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Abstract. We present a general expression that allows the calculation of both
the n−2 asymptotic covariance matrices of the maximum likelihood estima-
tor (MLE) and the first-order bias corrected MLE, where n is the sample size.
The formula is presented in a matrix notation which has numerical advan-
tages since it requires only simple operations on matrices and vectors. The
usefulness of the formula is to construct better Wald statistics. We apply our
findings to dispersion models and develop simulation studies which show that
modification in the Wald statistic effectively removes size distortions of the
type I error probability with no power loss. For illustrative purposes, a real
data application is considered to support our theoretical results.

1 Introduction

Regression models attempt to explain the behavior of a variable of interest (or response)
from covariables (explanatory variables). In general, a function called a link function, links a
characteristic of the response variable, usually the mean, to the explanatory variables through
parameters to be estimated from observed data.

In general, in the frequentist context, the maximum likelihood method is used to estimate
the parameters of the regression models. The inferences depend strongly on asymptotic prop-
erties of the maximum likelihood estimators. Among these properties, we have that the MLE
is unbiased and follows a normal distribution.

However, likelihood inferences based on an asymptotic approach may not be reliable,
when sample sizes are small or moderate. In this context, several papers have been devel-
oped to improve the likelihood of inference procedures. Cox and Snell (1968) obtained a
general expression for the first-order bias of MLE, which allows us to obtain MLE with
reduced bias (BCE). Shenton and Bowman (1977) and Peers and Iqbal (1985) derived a gen-
eral formula for the MLE second-order covariance matrix. Based on Peers and Iqbal (1985)
several studies have been published, for example, Cordeiro, Barroso and Botter (2006) for
generalized linear models (GLM), Cordeiro and Santana (2008) for exponential family non-
linear models, Rocha, Simas and Cordeiro (2010) for dispersion models, Lemonte (2011)
and Lemonte (2020) for Birnbaum–Saunders and censored exponential regression models,
respectively and Barroso, Botter and Cordeiro (2013) for heteroskedastic GLM. Until now,
Cordeiro et al. (2014) is the only work obtaining a BCE second-order covariance matrix.
However, Magalhães, Botter and Sandoval (2017) showed that the second-order covariance
matrix of the MLE expression presented in Peers and Iqbal (1985) was incorrect and that the
correct expression is the one in Shenton and Bowman (1977).

Hypotheses testing is an essential step in statistical inference in order to help investigators
identify and understand the effect of covariates on the response variable. The main hypothe-
ses tests are the likelihood ratio test (LR; Wilks, 1938), the score test (SR; Rao, 1948) and
the Wald test (Wald, 1943). Under regularity conditions, these statistics have asymptotically
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a chi-squared distribution with the number of degrees of freedom defined by the number of
constraints imposed by the null hypothesis. However, the chi-squared distribution may not
be a good approximation to the distribution of these statistics in small or moderate sample
sizes. As an alternative for small sample sizes, Bartlett or Bartlett-type corrections were sug-
gested for the LR and SR statistics, making the chi-squared distribution approximation more
reliable. In a general setting, there is no Bartlett-type correction factor to improve the Wald
test. Cordeiro et al. (2014) proposed a modified version of the Wald statistic for the GLM,
replacing the MLE by the BCE and the inverse of the information matrix by the second-order
covariance matrix of the bias-corrected maximum likelihood estimator.

Based on Shenton and Bowman (1977) and the ideas of Cordeiro et al. (2014), the chief
goal in this paper is to obtain a single general expression for calculating both the MLE and
BCE second-order covariance matrices. An important result is that our expression is written
in matrix notation instead of tensorial notation. Our matrix formulation has numerical ad-
vantages since it requires only simple operations on matrices and vectors. This result allows
an easy way to simultaneously obtain the MLE and BCE second-order covariance matri-
ces in any class of regression models. Recently, Kosmidis, Kenne Pagui and Sartori (2020)
presented an unified method to obtain bias reduced estimators for GLM, thus, the idea of
integrating methods is being well received in the literature.

