation (3.3) is valid for normal,
gamma and inverse Gaussian distributions but does not hold for all ED distributions in (2.6).

The above results apply to all GLMs by setting f (X̃;β) = Xβ for a given design matrix X.
Several diagnostic measures for the ED regression are simple extensions of those measures
for GLMs.

The Tweedie regression models are extensively used in several areas for non-negative
right-skewed data and continuous data that allow zero observations. Bonat and Kokonend-
jib (2017) proposed maximum likelihood, quasi-likelihood and pseudo-likelihood methods
for estimation and inference of Tweedie regression models with unknown power parameter p

in the variance function. The last two methods are fast and computationally simple because
they employ the first two moments only and thus it does not require the function cp(y; τ).

3.2 Improved tests

Bartlett and Bartlett-type corrections improve the large-sample χ2 approximation to the null
distribution of the likelihood ratio, score and gradient statistics, when the sample size is fi-
nite. For a detailed discussion, see Cordeiro and Cribari-Neto (2014). In several papers, like
those from Ferrari, Cordeiro and Cribari-Neto (2001), Cordeiro, Paula and Botter (1994) and
Medeiros, Ferrari and Lemonte (2017), for example, improved likelihood ratio, score and
gradient tests, respectively, were obtained in the class of dispersion models.
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3.3 Modelling clustered and dependent data

3.3.1 Latent stochastic processes based models. Dispersion and ED models were used
to study data containing clustered and dependent observations (Jørgensen, Labouriau and
Lundbye-Christensen, 1996a, Jørgensen et al. 1996b, 1996c, 1999, Jørgensen and Song
1997, 2007, Jørgensen and Tsao, 1999, Artes and Jørgensen, 2000, Botter, Jørgensen and
Peres, 2002, Ma and Jørgensen, 2007, Ma, Jørgensen and Willms, 2009) in recent years. The
common idea explored there is that the dependence in the data is modeled using a latent
stochastic process, the observations being conditionally independent given the latent process.
For example, in Jørgensen et al. (1996c) when modeling the number of hospital emergency
visits and in Botter, Jørgensen and Peres (2002) when modeling the mortality by lung dis-
eases a latent (unobservable) stochastic process represented a time varying morbidity. These
stochastic process based constructions are possible if the distributions of the increments of
processes are infinite divisible, see Jørgensen, Labouriau and Lundbye-Christensen (1996a)
for details, which is the case for the EDMs that have the index set � equal to R+. The infinite
divisibility condition is satisfied by the Tweedie exponential dispersion models.

3.3.2 Estimating equations inference. Zeger and Liang (1986) considered the generalized
estimating equations (GEEs) to analyze longitudinal data based on quasi-likelihood methods.
Liang and Zeger (1986) derived the GEEs from a different and slightly more limited context.
The method derives from EDMs, but is essentially based on second-moment assumptions
for the response. In both articles, the GEEs are derived without fully specifying the joint
distribution. The regression coefficients are consistently estimated even when the correlation
structure is misspecified. However, efficiency depends on the working correlation matrices
proximity to the true one (Liang and Zeger, 1986). Liang and Zeger’s method has been widely
used in several areas dealing with non-Gaussian correlated data (Hardin and Hilbe, 2003).

Artes and Jørgensen (2000) extended the GEE method to the class of dispersion models
to handle certain types of non-normal data such as angles and proportions that are not well
accommodated by EDMs, and for which there are currently no good methods available for
longitudinal data analysis.

Song and Tan (2000) proposed methods to directly model the marginal means of the longi-
tudinal proportional responses using the simplex distribution that takes into account the fact
that such responses are percentages restricted between zero and one and may as well have
large dispersion.

4 Concluding remarks and future perspectives

As mentioned above, the Danish statistician Bent Jørgensen (April 15, 1954; November 19,
2015) made several vital contributions in the area of statistical modeling. He supervised many
students in Denmark, Brazil, and Canada and developed a vast international scientific collab-
oration network. Bent worked on a combination of theoretical and applied topics, including
exponential families, univariate and multivariate dispersion models, exponential dispersion
models, proper dispersion models, Tweedie distributions, generalized estimating equations
and other types of statistical models. Although Bent’s domain was mainly theoretical statis-
tics, he also made significant contributions in a wide range of applied fields such as insurance,
meteorology, and marine ecology, among others. In this article, as colleagues and friends, we
outlined some details of his carrier and reviewed some of his main contributions, especially,
univariate dispersion models, exponential dispersion and proper dispersion models.

The work of Bent Jørgensen opened new research areas and inspired other researchers in
the field. As a piece of evidence, we mention higher-order asymptotics (see Section 3.2), the
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field of exponential family non-linear regressions (see Section 3.1) and the latent stochastic
processes based models (see Section 3.3.1). We envision that further developments might
appear by expanding the general theory of dispersion models to different multivariate and
dependent observation contexts (already partially done). Defining general dispersion models
via integral transforms other than the Laplace transform might allow incorporating heavy tail
distributions and different types of stochastic processes not considered yet.
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