Translator Disclaimer
October 2020 On multiple imputation for unbalanced ranked set samples with applications in quantile estimation
Saeid Amiri, Mohammad Jafari Jozani, Reza Modarres
Braz. J. Probab. Stat. 34(4): 752-769 (October 2020). DOI: 10.1214/19-BJPS462

Abstract

We consider multiple imputation (MI) for unbalanced ranked set samples (URSS) by considering them as data sets with missing values. We replace each missing value with a set of plausible values drawn from a predictive distribution that represents the uncertainty about the appropriate value to impute. Using the structure of the MI dataset, we develop algorithms that imitate the structure of URSS to carry out the desired statistical inference. We provide results for the convergence of the empirical distribution functions of imputed samples to the population distribution function, under both URSS and simple random sampling (SRS). We obtain the variances of the imputed URSS, and the expected values of the variance estimators. We also study the problem of quantile estimation using an imputed URSS and propose a hybrid method based on the bootstrap and imputation of URSS data. We apply our results to estimate the mean and quantiles of the mercury in contaminated fish under perfect and imperfect URSS.

Citation

Download Citation

Saeid Amiri. Mohammad Jafari Jozani. Reza Modarres. "On multiple imputation for unbalanced ranked set samples with applications in quantile estimation." Braz. J. Probab. Stat. 34 (4) 752 - 769, October 2020. https://doi.org/10.1214/19-BJPS462

Information

Received: 1 July 2017; Accepted: 1 October 2019; Published: October 2020
First available in Project Euclid: 25 September 2020

MathSciNet: MR4153640
Digital Object Identifier: 10.1214/19-BJPS462

Rights: Copyright © 2020 Brazilian Statistical Association

JOURNAL ARTICLE
18 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.34 • No. 4 • October 2020
Back to Top