All results are applied to dispersion models (DM; Jørgensen, 1997b). The DM is an ex-
tension of the well-known generalized linear models. It is a wide class of models that allows
new choices for the distribution of the response variable. Circular and unit intervals regression
models are integrated with the DM. Some authors have attempted to develop a second-order
asymptotic theory in dispersion models. For example, Simas, Cordeiro and Rocha (2010)
and Simas, Rocha and Barreto-Souza (2011) obtained a matrix expression of order n−1/2 for
the skewness coefficient of the distribution of the MLE and the bias-corrected estimators,
respectively. Lemonte and Ferrari (2012) derived asymptotic expansions for the nonnull dis-
tribution functions of the likelihood ratio, Wald, score and gradient test statistics. Cordeiro,
Paula and Botter (1994), Cordeiro and Ferrari (1996) and Medeiros, Ferrari and Lemonte
(2017) presented, respectively, the Bartlett and the Bartlett-type correction factor to the like-
lihood ratio, score and gradient statistics. Therefore, the DM has been widely studied and
efforts to improve the inference are of great importance.

The paper unfolds as follows. In Section 2, we present in matrix notation a single general
expression for the MLE and BCE second-order covariance matrices. In Section 3, we propose
two Wald test statistics based on the matrix presented in Section 2. In Sections 4 and 5, we
describe the dispersion models and obtain a general formula for the second-order covariance
matrices of the MLE and BCE in DM, respectively. Monte Carlo simulation results are pre-
sented and discussed in Section 6. An empirical application that uses real data is presented
and discussed in Section 7. This paper concludes with a brief discussion in Section 8.

2 General expression for second-order covariance matrices

Let Y1, . . . , Yn be n random variables with Yi having a probability density function that satis-
fies the usual regularity conditions for large sample inference based on likelihood estimation
(Cox and Hinkley, 1974). Let �(θ) be the log-likelihood function for an unknown p-vector
parameter θ . The �(θ) derivatives concerning components a, b, c, . . . of θ are denoted by

Ua = ∂l(θ)/∂θa, Uab = ∂2l(θ)/∂θa∂θb, Uabc = ∂3l(θ)/∂θa∂θb∂θc, . . .

We use the notation introduced by Lawley (1956) to define the joint cumulants and their
derivatives of �(θ):

κab = E(Uab), κabc = E(Uabc), κa,bc = E(UaUbc), κ
(a)
bc = ∂κbc/∂θa.



A general expression for second-order covariance matrices 39

All κ’s refer to a total of the sample and are, in general, of n order. The Fisher information
matrix, K = K(θ), has elements κa,b = −κab. Also consider κa,b = −κab as the correspond-
ing elements of its inverse, K−1 = K−1(θ).

Let θ̂ be the maximum likelihood estimator of θ and θ̃ the MLE of θ corrected by the bias
up to order n−1.

From Shenton and Bowman (1977) and Cordeiro et al. (2014) and following the ideas of
Cordeiro (1993), Cordeiro and Klein (1994) and Patriota and Cordeiro (2011), we propose
a single general matrix expression for the MLE and BCE second-order covariance matrices
given by

Covτ
2
(
θ�) = K−1 + K−1{

� + ��}
K−1 +O

(
n−3)

, (2.1)
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with τ = (τ1, τ2) = (1,1) indicating the second-order covariance matrix of the MLE θ� = θ̂
denoted by Cov2(̂θ) and τ = (0,−1) indicating the second-order covariance matrix of the
BCE θ� = θ̃ denoted by Cov2(̃θ). The proof is presented in the Supplementary Material (see
Magalhães, Botter and Sandoval, 2020). Note that for the second-order covariance matrix of
the bias corrected maximum likelihood estimator, we do not need to derive the log-likelihood
function of θ four times and there are fewer cumulants to compute, which makes this matrix
easier to calculate.

3 Wald test

One of the most used hypotheses tests for practitioners is the Wald test. However, for small
sample sizes the conclusion based on this test can be unreliable, as well as for the LR and
score tests. In a general setting, there is no Bartlett or Bartlett-type correction factor to
improve the Wald test. Here, we describe a modification in the Wald statistic proposed by
Cordeiro et al. (2014) which showed good performance when it was applied to GLM.

Consider the partition θ = (θ�
1 , θ�

2 )�, θ1 being a q-dimensional vector and θ2 containing
the remaining p − q parameters. We have an interest in testing the composite null hypoth-
esis H : θ1 = θ

(0)
1 against a composite alternative hypothesis A: H is false, where θ

(0)
1 is a

specified vector. This partition induces the corresponding partitions

K =
(
K11 K12
K21 K22

)
and K−1 =

(
K11 K12

K21 K22

)
.

The classic Wald test statistic is

W0 = (̂
θ1 − θ

(0)
1

)�{
K̂

11}−1(̂
θ1 − θ

(0)
1

)
, (3.1)

where K̂
11 is the matrix K11 evaluated at θ̂ . Under H, W0 has a χ2

q .
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In the first modification, we replaced K̂
11 by the second-order covariance matrix Cov11

2 (̂θ),
obtained from

Cov2(̂θ) =
(

Cov2(̂θ)11 Cov2(̂θ)12

Cov2(̂θ)21 Cov2(̂θ)22

)
and

Cov−1
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)
,

which implies
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1
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Ĉov11
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)
, (3.2)

where Ĉov11
2 (̂θ) is the matrix Cov11

2 (̂θ) evaluated at θ̂ .

The second modification is made when we replace θ̂1 by θ̃1 and K̂
11 by the second-order

covariance matrix of the BCE, Cov11
2 (̃θ), obtained from partitions

Cov2(̃θ) =
(

Cov2(̃θ)11 Cov2(̃θ)12

Cov2(̃θ)21 Cov2(̃θ)22

)
and

Cov−1
2 (̃θ) =

(
Cov11

2 (̃θ) Cov12
2 (̃θ)

Cov21
2 (̃θ) Cov22

2 (̃θ)

)
,

resulting in
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where C̃ov11
2 (̃θ) is the matrix Cov11

2 (̃θ) evaluated at θ̃ .
Unlike the Bartlett and Bartlett-type corrections, the statistics (3.2) and (3.3) do not change

the convergence order of the Wald test statistic.

4 Dispersion models

A DM is defined as follows. Consider Y1, . . ., Yn independent random variables with a prob-
ability density function (or probability function) of the form (Jørgensen, 1997b):

π(yi;μi,φ) = exp
{
φt(yi,μi) + a(yi, φ)

}
, yi ∈ C, (4.1)

where C is a convex support, μi varies in a subset of C, φ > 0, t (·, ·) and a(·, ·) are known
functions. Sometimes it is convenient to write t (yi,μi) = −D(yi,μi)/2, where D(yi,μi) is
the unit deviance. If Yi is continuous, π(·) is assumed to be a density concerning Lebesgue
measure, while if Yi is discrete, π(·) is assumed to be a density with respect to the counting
measure. We call φ the precision parameter and the inverse of φ the dispersion parameter.
The parameter μi may be interpreted as a location parameter. In some cases, it may be the
expectation of the distribution.

If t (yi,μi) = θiyi − b(θi), where μi = b′(θi), (4.1) is a probability density of an exponen-
tial dispersion models (EDM; Jørgensen, 1987). If a(yi, φ) in (4.1) can be rewritten in the
form a(yi, φ) = a1(φ)+a2(yi), where a1(·) and a2(·) are suitable functions, (4.1) is a proba-
bility density of a proper dispersion models (PDM; Jørgensen, 1997a). Examples of EDM are
the normal, gamma, inverse Gaussian and Poisson distributions. The normal, gamma, inverse
Gaussian, reciprocal gamma, simplex and von Mises distributions are examples of PDM.
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We define the DM regression by the random component (4.1) and the systematic com-
ponent g(μi) = ηi = x�

i β , where g(·) is a known one-to-one differentiable link function,
β = (β1, . . . , βp)�, p < n, is a vector of an unknown parameter to be estimated and xi is
a p × 1 vector of known explanatory variables associated with the ith observable response.
Note that the generalized linear models are particular cases of dispersion models.

The log-likelihood function for β and φ, denoted by �(β, φ), is given by

�(β, φ) =
n∑

i=1

{
φt(yi,μi) + a(yi, φ)

}
. (4.2)

The score function obtained by the differentiation of (4.2) with respect to β is given by

Uβ(β, φ) = φX�t ′(y,μ),

where y = (y1, . . . , yn)
�, X = (x1, . . . ,xn)

� is a specified n × p matrix of full rank
p < n, t ′(y,μ) = ∂t(y,μ)/∂μ and μ = (μ1, . . . ,μn)

�. The MLE of β is obtained solving
Uβ(β, φ) = 0.

The MLE of φ can be obtained solving
n∑

i=1

a′(φ, yi) = −
n∑

i=1

t (yi,μi),

where a′(φ, yi) = ∂a(φ, yi)/∂φ.
We define dri = dr(μi, φ) = E[∂r t (Yi,μi)/∂μr

i ] for r = 1,2,3. Under the usual regularity
conditions, we have d1i = 0 and d2i = −φE{[∂t (Yi,μi)/∂μi]2}. The Fisher’s information
matrix for β has the form

K = K(β) = E

[
−∂2�(β, φ)

∂β∂β�
]

= φX�WX, (4.3)

where W = diag{w1, . . . ,wn} and wi = −d2i (dμi/dηi)
2. The MLEs of β and φ are asymp-

totically independent.

5 n−2 covariance matrix for β in a DM regression

The expression (2.1) is very general and in some cases, it is difficult or even impossible to
obtain it for specific regression models. In the following, we will apply the results in (2.1) for
dispersion models.

In order to express (2.1) for β in a DM regression considering the parameter φ is fixed, it
is helpful to define the following matrices: Z = XK−1X�, Zd = diag{z11, . . . , znn}, Z(2) =
Z � Z, with � representing a direct product, C = diag{Z(2F 1 − F 2 + 2F 3)Zd1}, F j =
diag{fj1, . . . , fjn}, Gj = diag{gj1, . . . , gjn}, for sake of brevity, the quantities fji and gji ,
i = 1, . . . , n, j = 1,2,3 are presented in the Appendix and 1 is a n-dimensional vector of
ones.

In dispersion models, the general expression for the second-order covariance matrices is
(2.1), where K−1 is given by (4.3) and � = −0.5�(1) + 0.25�(2) + 0.5τ2�

(3) with

�(1) = −X�[
τ1(2G1 − G3) + G2

]
ZdX,

�(2) = X�[
(F 2 + 2F 3)Z

(2)(10F 1 − 7F 2 + 6F 3)

+ 6(F 2 − F 1)Z
(2)(F 2 − F 1)

]
X,

�(3) = X�(F 1 + 2F 3)CX.

(5.1)
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Table 1 K̂
−1, Ĉov2(β̂) and β̂ sample covariance matrix, for n = 15 and 25

n = 15 n = 25

β̂1 β̂2 β̂3 β̂4 β̂1 β̂2 β̂3 β̂4

β̂1 1.958 −1.689 −1.316 −0.475 1.392 −0.979 −0.645 −0.844
2.256 −1.966 −1.511 −0.528 1.538 −1.095 −0.707 −0.929
3.676 −3.270 −2.334 −0.897 2.090 −1.465 −0.908 −1.248

β̂2 2.905 0.597 −0.528 1.708 0.125 0.006
3.377 0.668 −0.605 1.917 0.131 −0.003
5.805 0.934 −0.905 2.655 0.161 0.000

β̂3 2.232 −0.137 1.307 0.097
2.567 −0.173 1.450 0.093
4.282 −0.297 2.007 0.103

β̂4 1.943 1.390
2.216 1.556
3.613 2.145

Although the expression (2.1) entails a great deal of algebra, the final expression of the
second-order covariance matrix for a DM regression has a very nice form only involving
simple operations on diagonal matrices and can be easily implemented into statistical soft-
ware such as R (R Core Team, 2017). Additionally, the expression (5.1) generalizes Cordeiro
et al. (2014) and Rocha, Simas and Cordeiro (2010). The detailed derivation of the expres-
sion (5.1) is presented in the Supplementary Material (see Magalhães, Botter and Sandoval,
2020).

6 Simulation study

To examine the performance of β̂ and β̃ second-order covariance matrices, we conducted
three simulation studies. In all studies, we considered the reciprocal gamma distribution, a
PDM model that is commonly used in survival analysis, that is,

π(yi;μi,φ) = φφe−φ

y�(φ)
exp

{
−φ

(
μ

y
− log

μ

y
− 1

)}
, y > 0,

where μ > 0 and φ > 0. We assume,
√

μi = ηi = β1 + β2x2i + β3x3i + β4x4i , i = 1, . . . , n.

The true values of the parameters were fixed as β1 = 3, β2 = 1.5, β3 = 2, β4 = 0 and φ = 1.5.
The covariates x2, x3, x4 were obtained from a uniform distribution in the interval (0,1) for
each n(n = 15,25,35,45) and were held constant in all 10,000 simulations. All simulations
are performed using the R software (R Core Team, 2017).

Up to this moment, we considered φ as a fixed value and derived the second-order covari-
ance matrix for β . However, in practice φ is unknown and we also need to estimate it. We
adopt the alternative of taking φ = φ̂ or φ = φ̃ in order to apply the discussed methodology,
where φ̂ and φ̃ denotes, respectively the MLE and the BCE (Simas, Rocha and Barreto-Souza,
2011) of φ.

In the first simulation study, we compared the covariance matrices of order n−1 and n−2 of
the MLE β̂ with the sample covariance matrix of β̂ . The results of this comparative analysis
are shown in Table 1, for n = 15 and 25, and Table 2, for n = 35 and 45. In these tables, the
first and second entries are the sample means of K̂

−1 and Ĉov2(β̂), respectively, based on
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Table 2 K̂
−1, Ĉov2(β̂) and β̂ sample covariance matrix, for n = 35 and 45

n = 35 n = 45

β̂1 β̂2 β̂3 β̂4 β̂1 β̂2 β̂3 β̂4

β̂1 0.844 −0.612 −0.243 −0.709 0.902 −0.526 −0.726 −0.428
0.933 −0.683 −0.264 −0.786 0.974 −0.569 −0.784 −0.462
1.229 −0.844 −0.249 −0.984 1.221 −0.669 −0.895 −0.537

β̂2 1.220 −0.345 0.386 0.898 0.248 −0.071
1.352 −0.392 0.441 0.969 0.268 −0.082
1.782 −0.523 0.610 1.175 0.353 −0.082

β̂3 1.144 −0.230 1.086 0.117
1.273 −0.273 1.164 0.128
1.674 −0.391 1.407 0.148

β̂4 1.265 0.841
1.407 0.912
1.810 1.097

Table 3 K̃
−1, C̃ov2(β̃) and β̃ sample covariance matrix, for n = 15 and 25

n = 15 n = 25

β̃1 β̃2 β̃3 β̃4 β̃1 β̃2 β̃3 β̃4

β̃1 2.312 −1.996 −1.554 −0.553 1.534 −1.080 −0.711 −0.929
2.689 −2.348 −1.803 −0.622 1.694 −1.206 −0.779 −1.023
3.684 −3.261 −2.349 −0.886 2.083 −1.453 −0.906 −1.242

β̃2 3.429 0.706 −0.626 1.885 0.135 0.005
4.029 0.796 −0.723 2.110 0.142 −0.004
5.784 0.958 −0.924 2.633 0.158 0.002

β̃3 2.634 −0.170 1.442 0.106
3.060 −0.218 1.599 0.103
4.291 −0.314 2.002 0.108

β̃4 2.293 1.534
2.643 1.714
3.638 2.131

the 10,000 replications, where both matrices are evaluated at β̂ . The third entry in Tables 1
and 2 refers to the β̂ sample covariance matrix. In the second simulation study, we performed
the same analysis for β̃ and the results are shown in Table 3, for n = 15 and 25, and Table 4,
for n = 35 and 45.

In the third simulation study, we showed the performance of the Wald statistics (3.1) to
(3.3) and the likelihood ratio statistic through the estimated size of the four tests, where the
null hypothesis was H : β(0)

4 = 0 against A : β(0)
4 �= 0. Assuming that H is true, the empirical

size of the Wald and LR tests is calculated as the proportion of the times that the test statistic
exceeds the asymptotic critical value in the 10,000 Monte Carlo replicates for the nominal
levels α = 10%, 5% and 1%. The power of the four tests was calculated under the alternative
hypothesis A : β

(0)
4 = ε for a grid of values for ε. The results are shown in Table 5 and

Figures 1 and 2.
Based on Tables 1 to 4, we can point out some observations. The second-order covariances

of the estimators β̂ and β̃ are closer to the first-order covariances than the sample covariances.
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Table 4 K̃
−1, C̃ov2(β̃) and β̃ sample covariance matrix, for n = 35 and 45

n = 35 n = 45

β̃1 β̃2 β̃3 β̃4 β̃1 β̃2 β̃3 β̃4

β̃1 0.908 −0.658 −0.262 −0.761 0.953 −0.557 −0.767 −0.451
0.999 −0.730 −0.284 −0.840 1.024 −0.598 −0.823 −0.485
1.221 −0.833 −0.253 −0.972 1.215 −0.666 −0.889 −0.531

β̃2 1.311 −0.371 0.414 0.949 0.262 −0.076
1.445 −0.418 0.469 1.020 0.281 −0.086
1.765 −0.511 0.596 1.170 0.351 −0.082

β̃3 1.228 −0.247 1.146 0.123
1.359 −0.288 1.223 0.133
1.651 −0.374 1.400 0.144

β̃4 1.358 0.889
1.503 0.959
1.785 1.089

Table 5 Estimated sizes of the three Wald and LR tests

n α(%) W0 W1 W2 LR

15 1.0 7.50 6.05 4.41 4.51
5.0 15.85 13.63 11.06 12.21

10.0 22.97 20.42 17.03 19.06

25 1.0 4.62 3.73 3.02 2.64
5.0 11.99 10.22 8.75 9.46

10.0 19.18 16.92 14.73 15.45

35 1.0 3.79 2.84 2.43 2.10
5.0 11.06 9.31 8.03 8.15

10.0 17.34 15.44 14.01 14.25

45 1.0 2.94 2.43 2.02 1.91
5.0 8.81 7.74 6.79 6.96

10.0 14.81 13.27 12.17 12.81

In absolute values, both the first-order and the second-order covariances underestimated the
sample covariances but the second-order covariances reduce this discrepancy. When the sam-
ple size increases, the variances of β̂ and β̃ decrease.

Table 5 and Figure 1 show that for n = 15, the empirical sizes of the original Wald test
are very distant from the corresponding nominal levels. This table and figure also show that
W0 has the worst performance for all n. The statistic W2 given in (3.3) presents empirical
sizes closer to nominal levels, showing that the simultaneous use of the corrected estimator
β̃ and covariance matrix Cov2(β̃) greatly improves the performance of the Wald test. Its
performance is comparable to the LR statistic. When n increases, the empirical sizes of the
four statistics converge to the true nominal levels. It is worth mentioning that all four tests are
liberal, that is, they wrongly reject the null hypothesis more frequently than expected based
on the selected nominal level.

Since all tests have different sizes when one uses their asymptotic chi-squared distribution,
we previously ran Monte Carlo replicates to estimate the exact critical value for each test. So,
the exact critical value guarantees that all tests have the same type I error, which allows us
to compare their powers, as presented in Figure 2, for n = 45. The power of all tests, as
expected, as |ε| increases, tends to be 1. Nevertheless, the power of all tests is similar.
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Figure 1 Estimated sizes of the three Wald and LR tests.

We must say that the simulation findings for different values of β , φ, p, number of pa-
rameters in H are qualitatively similar to those reported here. As earlier remarked, there is
no general Bartlett–type correction available for the Wald test and hence, the W2 statistic
is a suitable option to correct its liberal behavior in small and moderate-sized samples. The
choice of W2 statistic instead of a bootstrap statistic seems to be more attractive because it is
not computationally costly.

7 Application

In this section, we present an application based on real data. The data set is presented in
McCullagh and Nelder (1989, p. 300) and, most recently, in Rasch, Verdooren and Pilz (2020,
p. 421). The response variable (y) is the clotting time of blood in seconds for normal plasma
diluted to nine different percentage concentrations with prothrombin-free plasma (x2). The
clotting time was also induced by two lots of thromboplastin (x3). The data set is shown in
Table 6. The sample size is n = 18 observations of clotting time.

To illustrate an application of the results presented in the Sections 2 and 3 to DM, we
fitted a reciprocal gamma model regression, with ηi = log(μi) = β1 + β2 log(x2i ) + β3x3i ,
i = 1, . . . ,18 and x3 = 0, if Lot 2 and x3 = 1, if Lot 1.

Table 7 presents the estimation results. This table shows that MLE and BCE for β have
close values, although this not happens for φ. As expected through the simulation studies
results, the n−1 standard errors are lower than the corresponding n−2 ones.

Table 8 displays the values and associated p-value of the three Wald statistics to test the
hypotheses H : βj = 0 against A : βj �= 0, j = 1,2,3. All tests reject the null hypothesis
H : βj = 0 for j = 1,2. However, for H : β3 = 0, the tests based on the statistics W0 and W1
reject H considering a significance level of 10% while the test based on W2 does not reject
this hypothesis.
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Figure 2 Power of the three Wald tests and LRT.

Table 6 Clotting time of blood (y) for nine percentage
concentrations of normal plasma (x2) and two lots of
clotting agents

Clotting time (y)

x2 Lot 1 Lot 2

5 118 69
10 58 35
15 42 26
20 35 21
30 27 18
40 25 16
60 21 12
80 19 12

100 18 12

Table 7 Parameter estimates, n−1 and n−2 standard errors (SE)

MLE n−1 SE n−2 SE BCE n−1 SE n−2 SE

β1 5.849 0.669 0.676 5.890 0.707 0.717
β2 −0.575 0.150 0.152 −0.578 0.159 0.161
β3 −0.469 0.283 0.285 −0.469 0.299 0.302
φ 2.781 2.491

As shown in the simulation study, the W0 statistic is too liberal while the W2 presents null
rejection rates closer to the nominal levels with no power loss, then the W2 statistic should be
used in practice.
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Table 8 Wald test statistics and p-values

W0 p-value W1 p-value W2 p-value

β1 76.522 <0.001 74.775 <0.001 67.541 <0.001
β2 14.644 <0.001 14.273 <0.001 12.848 <0.001
β3 2.756 0.097 2.705 0.100 2.412 0.120

8 Concluding remarks

Since the last decade, there has been considerable interest in finding closed-form expressions
for the second-order covariance matrix of maximum likelihood estimators in many classes of
regression models. Although MLE bias reduction studies are older, up to now, the work of
Cordeiro et al. (2014) is the only one that obtains the BCE second-order covariance matrix.
The reason is that the expression for obtaining the second-order matrix for the BCE proba-
bly requires even more difficult algebra. In this paper, we obtain a general expression for the
second-order covariance matrices which, at the same time, gives the second-order covariance
matrix for the maximum likelihood estimator and its bias-corrected version. Surprisingly, the
expression for the BCE second-order covariance matrix requires less effort to be derived than
for the MLE. The second-order covariance matrices presented in this work correct previously
published papers based on the results from Peers and Iqbal (1985) instead of those from
Shenton and Bowman (1977). We also apply the second-order covariances to construct im-
proved Wald statistics. Next, the general expression of the second-order covariances matrices
expression is derived for the dispersion models, an interesting class of models that extends
the well-known generalized linear models. We show that the matrix expression for DM is
very simple and can be easily implemented in a programming language with support for ma-
trix operations, such as R. Our simulation studies indicate that the discrepancy between the
sample covariances and the second-order covariances is less than the discrepancy between the
sample covariances and the first-order ones. Additionally, they show that the proposed mod-
ification to the Wald statistic removes size distortions of the type I error probability without
power loss. Finally, we also present an empirical application which illustrates that traditional
Wald statistic may lead to misleading conclusions and that W2 statistic should be preferred.

Appendix

The quantities fji and gji , i = 1, . . . , n, j = 1,2,3, in (5.1), are given by

f1i = −
(

dμi

dηi

)3
d ′

2i , f2i = −dμi

dηi

d2μi

dη2
i

d2i −
(
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)3
d3i ,
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dηi

d2μi

dη2
i
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(
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)2
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(
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)2 d2μi
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d ′
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(
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d ′
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(
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g3i = 3
(

dμi

dηi

)2 d2μi

dη2
i

d ′
2i + 3

dμi

dηi

d3μi

dη3
i

d2i + 3
(
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dη2
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)2
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where d ′
ri e d ′′

ri are the first and second partial derivatives of dri with respect to μi , respec-

tively and d
(2)
2i = E[{∂2t (Yi,μi)/∂μ2

i }2].
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